CSCI 331:
Introduction to Computer Security

Lecture 20: Information Flow

Instructor: Dan Barowy

Williams

Topics

Reference monitors
Bell-LaPadula model

Denning’s information flow model

—

W N

Your to-dos

. Final project, due Sunday, Dec 10 at 10pm.
. Resubmissions due Sunday, Dec 17.

If you want to talk about your project (or anything
else), | have office hours:

*Today, from 4-5:30pm

*Tomorrow, from 12:30-1:30pm

Paper discussion (Thompson)

Reference Monitor

ESD-TR-73-51, {Vol. 11

Reference Monitor
Invented by James P. Anderson in 1972.
A principled mechanism for mitigating

attacks by limiting access based on
rules.

COMPUTER SECURITY TECHNOLOGY PLANNING STUDY

James P, Anderson

October 1972

Reference Monitor

A number of the reasons that penetration attacks are possible are given below. A
contemporary system provides a limited form of reference validation in the form of the
memory protect scheme for the system. These schemes are designed to isolate the
running programs from other programs and the operating system, and in general, work
well enough on most systems. Because the schemes are so simple (either protection
keys as those on the 360/370 or bounds registers in such machines as his 6000 series or the
Univac 1100 series machines), they are generally applied to user programs only. The
operating system, because it needs to reference all of the real memory on a system in
exercising its control functions, most frequently runs with the memory protect suspended

“Does dbarowy have access to fi1e?”

yes

Traditional OS Design

“Does dbarowy have access to fi1e?”

no

Reference Monitor

The limited reference control provided by the memory protect schemes on most
contemporary systems thus leads to monolithic, totally privileged executives with an
unrestricted capability to reference any part of main or auxiliary storage. Because of
the total privilege and unrestricted referencing capability of the executive, it is neces-
sary for all parts of the executive to be designed and implemented correctly in order
to assure that a system is proof against an attack by a malicious user. The sheer size
of contemporary operating systems (on the order of 100,000 + instructions) and their
complexity makes it virtually impossible to validate the static design and implementation
of the system. When the dynamic behavior of the system is contemplated as well, there
is no practical way to validate that all of the possible control paths of the operating
system in execution produce correct, error-free results.

Reference Monitor Design

N\
e
bé\g:y
+® OS does not have direct
.out
(dfa?;'wy) — access to protected

resources.
>~

All the monitor does is e

check that requests monitor [e

are valid.

“Does dbarowy have access to fi1e?”

yes

Reference Monitor Design

OS: big codebase,
difficult to verify
correctness.

Monitor: small
codebase, easy to vy «——>
verify correctness.

A reference monitor reduces the size
of the trusted compute base.

Trusted Compute Base

A trusted compute base is the set of all hardware
and software components such that any bug might
jeopardize the enforcement of a given security
policy.

Observe that this definition depends on the given
security policy.

Reference Monitor

3.3 Defense Against A Malicious User

With the foregoing in mind, the requirements to defend against a malicious user
can be better appreciated. These requirements are: A system designed to be secure,
containing;

A) An adequate system access control mechanism

B) An authorization mechanism

C) Controlled execution of a users program or any program being executed
on a user's behalf. We explicitly include the operating system service
functions in this requirement.

With respect to unbounded resource access, a
reference monitor removes even the operating
system from the TCB.

How can we guarantee that a monitor “does the right thing”?

Information Flow

A formalism that deals with trust

Bell-LaPadula Model

Developed in 1973 by David Bell and Leonard
LaPadula at MITRE for the Multics OS.

1.The Simple Security Property states that a subject at
a given security level may not read an object at a higher
security level.

2.The * (star) Property states that a subject at a given
security level may not write to any object at a lower
security level.

3.The Discretionary Security Property allows
information to flow to lower levels (e.g., generals to
soldiers).

These rules are a little vague.

Secure Information Flow Model

Invented in 1975 by Dorothy
Denning, then a PhD student at
Purdue.

“A Lattice Model of Secure
Information Flow” (1976)

A formal model that ensures that a
computer will always “do the right
thing” with respect to a security
policy.

A reference monitor can be proven
secure provided that it faithfully
(verifiably) implements the Denning
model.

Secure Information Flow Model

e The Denning model is
about keeping secrets.

¢ |t depends on being able
to reliably authenticate
(i.e., “Identity” from CIAA)
principals (subjects and
objects).

* It guarantees that high-
security information cannot
be leaked to low-security
principals.

* Is general enough to work
in secure operating
systems, secure compilers,
military organizations, etc.

Mathematical Models

You have almost certainly seen a mathematical
model (or “abstraction”) used in CS before.

E.g., a Turing machine.

| like to think of models as games.

Like games, they tell you what the rules are.

Like games, we want to know whether we can
“win” at some objective while following the rules.

Mathematical Models

The Denning model defines a realistic and clear
set of rules, unlike the Bell-LaPadula model.

The Denning model is built on top of a lattice,
which is a kind of graph.

Specifically, vertices denote classes of things, or
tags, and edges denote how things can be
accessed, or flow relationships.

Secure Information Flow Model

FM =<N, P, SC, {—}, {o}>

A set of objects. /

A set of principals.
A set of .
A set of flow relations.

A set of join relations.

Secure Information Flow Model

FM =<N, P, SC,{—},{o}>

A set of objects. J

These could be things like files, memory locations, etc.

Secure Information Flow Model

FM =<N, P, SC, {—}, {o}>

A set of principals.

These are processing agents, e.g., a computer
processor, or a computer program, or people.

Secure Information Flow Model

FM =<N, P, SC,{—},{o}>

A set of

”

These are labels, like “top secret,” “classified,
and “public.”

sensitive,”

Secure Information Flow Model

FM =<N, P, SC, {—}, {o}>

A set of flow relations.

These are functions that take two and return true
or false; they say whether information can flow from one
to another.

Secure Information Flow Model

FM =<N, P, SC,{—},{o}>

A set of join relations.
These are functions that take two and return an
; they say what security class is derived by
combining information from SCs.

Secure Information Flow Model

FM =<N, P, SC, {—}, {o}>

A set of objects. /‘

A set of principals.
A set of
A set of flow relations.

A set of join relations.

Secure Information Flow Model

Helper function:
s(x) :

where x is either a N or an P.

In other words, the function s gives you the
of an object or a principal.

Secure Information Flow Model

FM =<N, P, SC, {—}, {o}>

A set of objects. /

A set of principals.
A set of .
A set of flow relations.

A set of join relations.

Secure Information Flow Model

— means can flow

if a = b then data can flow from tag a to tag b

Flow relations are: ,)
a) reflexive: x = x °

b) transitive:x - yandy = zthenx — z m
c) anti-symmetric: x =+ yandy = xthenx =y M

Secure Information Flow Model

® means join
a ® b denotes the class obtained by combining a and b

i.e., what happens when you staple things together

Join relations are:
a) reflexive: x ® x =x

b) commutative: x ©y =y ® x

Secure Information Flow Model

The following relations are always true, to avoid
absurdities:
a) x> (xeay)andy = (x @)

b) ifx >zandy »zthen(x o y) = z

o-0 0-0 (0:0-0

Example

FM =<N, P, SC, {—}, {o}>

N = { petitions, holy scripture} s(king) = kingly

P = {king, peon } s(peon) = public
= { kingly, public } s(petitions) = public
— = { public = kingly } s(holy scripture) = kingly
® = { public ® kingly = kingly }

Can peons read petitions?

Can peons read scripture?

Can peons share petitions with the king?

Class Activity

FM =<N, P, SC,{—}, {o}>
N = { your diary, dinner plans, parents’ diary}

P ={you, your little sister (YLS), parents }

={272)}
- ={7?7}
©={77?)}

1. Only parents should be able to read the parents’ diary.
2. Only you should be able to read your diary.
3. Anyone can read the dinner plans.

Fill in , =, and ® and provide tags s.

Class Activity

Your model should be able to answer
these questions mechanically.

e Can you read your diary?

* Can you write about dinner in your diary?

e Can your parents copy dinner information from their diary
into the dinner plans?

* What happens if a page from your diary and a page from
your parents diary both just happen to fall out at the
same time and stick together. Who can read those
pages?

Practicality issues for access controls

Mandatory vs Discretionary Controls

Can parents tell the kids the dinner plans at all?
Not the way we formulated it.

Access controls are discretionary in the sense that a
principal with a certain access permission is capable of
performing that action unless restrained by a
mandatory access control.

Implicit flow

Consider the following program.
Suppose s(1) = public and s(h) = private.

int 1;
bool h;
if (h) {
1 =3
} else {
1 =42
}

The value of h can be deduced because
of a side channel.

Side Channel

A side channel vulnerability is any vulnerability that
exists when public information observed during the
correct operation of an implementation allows an
attacker to infer and exploit secret state.

Current Events: Identifying Webpages by Tapping the
Electrical Outlet

Shane S. Clark! Hossen Mustafa? Benjamin Ransford?
2,6

Jacob Sorber? Kevin Fu? and Wenyuan Xu
1University of Massachusetts Amherst 2University of South Carolina
3University of Washington 4Clemson University °University of Michigan
6Zhejiang University

Abstract. Computers plugged into power outlets leak identifiable information
by drawing variable amounts of power when performing different tasks. This
work examines the extent to which this side channel leaks private information
about web browsing to an observer taking measurements at the power outlet. Us-
ing direct measurements of AC power consumption with an instrumented outlet,
we construct a classifier that correctly identifies unlabeled power traces of web-
page activity from a set of 51 candidates with 99% precision and 99% recall. The
classifier rejects samples of 441 pages outside the corpus with a false-positive
rate of less than 2%. It is also robust to a number of variations in webpage load-
ing conditions, including encryption. When trained on power traces from two
computers loading the same webpage, the classifier correctly labels further traces
of that webpage from either computer. We identify several reasons for this con-
sistently recognizable power consumption, including system calls, and propose
countermeasures to limit the leakage of private information. Characterizing the
AC power side channel may help lead to practical countermeasures that protect
user privacy from an untrustworthy power infrastructure.

Side Channel Mitigation

Try to ensure that there is no relationship between
observable and unobservable state.

input output
—> L] —>

An extremely difficult task, especially for
programs that do something!

Side Channel Mitigation

Alternative: minimize relationship between
observable and unobservable state.

int 1;
bool h;
if (h) {
1 =
} else {

3

}

“How many bits of information about h does 1 leak?”

1 leaks 1 bit; since h is a 1 bit variable,
this is everything an attacker needs.

Further reading: quantitative information flow.

Recap & Next Class

Today we learned:
Reference monitors
Bell-LaPadula
Denning model
Next class:
How to give a good presentation

Short primer on networks

