CSCI 331: Introduction to Computer Security

Lecture 22: What I do

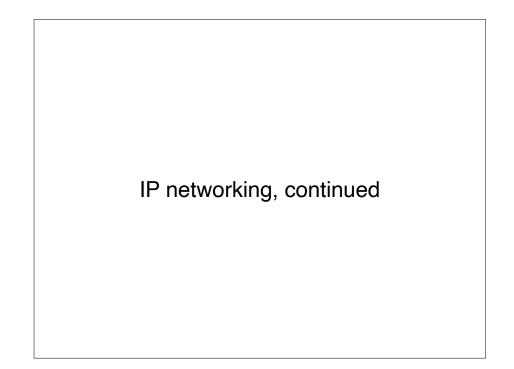
Instructor: Dan Barowy

Williams

Announcements

CS Holiday Party

Friday, Dec 8 @ 2:35pm CS Common Room

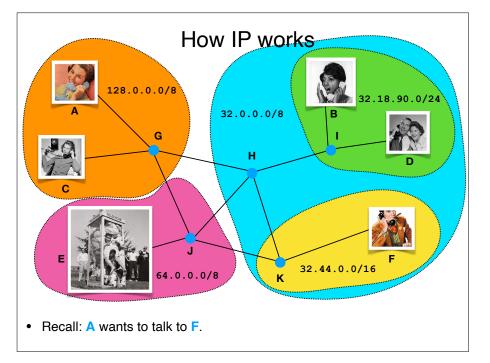

Join the CS faculty and your peers for an end-ofsemester celebration. We will have hot cocoa and treats for you to enjoy. Last gathering of the year!

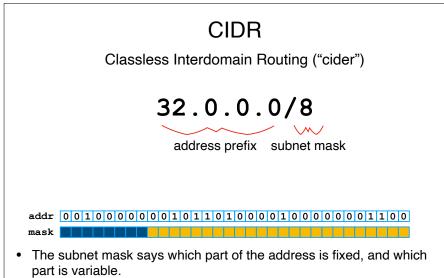
Your to-dos

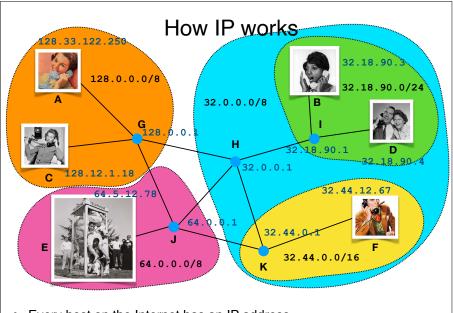
- 1. Final project, due Sunday, Dec 10 at 10pm.
- 2. Optional book report, now due Sunday, Dec 17.
- 3. Resubmissions due Sunday, Dec 17.
- 4. If you want to talk about your project (or anything else), I have office hours:
 - •Today, from 4-5:30pm
 - Friday, from 12:30-1:30pm

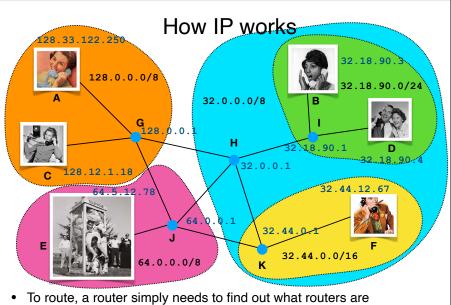
Topics

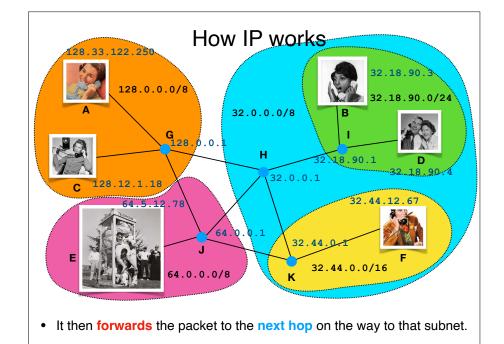
More IP networking What I do

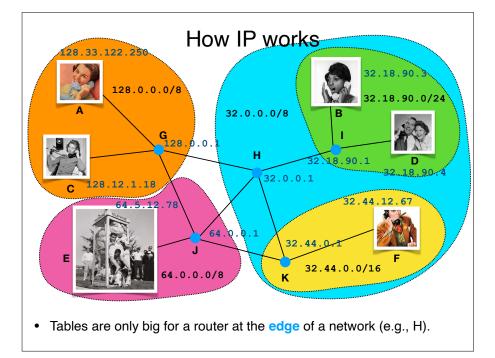

IP networking

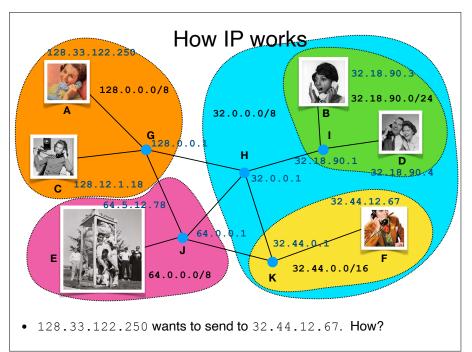



- Invented in 1974 by Vint Cerf (Stanford), Bob Kahn (BBN), and Jon Postel (UCLA).
- Key idea: "connectionless"
 - instead of connections, do "packet switching"

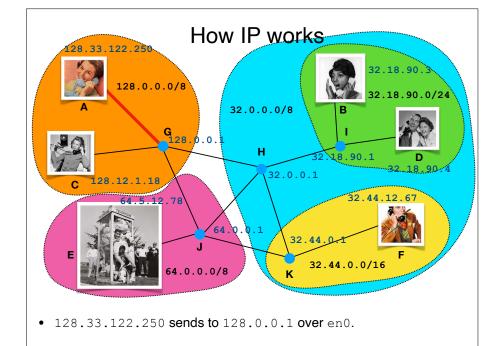

IPv4 address It's like a mailing address for the Earth. $32 \cdot 45 \cdot 8 \cdot 12$ $4 \cdot 4 \cdot 4$ Each byte ("octet") is between 0 and 255 (0 to 2⁸ - 1). This is actually just a 32-bit number split into 4 pieces. $32 \cdot 45 \cdot 8 \cdot 12$ $32 \cdot 45 \cdot 8 \cdot 12$

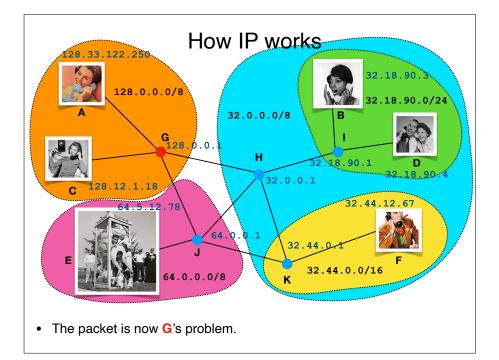

- An AS is responsible for routing the variable part.
- In this example, any router knows that the AS for 32.0.0.0/8 is responsible for routing any packet with an address starting with 32.




• Every host on the Internet has an IP address.

 To route, a router simply needs to find out what routers are responsible for routing packets in a given subnet: this information is stored in a route table.

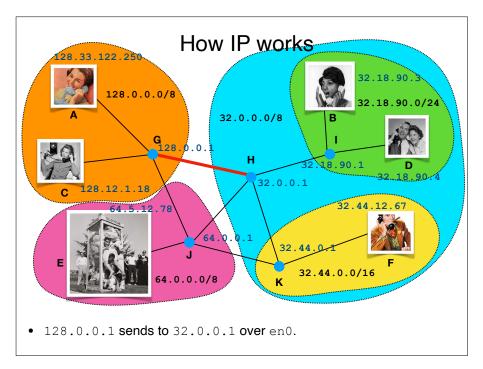

How IP works

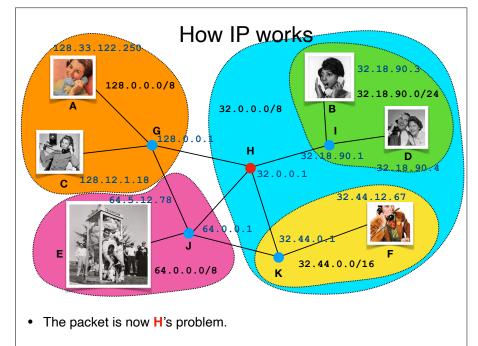

Route table on 128.33.122.250 (A)

Destination	Gateway	Interface	Cost
default	128.0.0.1	en0	1
127.0.0.1	127.0.0.1	100	0

Every device connected to the Internet has a route table.

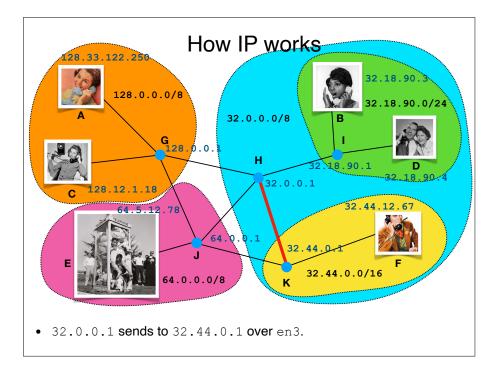
Internet:				
Destination	Gateway	Flags	Netif	Expire
default	172.172.172.1	UGScg	en3	
127	127.0.0.1	UCS	lo0	
127.0.0.1	127.0.0.1	UH	lo0	
169.254	link#22	UCS	en3	
172.172.172/24	link#22	UCS	en3	
172.172.172.1/32	link#22	UCS	en3	
172.172.172.1	0:30:18:9:cc:56	UHLWIir	en3	227
172.172.172.23/32	link#22	UCS	en3	
172.172.172.255	ff:ff:ff:ff:ff	UHLWbI	en3	
224.0.0/4	link#22	UmCS	en3	
255.255.255.255/32	link#22	UCS	en3	

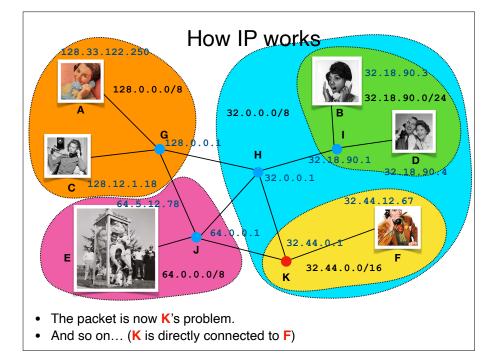

How IP works

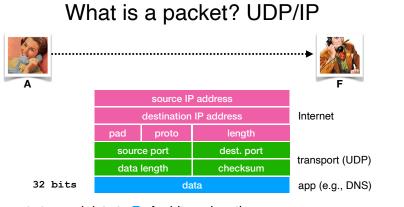

Route table on 128.0.0.1 (G)

Destination	Gateway Interface		Cost	AD	
32.0.0.0/8	32.0.0.1 en0		1	2	
32.18.90.0/24	32.0.0.1 en0		2	2	
32.18.90.0/24	64.0.0.1	enl	3	3	
32.44.0.0/16	32.0.0.1	en0	2	2	
32.44.0.0/16	64.0.0.1	enl	2	3	
64.0.0.0/8	64.0.0.1	enl	2	2	
128.12.1.18	128.12.1.18	en2	1	1	
128.33.122.250	128.33.122.250	2.250 en2 1		1	

Destination: **F** (32.44.12.67)

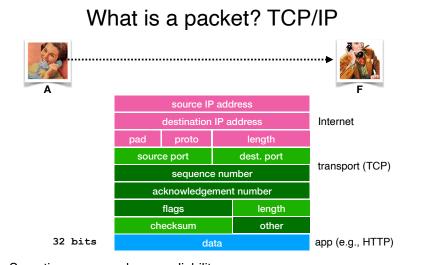

- Longest prefix, then if tie
- Administrative distance ("sysadmin fudge factor"), then if tie
- Lowest cost





	Route table on 3	2.0.0.1 (H)		
Destination	Gateway	Interface	Cost	AD
32.18.90.0/24	32.0.0.1	en4	1	1
32.44.0.0/16	32.0.0.1	en3	1	1
64.0.0.0/8	64.0.0.1	en2	1	2
64.0.0.0/8	128.0.0.1	enl	2	3
128.0.0.0/8	64.0.0.1	en2	2	3
128.0.0.0/8	128.0.0.1	enl	1	2
	Destination: F (32.44.12.6	7)	

Lowest cost



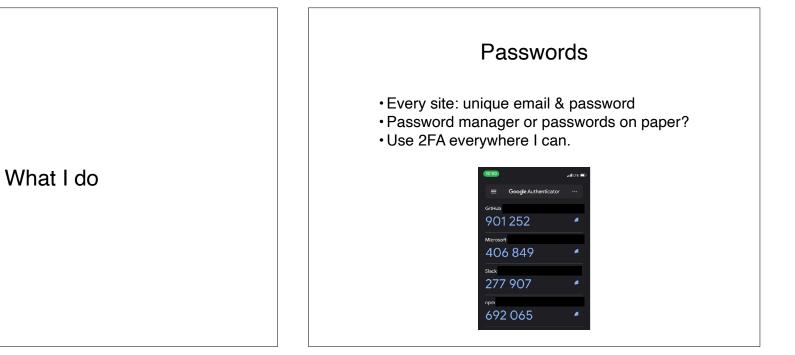
- A wants to send data to F of arbitrary length len.
- A attaches application info. What source and destination port? (WKP)
- Also length and checksum (to check data transmitted correctly).
- A attaches IP information. What are source and dest. address?
- This (UDP) packet is sent from one host to another.
- Intermediate nodes do not look "inside" the packet. They just forward the data.

What is a packet? UDP/IP				
A				▶
	source IP address			
	destination IP address			Internet
	pad	proto	length	
	source port		dest. port	transport (LIDD)
	data length checksum		transport (UDP)	
32 bits	data		app (e.g., DNS)	

- When a packet arrives at final destination, the Internet part is removed and the rest is handed to the application.
- The application only needs to worry about the transport part.
- UDP only tells the receiver basic information, and if something goes wrong, it's the application's job to handle it.

- Sometimes we need more reliability.
- TCP is an alternative transport that provides reliability.
- Provides a "pseudo connection" abstraction.
- Ensures that packets arrive in order, intact, with "best effort."

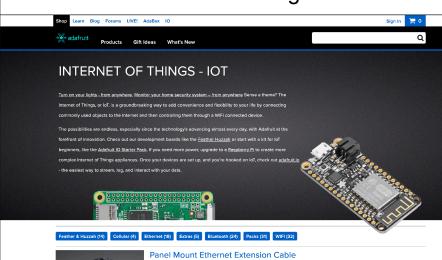
How IP works: questions?


Why does networking matter to security?

The Cuckoo's Egg

There was a PBS NOVA special on this....

Is hacking easier or harder now?


Anti-tracking

- I don't use Chrome or Edge.
- Ad-blocking extensions:
- Firefox: uBlock Origin
- Safari (iOS): Disconnect Premium
- ·Javascript-blocking extensions:
- Firefox: NoScript
- Safari (iOS): sadly... no equivalent
- DNS filtering: Disconnect DNS Privacy
- Home network:
- OpenBSD firewall running pf
- Block traditionally bad netblocks
- Block all traffic from ad networks
- Many other custom rules (e.g., block IoT devices)

Internet of Things

- Approach this area with great caution.
- · Virtually all devices "phone home".
- Virtually all devices stop getting patches at some point —some of them are never patched!
- Worth noting that IoT devices are just computers attached to a physical device.
- You all have the skills to roll your own.
- Many IoT protocols are open standards (i.e., Thread)

Internet of Things

MIROLCI DI RIIO This handy Ethernet extension cable will make it essy for you to enclose a device that hes an Ethernet port. We think this would be mont used when putting a Reagine Bone, Respensery PL Anduno Ethernet into a box. The jack half has two mounting 'east' with 4-40 strown istalled, PL into / 25mm again - the east are flexible to be horder control have to...

Mobile device security

- · Do not show text messages on lock screen
- · Generally disable anything on lock screen
- Configure device to wipe itself on failed login attempts
- · Only use social media through website, NOT APP.
- Use Firefox "multi-account containers" to prevent cross-site tracking (e.g., cookies)
- Toss up: "find my device"
- I use it... because I lose stuff all the time.

Payments

- Credit cards are horribly insecure
- Stealing credit card numbers is trivially easy
- However
- Risk is on the bank
- Maximum loss up to \$50
- Inconvenience of reporting is on you
- Banks actively monitor fraud.
- ·I avoid credit cards.

Payments

- Do not use debit cards except at trusted ATMs
- Authentication is weak (short PIN)
- Risk is on the bank, however liability is complicated and maximum loss is much higher (including ALL YOUR MONEY).
- · You pay until merchant dispute is resolved.
- Not as actively monitored as CC.
- I avoid them as much as possible.
- More info:

https://www.consumer.ftc.gov/articles/0213-lost-or-stolen-credit-atm-and-debit-cards

Payments

- Cash is not terrible
- Risk is entirely on you, but is manageable (you don't carry all your money all the time)
- It is inconvenient.
- ·I sometimes use it.

Payments

- NFC (near-field communication) payments are promising
- Many different systems hard to generalize, BUT
- Risk on bank, but risk is usually lower (hard to steal credentials; varies by vendor).
- · Sometimes no liability (zero maximum loss).
- Very convenient.
- •I use it.

Payments

• Cryptocurrency

- · Value is volatile.
- Wild west-many currencies have no limited liability backed by federal regulation
- The point of most cryptocurrency is to eliminate trust in financial institutions
- Charges are usually not reversible
- In short: you can lose all your money
- Security strongly depends on quality of implementation
- Security strongly depends on good "opsec"
- · Neither of these things are true with traditional money

https://www.consumer.ftc.gov/articles/what-know-about-cryptocurrency-and-sca

- Anonymity claims are largely untrue
- I don't use it.

Backups

- · You should back up your data.
- Make as many copies as you can afford.
- Think short-term and long-term backups.
- Short-term defends against accidents.
- Long-term defends against ransomware (and some accidents).
- · Long-term backups should be kept off-site.
- Flash memory (SSDs; thumb drives) is not reliable for long-term storage.
- Use magnetic or optical media.
- Gold standard: magtape.
- Next best: BDXL
- Most practical: hard disks

When I get a new computer

- I turn off all optional services.
- macOS has some.
- Linux has a lot.
- Windows has an insane number.
- · Almost none: the BSDs.
- NetBSD runs on your Raspberry Pi. Try it!

Unreasonable things I also do

- I don't like cloud computing—often serves as a "vendor lock-in" mechanism
- I host many of my own services.
- firewall
- DIY wifi access points (Raspberry Pi Zeros!)
- No SSID beacons; passwords required.
- email
- filesharing
- streaming video
- streaming audio
- · I use "weird" architectures.
- E.g., OpenBSD on ARMv7.

Thanks for the enjoyable semester!

Recap & Next Class

Today we learned:

IP networking

What I do

Next class:

No next class!