CSCI 331:
Introduction to Computer Security

Lecture 16: More shellcode

Instructor: Dan Barowy

Williams

Announcements
David Jensen, UMass Amherst

e Class of 60’s talk:

What’s So Important About Explanation? Science,
Machine Learning, and Large Language Models
Thu at 7:30pm in Wege Auditorium

e Friday’s colloquium:
Explanation, Causation, and Mechanism in Al

systems

Fri at 2:35pm in Wege Auditorium

Topics

Writing assembly programs
Removing NULL bytes

Your to-dos

1. Reading Preventing Privilege Escalation for Thu
11/9.
2. Lab 7, due Sunday 11/19.




Assembly programming

As usual, let’s start with “Hello world!”

#include <stdio.h>

int main() {

printf ("Hello world!\n");
return 0;

How do we write the equivalent in assembly?

Let's use a C program as inspiration.

S

gee

Assembly programming
-S helloworld.c

tr
tribute

What'’s really necessary?

This can all be removed

Much better

Can we make this shorter?
? Not directly.

Can we remove




Can you spot the problem?

ormat elf32-littlearm

Disassembly of section .text:

29 <main+0xlc>

ARM instructions must be 4-byte aligned.

ldr vs adr

Pointers are supported in hardware!

Meaning C ARM
address of x &x adr r7, x
dereference x *x 1dr r7, x

(variable names and register numbers chosen arbitrarily)

A nice, short program

.global main
main:

push {fp, 1lr}

add fp, sp, #4

adr r0, hello

bl puts

mov r0, #0

pop {fp, pc}
hello:

.ascii "Hello world!\000"

1
2
3
4
5
6
7
8
9
0

1

Now suppose we want to turn this into shellcode...




Recall how this works

buf — «

eor r2, r2

adr rl, shell

push {rl, fp, 1lr}

pop {r0, fp, 1lr}
strb r2, [rl, #7]

push {rl, fp, 1lr}
add fp, sp, #4
mov r7, #11

. old fp
vuln_function (addr of buf) —|

main

Shellcode is written independently of the target.

Can’t refer to all symbol names in target

.global main
main:

push {fp, 1lr}
add fp, sp, #4
adr r0, hello
bl puts

mov r3, #0

mov r0, r3

pop {fp, pc}
hello:

.ascii "Hello world!\00O"

ad WD

6

~J

=
= o w ®

Symbols in target need to be translated into addrs

Suppose puts is 0x102e4 in target

.global main
main:

push {fp, 1r}

add fp, sp, #4
adr r0, hello
adr r2, putsaddr
1ldr rl1, [r2]

blx rl

mov r0, #0

pop {fp, pc}
putsaddr:

.word 0x000102e4
hello:

.ascii "Hello world!\0O0OO"

N -

g W

9
7
8
9
0
1
2

N

SWw

Better. But we have one more problem...

NULL bytes

$ objdump -d shelly.o

shelly.o: file format e

f section .text:

Can you spot them?




NULL bytes

ump -d shelly.o

file format elf32-littlearm

Most C string handling functions will stop copying.

NULL bytes

We need to be creative to remove these.

Experiment using tiny examples

push {fp, 1lr}

Experiment using tiny examples

experimentl.s experiment2.s
push {fp, 1r} push {rl, fp, 1lr}
$ gcc -c experimentl.s $ gcc -c experiment2.s
$ objdump -d experimentl.o $ objdump -d experiment2.o
Disassembly of section .text: Disassembly of section .text:
00000000 <.text>: 00000000 <.text>:
0:e92d4800 push {fp, 1r} 0:e92d4802 push {rl, fp, 1lr}

If you do this, don’t forget that you have more to pop later.




i R N |
Some tips ecap & Next Class

Use disas <fnname> to find function in GDB )
(note: program must be loaded) Today we learned:
Be careful where you put your stack! NULL byte removal
Use .word for 4-byte constants

Use .ascii for NULL-free string literals
Use adr to load the “address of” a value
Use 1dr to “dereference” a value

Use blx to branch to a register Next class:

(make sure MSB is zero!)

eor a register to itself to generate zero values Social engineering
at runtime.

Write self-modifying code!




