Topics

CSCI 331:

Introduction to Computer Security
Practice midterm review?

Lecture 12: How C functions work How C functions work

Instructor: Dan Barowy

Williams

Your to-dos Dunning-Kruger Effect

A cognitive bias in which people mistakenly
assess their cognitive ability as greater than it is.

1. Project part 2, due Sunday 10/22.
2. Read and take notes (Miller) for Thur 10/26.
3. Lab 5, due Sunday 10/29.

Unskilled and Unaware of It: How Difficulties in Recognizing One’s Own
Incompetence Lead to Inflated Self-Assessments

Justin Kruger and David Dunning
Comell University

to deficits in metacognitive skill, or the capacity to distinguish accuracy from
improving the skills of participants, and thus increasing their metacognitive com
recognize the limitations of their abilities.

It is one of the essential features of such incompetence that the person as promoting effective I¢
so afflicted is incapable of knowing that he is incompetent. To have solid logical argument,
such knowledge would already be to remedy a good portion of the study. Second, people dj
offense. (Miller. 1993. p. 4) gies they apply in these
berg, 1989; Dunning, P|
1998), with varying leve
theories that people appl.
favorable results. Other
McArthur Wheeler, are
competent, or dysfunctiq
Perhaps more controvg
focus of this article. We 4
the strategies they adopt
suffer a dual burden: Not
and make unfortunate ch
the ability to realize it. In
the mistaken impression|
(1993) perceptively obse
and as Charles Darwin
“ignorance more frequer]
edge” (p. 3).
In essence, we argue th
a particular domain are

evaluate competence in ti
Dannnea af thin 1

In 1995, McArthur Wheeler walked into two Pittsburgh banks
and robbed them in broad daylight, with no visible attempt at
disguise. He was arrested later that night, less than an hour after
videotapes of him taken from surveillance cameras were broadcast
on the 11 o’clock news. When police later showed him the sur-
veillance tapes, Mr. Wheeler stared in incredulity. “But I wore the
juice,” he mumbled. Apparently, Mr. Wheeler was under the
impression that rubbing one’s face with lemon juice rendered it
invisible to videotape cameras (Fuocco, 1996).

We bring up the unfortunate affairs of Mr. Wheeler to make
three points. The first two are noncontroversial. First, in many
domains in life, success and satisfaction depend on knowledge,
wisdom, or savvy in knowing which rules to follow and which
strategies to pursue. This is true not only for committing crimes,
but also for many tasks in the social and intellectual domains, such

Justin Kruger and David Dunning, Department of Psychology, Cornell
University.
We thank Betsy Ostrov, Mark Stalnaker, and Boris Veysman for their

100 -
90 -
80 -
70 4
60 -
50 -
40 -
30 4 rd

20 4 ——Perceived Ability
~~k~=Perceived Test Score

10 4 —&-=-Actual Test Score
0 T — T ?

Bottom 2nd 3rd Top
Quartile Quartile Quartie Quartile

Percentile

Figure 2. Perceived logical reasoning ability and test performance as a
function of actual test performance (Study 2).

“20-item logical reasoning test that we created using questions taken from a Law
School Admissions Test (LSAT) test preparation guide”

Dunning-Kruger Effect: Security Implications

Thinking that you have more ability than you do
is a security vulnerability.

An incompetent security audit may leave
important parts of your system undefended.

Countermeasures? Do what Stoll does:

*Have a “beginner’s mind.” What do you know
for sure? What don’t you know? Be honest.

+ Seek external validation of both facts and your
abilities.

*It’s fine if you don’t know something as long as
you know you don’t know. But then learn it
thoroughly.

Midterm Study Guide Solutions?

ARM

Why am | learning this?
Wise words from my favorite philosopher:

“l find it hard to remember things
| don’t give a crap about.” —House, M.D.

Why you should “give a crap” about assembly:

It’s key to understanding control flow integrity
attacks and defenses.

ARM

The ARM instruction set architecture is a family of
microprocessors initially introduced in 1985.

We will focus on a 32-bit version, ARMv6, in this class.
ARMv8 added 64 bit instructions, and the CPU in your
cellphone is very likely to be a related architecture.

Instruction Set Architecture

An instruction set architecture (ISA) is an abstraction of
a computer processor, much in the same way that an
interface is an abstraction of a Java class.

Opcode Mnemonic

[31:28] extension Meaning Condition flag state

0000 EQ Equal Zset

You can think of an ISA as the software interface for the
hardware processor device. Each instruction is a
procedure provided by the device.

Compilers and ISAs

When a compiler compiles a program, it converts your
program into opcodes written in the target ISA.

#include <stdio.h>
e9 2d 48 00
e2 8d b0 04

int main() { —p S5 9F 00 0
printf ("Hello world!\n"); eb ff ff fe
return 0: e3 a0 30 00

; el a0 00 03

} e8 bd 88 00

00 00 00 00

The resulting file, which is filled with binary representations
of opcodes (i.e., machine language) is usually referred to
as a “binary.”

Instruction Mnemonics

Opcodes are difficult to understand. When understanding
is important, we use shorthand labels called instruction
mnemonics.

e9 2d 48 00 push {fp, 1r}

e2 8d b0 04 add fp, sp, #4

e5 9f 00 Oc 1ldr r0, [pc, #12]
eb ff ff fe _’ bl 0 <puts>

e3 a0 30 00 mov r3, #0

el a0 00 03 mov r0, r3

e8 bd 88 00 pop {fp, pc}

00 00 00 OO andeq r0, r0, r0

There is a 1:1 correspondence between opcodes and
mnemonics.

Mnemonic Syntax

You might have seen assembly before, and if so, you
probably saw either AT&T syntax or Intel syntax.

lea 0x4 (%esp) , %ecx lea ecx, [esp+0x4]
and SOxffEEEF£0, Sesp and esp,OxffEf££E££0
pushl -0x4(%ecx) push DWORD PTR [ecx-0x4]
push %ebp push ebp
mov %esp, $ebp mov ebp,esp
push %ecx push ecx
sub $0x4,%esp sub esp, 0x4
sub $0xc, %esp sub esp,0xc
push $0x0 push 0x0
call la <main+0xla> call la <main+0xla>
add $0x10, $esp add esp,0x10
mov $0x0, Yeax mov eax, 0x0
mov -0x4 (%ebp) , %ecx mov ecx,DWORD PTR [ebp-0x4]
leave leave
lea -0x4 (%ecx) , %esp lea esp, [ecx-0x4]
ret ret
AT&T Intel

ARM has its own syntax! We’'re using unified ARM syntax.
It looks a bit like Intel syntax.

Mnemonic Syntax

Do | remember ARM mnemonics? Not really.
I look them up.

ARM Architecture
Reference Manual

ARM

ARMv6

“32-bit” refers both to the size of a basic data unit, or word,

for integers used in a processor as well as the size of
instructions.

Each cell in the image above stores one bit (binary digit).

Endianness

Suppose you have the decimal number 1075843080
stored as a binary number (as an unsigned int).

There are many ways to store this number.
The most intuitive format is “big endian,” where the most

significant bytes are stored first (before less significant
bytes) in memory.

byte 1 (MSB) byte 2 byte 3 byte 4 (LSB)
T NN T NN T NN, T N

01 2 3 456 7 8 9 abocde f£1011121314151617 1819 1a 1b lc 1d le 1f

big part of number » little part of number

Endianness

ARM processors have configurable endianness.

In this class, we will use “little endian” format. This means
that the most significant byte is stored last.

Endianness Endianness

Big endian: Little endian:

byte 1 (MSB) byte 2 byte 3 byte 4 (LSB) byte 1 (LSB) byte 2 byte 3 byte 4 (MSB)
ojirjojojojojofjojojofjrjojojofojojojojojirjojojojofojofjofjojrjofojo ofojofjojxrjojojojojojojrjojojojojojojrjojojojojojojirjojojojojojo
01 2 3 456 78 9 abocde f£1011121314151617 1819 1a 1b lc 1dle 1f 0 1 2 3 456 78 9 abocde £1011121314151617 1819 la lblc1ld le lf

To be clear, this is the same decimal number 1075843080
stored in binary. We simply interpret it differently.

Rule: least significant bit is stored at smallest index.

Running a program Running a program
The details of how a program is loaded into memory varies
by architecture, operating system, and language.

After loading the program, on Linux, the loader:

_ allocates memory for the runtime call stack,

0 T 8 GB copies CLI program arguments into the stack,
calls _start (), which starts the C runtime.

. _— Note: diagram shows . _start () eventually calls main ().
physical address space.

$./chrome

B

In Linux, a program called the loader reads the program
from disk and puts it in memory.

Running a program

In the virtual address space of the program (e.g., chrome),
the loader puts

DATA BSS

. T p——

0 8 GB

Note: stack grows toward
low addresses!

._’

$./chrome

Runtime call stack

The runtime call stack tracks the state of the currently
running function.

The basic element is a data structure called a stack frame.

sp —» A low
local variables
top of previous stack
fp —_— return address
“spilled” arguments
high

Stack smashing

Stack smashing takes advantage of the fact that writing off
the end of a stack-allocated buffer writes toward the
return address.

A low

r \0 \O0

0x0000ablf
0x12345678

high

Stack smashing

Stack smashing takes advantage of the fact that writing off
the end of a stack-allocated buffer writes toward the
return address.

A low
Program
“returns”
wherever
this points!
e
high

How does a function “happen”?

main

Call stack

How does a function “happen”?

stack

<— top of memory (highest possible address)

unused

heap

< stack upper limit (s1, register 10)

static data

top of application image

A A

code

static base (sb, register 9)

<4—— bottom of memory (low address)

How does a function “happen”?

main

How does a function “happen”?

main

992 4

996

1000

1004

1008

1012

1016

1020

1024

1028

1032

1036

1040

1044

1048

1052 v

lower

stack grows down

higher

How does a function “happen”?

992 4

996 lower

1000

1004

1008

1012

1016

. 1020
main stack grows down
1024

1028

4 bytes =———p 1032
1036

1040

1044

1048 higher

1052 v

Calling convention

A calling convention is a specification for the functioning
of a call stack. Calling conventions describe:

e How parameters are passed to a function.

The order in which parameters are passed.

Which registers are used to store stack metadata.
Who saves registers (caller or callee), and

Who restores registers (caller or callee) after calling.

This information is necessary to ensure that code
generated by different compilers interoperates.

ARM Calling Convention

How functions “work” for the C language on 32-bit ARM
machines running UNIX.

e How parameters are passed to a function.

vin registers; spill to the stack

The order in which parameters are passed.
vright-to-left

Which registers are used to store stack metadata.
v¥'pc: program counter (i.e., instruction pointer)

v sp: pointer to top of stack

v £p: pointer to bottom of stack

Who saves registers,

¥ callee saves v1-v5, £p, sp, etc; caller saves 1r.
Who restores registers after calling.

y/callee restores v1-v5, £p, sp, etc.; callee restores Ir

This program does almost nothing.

void foo() {}

int main() {

foo();
}

What does it do?

Recap & Next Class

Today we learned:

How C functions work

Next class:

How argument passing works

