CSCI 331: Introduction to Computer Security

Lecture 21:
How to give a **good** talk /
Networks

Instructor: Dan Barowy

Williams

Announcements

CS Holiday Party Friday, Dec 8 @ 2:35pm CS Common Room

Join the CS faculty and your peers for an end-ofsemester celebration. We will have hot cocoa and treats for you to enjoy. Last gathering of the year!

Your to-dos

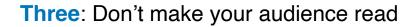
- 1. Final project, due Sunday, Dec 10 at 10pm.
- 2. Optional book report, now due Sunday, Dec 17.
- 3. Resubmissions due Sunday, Dec 17.
- 4. If you want to talk about your project (or anything else), I have office hours:
 - Thursday, from 4-5:30pm
 - •Friday, from 12:30-1:30pm
 - and I can be available during our Tuesday lab period by request.

Topics

Giving a good talk

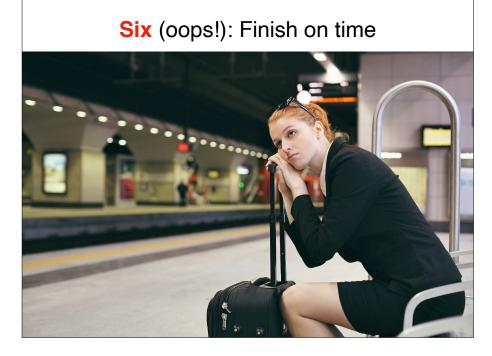
IP networking primer

Course evaluations


How to give a good talk

Five tips

Two: Don't "bury the lede"

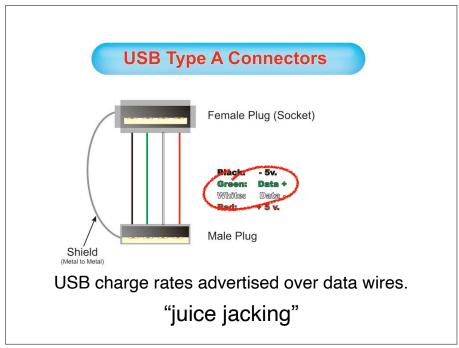


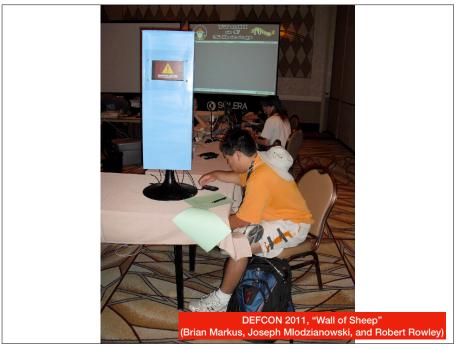
Sample talk

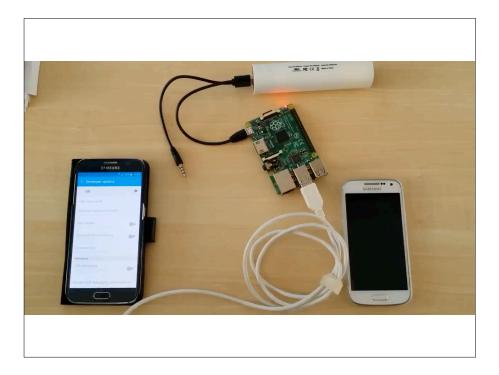
Your Presentation

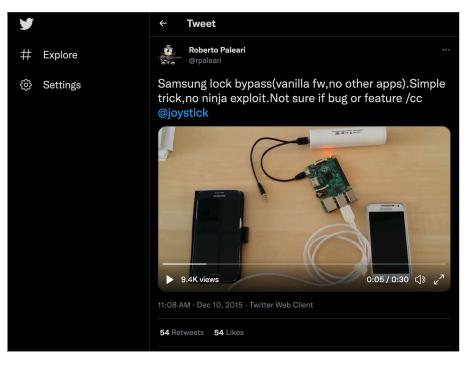

Your final presentation should be no more than 10 minutes in length, and it should have no more than 5-10 slides. It should

- 1. describe the history and significance of your attack,
- 2. how it works
- 3. should include a short demo (if possible),
- 4. and conclude by briefly discussing defenses against such an attack (or the converse if your project is about a defense)


Remember, you only have 10 minutes to give your talk, so please keep it high-level and concise. Think of your talk as an advertisement for your paper: **Practice your talk**, and remember, we can read your paper if we want to know more.







Modem interface exposed via USB

- Authors: Roberto Paleari (@rpaleari) and Aristide Fattori (@joystick)
- Samsung ID: SVE-2016-5301
- ID: CVE-2016-4030, CVE-2016-4031, CVE-2016-4032
- Notification date: 11/12/2015
- Release date: 11/04/2016

Some months ago we tweeted a video showing a "lock screen bypass" on a Samsung Galaxy S6 phone. In this post we provide the technical details behind that attack.

In a nutshell, when connected to a USB master (e.g., a normal laptop), Samsung Android phones expose (or can be *forced* to expose) a serial interface which can be exploited to communicate with the USB modem.

This communication channel is active even when both USB tethering and USB debugging (i.e., ADB) are disabled, and can be accessed even when the device is locked. An attacker who gains physical access to a (possibly locked) device can thus use this interface to send arbitrary AT commands to the modem. This permits to perform several actions that should be forbidden by the lock mechanism, including placing phone calls or sending SMS messages.

As a foreword, consider that in the following we assume that "USB debugging" is *not* enabled on the target device. When ADB is enabled, things are way too easy:-)

How does it work?

For old Samsung devices and firmware versions, such as the GT-I9192 (Samsung S4 Mini with build I9192XXUBNB1), just plugging the smartphone into a Linux host exposes a usb-serial modem, accessible using the corresponding Linux device (e.g., /dev/ttyAck6). After connecting to the modem through this interface, it is possible to send dertain AT commands, some of which are delivered to the baseband modem white others are processed by user-space applications.

Exploitation of this vulnerability on more recent firmware versions (e.g., latest versions of the Samsung S4 and Samsung S6 software) is not so straightforward: in the default configuration, when the device is connected it exposes to the host only a MTP interface, used for file transfer.

However, we discovered that an attacker can still access the modern by switching to secondary USB configuration. As an example, consider our test Galaxy S6 device. When USB debugging is off, the device exposes two USB configurations, with the CDC ACM modern accessible via configuration number 2.

As a response to our tweet, people asked if this vulnerability can be also exploited to gain access to the device, e.g., to access the phonebook, photos, and the internal storage. Well, theoretically AT commands should be directly processed by the baseband processor, which normally should not be able to access the "Android world". However, as we mentioned before, the journey of an AT command is more convoluted and some AT commands are eventually interpreted by user-space applications, so things may be different than what expected.

As an example, during our tests we observed that the S4 mini (build I9192XXUBNB1) supports several AT commands that could be abused to control some Android settings. Among these, AT+USBDEBUG command permits to enable "USB debugging" (i.e., ADB), AT+WIFIVALUE enables and disables the Wi-Fi, and so on.

USB debugging = pwned

Security Configuration Recommendations for Apple® iOS 5 Devices

Revision 0 March 28, 2012

The Mitigations Group of the Information Assurance Directorate

National Security Agency 9800 Savage Rd. Suite 6704 Ft. Meade. MD 20755-6704

COMPAGE COLLINE STORE FOR SUBSTANCE Q = 1. COMPAGE QUARTER STORE FOR SUBSTANCE Q = 1. COMPAGE COLLINE STORE

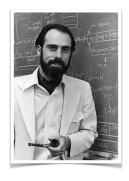
Security Configuration Recommendations for Apple® iOS 5 Devices

March 28, 2012

4.1.2.5 Provide Recharging Hardware with Device

Distribute AC power adapters to users when issuing devices and warn users not to connect their devices to unauthorized systems. It may be prudent to distribute additional AC power adapters to remove the temptation to connect the devices to unknown PCs.

Connecting iOS devices to unauthorized systems, even if only intending to recharge the device, presents a security risk. Providing a power adapter, and easy access to replacements and additional adapters, will help combat temptation to connect to other systems. Users should never be left with connecting to a computer as their only option to recharge their device.

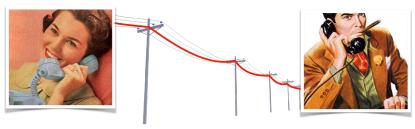

Juice Jacking

Thanks!

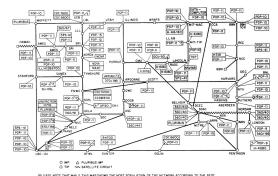
Dan Barowy
Williams

IP networking

IP networking



- Invented in 1974 by Vint Cerf (Stanford), Bob Kahn (BBN), and Jon Postel (UCLA).
- IP (Internet Protocol) was a radical departure from existing networking, inspired by the experimental CYCLADES network.
- IP was built on a connectionless packet-switched architecture instead of a connection-oriented architecture like telephony.


Connection-oriented communication

- Tech. behind original telephone network ("POTS": 1876-1988).
- During a call, a physical circuit is closed between two endpoints.
- The line is "reserved" for those two callers.
- Anyone else wanting to make a call needs to reserve another line or wait.
- Highly reliable; less than 5 minutes outage per year ("five nines").
- Relatively simple technology.
- Major drawback: adding capacity is very expensive. You need to add physical wires!

The ARPANet

ARPANET LOGICAL MAP, AUGUST 1976

- Predecessor to the modern Internet.
- Largely built by BBN and funded by DARPA in the 1960's.
- Problem: building network using connection-oriented architecture was too expensive.
- Decided to go connectionless.

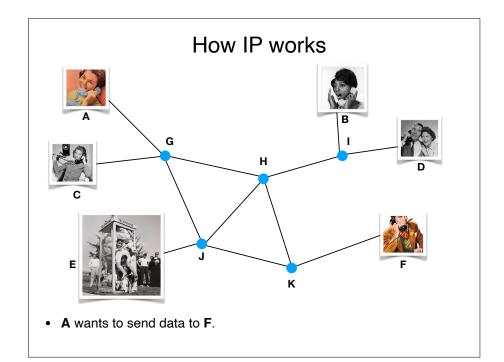
Connectionless communication

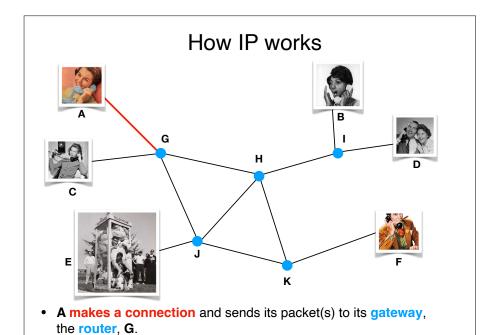
- Uses a technique called "packet switching."
- Messages are broken into little pieces ("packets" or "datagrams")
- Network reserves resources just long enough to send one piece.
- It is the sender's/receiver's responsibility to ensure data is delivered reliably, not the network's.
- Instead of reliability guarantees, network ensures "best effort."
- Makes better utilization of shared resources.
- Many messages can then be multiplexed onto the network.
- Key takeaway: don't need more wires!

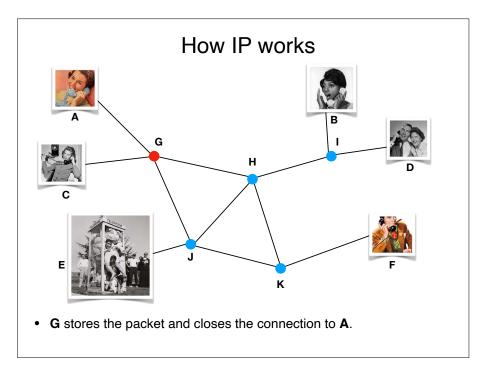
Pooled vs Static Buffers

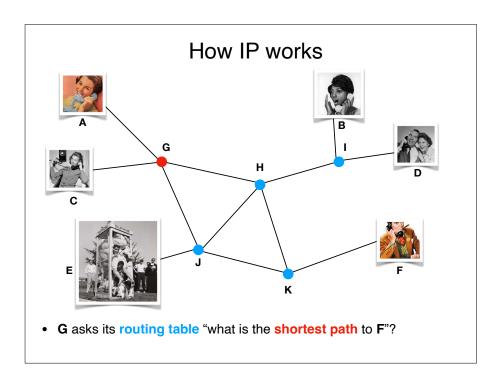
- From Denning, Peter. "A Statistical Model for Console Behavior in Multiuser Computers" CACM, Vol.11, No.9 p. 605, Sept 1968.
- For 50 users and a ratio of characters/interrupt = 10.

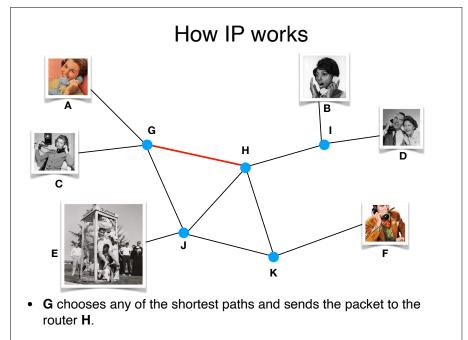
Total Buffer Size	Probability of Overflow	
(in bytes)	Pooled	Static
750	.006	.90
1000	10-6	.76
1500		.44
2000		.22
2500		.10
3000		.05
3500		.02
4000		.01
4500		.004

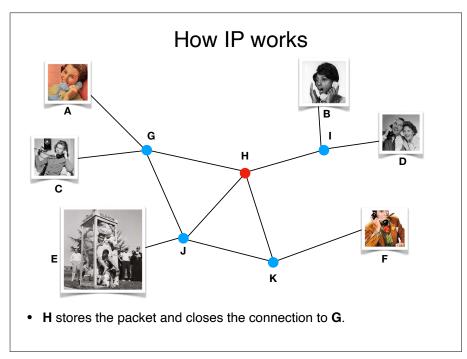

- This result is completely general for static vs pooled resources. It is really a no-brainer.
 - Values for the blanks in the pooled column were too small to represent on the computer Denning used.

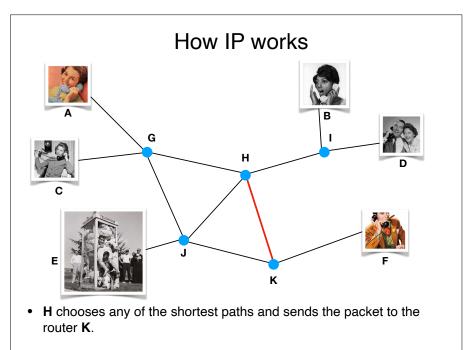

(slide courtesy of Prof. John Day at Boston U.)

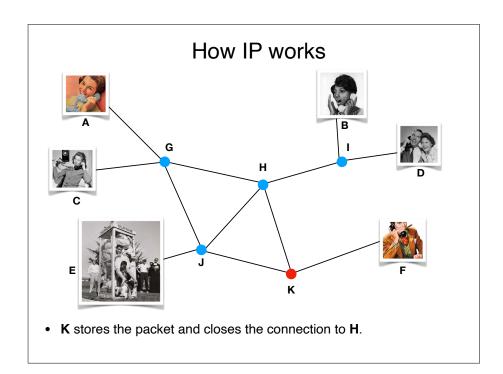

Connectionless communication ARPANET LOGICAL MAP, AUGUST 1976

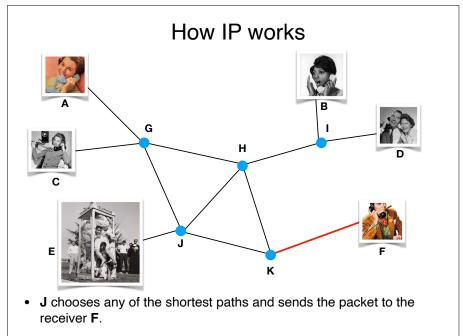

| TOP-10 | CC. 10.0 | POP-14 | POP-14 | POP-15 |

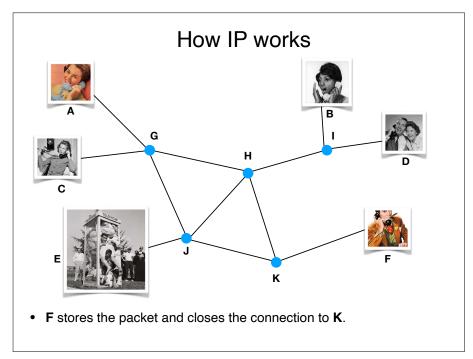

- Major downside: pushed complexity onto sender/receiver.
- The ARPANet was an experiment to figure out how to do this.
- More importantly, how to do it reliably.
- Cert, Kahn, and Postel's Internet Protocol addressed reliability problems and was quickly adopted for use on the ARPANet.

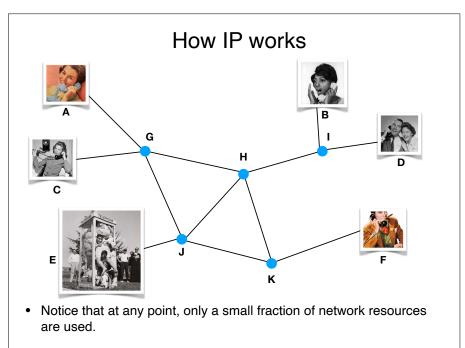


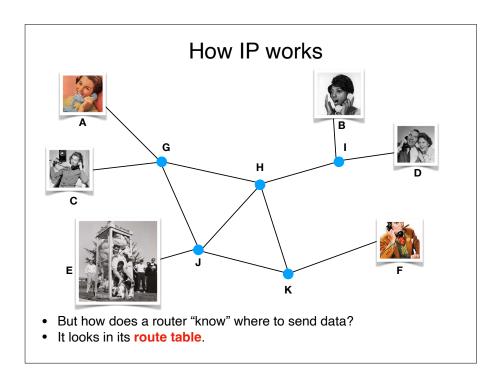


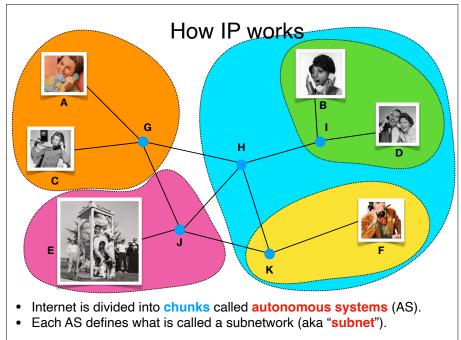


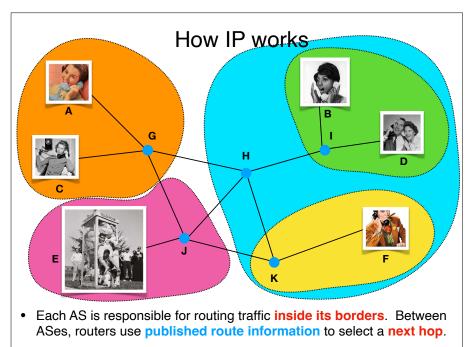


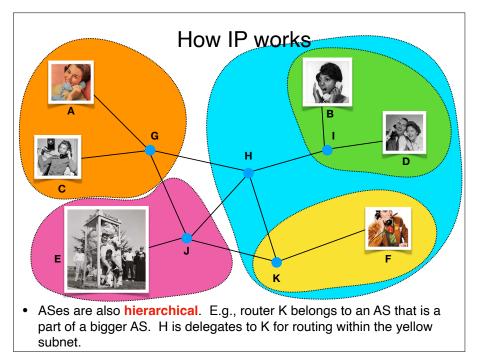


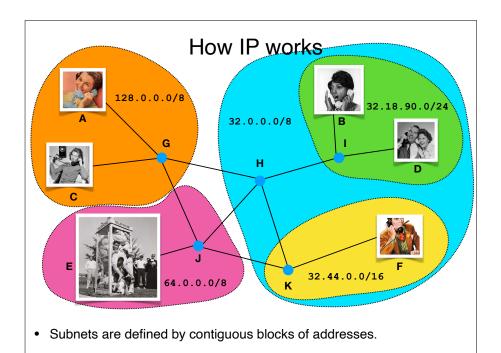












IPv4 address

It's like a mailing address for the Earth.

Each byte ("octet") is between 0 and 255 (0 to 28 - 1).

This is actually just a 32-bit number split into 4 pieces.

32

45

8

12

CIDR

Classless Interdomain Routing ("cider")

32.0.0.0/8

address prefix subnet mask

addr 0010000001011010000100000001100
mask

- The subnet mask says which part of the address is fixed, and which part is variable.
- An AS is responsible for routing the variable part.
- In this example, any router knows that the AS for 32.0.0.0/8 is responsible for routing any packet with an address starting with 32.

Recap & Next Class

Today we learned:

How to give a good talk

IP networking

Next class:

A little more IP networking

Retrospective

What I do

Evaluation Forms

(all of these are anonymous)

We care a lot about what you say in these forms. Please take your time and write thoughtful responses.

I changed parts of the course this semester based on prior feedback.

Your feedback is **valuable to me**. It will help me decide whether these changes were **good** or **bad**.

Purpose of Blue Sheets

Student comments on the blue sheets [...] are solely for your benefit. They are not made available to department or program chairs, the Dean of the Faculty, or the CAP for evaluation purposes.

Office of the Provost, Williams College

Purpose of SCS Forms

"[T]he SCS provides instructors with feedback regarding their courses and teaching. The faculty legislation governing the SCS provides that SCS results are made available to the appropriate department chair, the Dean of the Faculty, and at appropriate times, to members of the Committee on Appointments and Promotions (CAP). The results are considered in matters of faculty reappointment, tenure, and promotion."

-Office of the Provost, Williams College

"Blue Sheet" Prompts

- * What course topic did you enjoy the most?
- * Are there course topics that you did not like? If so, was the issue with presentation or importance?
- * Did you look forward to attending class?
- * Please comment on **other aspects** of the course and feel free to **suggest alternatives**. E.g., office hours, TAs, assignments, course structure, meeting times, etc.