Announcements

- TA applications open; due by Oct 27.
CSCI 331: y TA feedback survey Oct 27.

Introduction to Computer Security

Lecture 11: Midterm Exam Review

Instructor: Dan Barowy

Williams

Announcements Your to-dos

*Midterm exam, in class, Thursday, Oct 19.

*Colloquium: What | Did Last Summer (Research
Edition), 2:35pm in Wege Auditorium.

1. Study for Thursday’s exam.

2. Project part 2, due Sunday by 10pm.

Person

Ben Wilen

David Goetze

Faisal Alsaif

Gregor Remec

Jack Sullivan

Kit Conklin

Lee Mabhena

Michelle Wang

Zach Sturdevant

Ye Shu

Sarah Fida

Topic1 Topic2 Topic3
Malware/viruses XSS MITM

Sandbox escape timing attacks SQL injection
Malvertising SQL injection Reflected XSS
Buffer overflows SQL injection DDoS

MITM Botnet/DDoS Rootkits

Race conditions Format string vuln Clickjacking

MITM DoS Credential stuffing
Clickjacking XSS Evesdropping

DoS XSS Side channel attacks
Traffic confirmation attack Use after free exploit Privilege escalation
SQL injection Directory traversal Clickjacking

What topics?

Think about which topics you do not feel confident about.
Take a few minutes and write them down on a piece of
paper.

Everybody needs to tell me something.

Things we’ve covered

The C Programming Language

struct

The C Programming Language

Basics

e Compilation using gcc.

e Warnings using -wall

* Programs vs libraries
e Build program with —-o and specify name
 Build library with -c

The C Programming Language

C Features

The pointer as the basic unit of abstraction.

e struct as the basic unit of grouping.

typedef as a way to give types useful names.

Printing using printf and format specifiers.

* Memory as a resource that must be manually

managed

e Automatic (“local’) memory, allocated on the
stack

* Manual memory, allocated on the heap using
malloc.

The C Programming Language
C Rules

0. Pointers are for referring to locations in memory.
1. When using a variable, always ask C to reserve
memory for some duration.

2. Always allocate and deallocate long duration
storage.

3. Always initialize variables.

4. Watch out for off-by-one errors.

5. Always null-terminate “C strings.”

The C Programming Language

State Diagrams

#include <stdio.h>

int main() {
int i = 10, j = 0, *k;

k = &i; i=20 Oxbfes
;k_=&§?; main | j = 20 Oxbfec
*k = i k = Oxbfec 0xb££0
printf("i = %d,

j = %d, call stack

*k = %d\n",

i, 3, *k);

gy return 0;

}

(state just before the line indicated by the arrow is executed)

The C Programming Language

State Diagram Rules

The Rules
1. Initialize diagram with empty stack and heap.
2. When a function is called, put a box on the stack, and label it with the function’s name.
3. Put global variables outside the box.
4. Put local (automatic) variables inside the box, including function parameters.
5. Manage allocated variables on the heap.

(a) malloc adds objects.
(b) free removes objects.

6. As the function runs, update values.

7. Returning from a function pops the stack frame and, if the function returns a value, assigns it to
the storage awaiting the return value.

Makefiles

program: c.c b.o a.o
tab S, gcc -0 program c.c b.o a.o

target: dep: .. depn
tab . command

command should produce target.

Makefiles

CFLAGS=-Wall -g

.PHONY: all
all: dictattack hashchain

database.o: database.h database.c
gcc $(CFLAGS) -c database.c

crackutil.o: crackutil.h crackutil.c database.h
gcc $(CFLAGS) -c crackutil.c

dictattack: crackutil.o database.o dictattack.c
gcc $(CFLAGS) -o dictattack dictattack.c crackutil.o database.o -1md

Libraries: static vs shared

LIE..}duLl,iulluliiuN;ﬂ

SN TR

e Static library: compile with —-c
e Shared library: link with -1<whatever>

. h files are interfaces

10

Building with libraries

CFLAGS=-Wall -g

.PHONY: all

static libra
all: dictatta:i“___——‘_————— ry
database.o: /database.h database.c shared library
LAGS) -c database.c

crackutil.o: crackutil.h crackutil.c database.o
gcc $(CFLAGS) -c crackutil.c

dictattack: crackutil.o database.o dictattack.c
gcc $(CFLAGS) -o dictattack dictattack.c crackutil.o database.o‘—lmd!

.PHONY: clean
clean:
rm -f *.o
rm -f dictattack
rm -rf *.dSYM

Finding memory errors with ASan

-g --fsanitize=address -static-libasan

Kinds of memory errors:

e Segmentation fault

* Memory leak

e Qut-of-bounds read

o Buffer overflow (OOB write)
e Use-after-free

* Uninitialized read

Debugging with gdbtui

+

// generate the table

printf("Generating table...\n");

int numchains = genTable(tt, width, height, keys);

printf(“Generated %d chains for table type %d\n", numchains, EXHAUSTIVE);

// decrypt all the keys that we can find
printf("Decrypting...\n");
list_tx finger = pw,

int num_decrypt
while(finger) {
charx username = finger->data.username;
charx ciphertext = finger->data.password;
char plaintext [PTLEN];
bool found = lookup(ciphertext, tt, width, height, plaintext);
if (found) {
num_decrypt++;
fprintf(outf, "%s,%s\n", username, plaintext);

[Thread debugging using libthread_db enabled

Using host libthread_db library "/lib/arm-linux-gnueabihf/libthread_db.so.1".

[Inferior 1 (process 7528) exited with code 01]

(gdb) r epassword.db password.db exhaustive 5 10000

Starting program: /home/pi/Documents/Code/cs331-pwcrack-solution/hashchain epassword.db password.db exhaustive 5 1000
]

[Thread debugging using libthread_db enabled
Using host libthread_db library "/lib/arm-linux-gnueabihf/libthread_db.so.1".

Breakpoint 1, main (argc=6, argv=0xbefff5f4) at hashchain.c:69
(gdb)

Security as a tradeoff

L

Security as a tradeoff

ﬁlj

e.g., memorability vs guessability

Security as a tradeoff

How to quantify risk-reward tradeoff

Enumerate potential vulnerabilities
Assign exploit probabilites

Estimate cost of exploit

Compute expected cost

Rational expenses for mitigation do not
exceed the expected cost of the exploit

Security properties

OOSE
\' LIPS

4

MIGHT

Siﬂnk Shi_p.s

Confidentiality

Nz tiorficn Mfqu~-—-— N

e MAGTIN | -nnu-l‘llmﬁ

S

Authenticity Availability

Security properties Crypto!

Encryption is the process of encoding a message so that it can be read
only by the sender and the intended recipient.

SANDRA BULLOGK

B H . EY
sy * Aplaintext p is the original, unobfuscated data. This is information you want to
J i ’ protect.

: * Aciphertext c is encoded, or encrypted, data.

* Acipher [is an algorithm that converts plaintext to cipertext. We sometimes call
this function an encryption function.
>*More formally, a cipher is a function from plaintext to ciphertext, f(p)=c. The
properties of this function determine what kind of encryption scheme is being
used.
* Asender is the person (or entity) who enciphers or encrypts a message, i.e., the
party that converts the plaintext into cipertext. f(p)=c

A receiver is the person (or entity) who deciphers or decrypts a message, i.e., the
party that converts the ciphertext back into plaintext. f-1(c)=p

Non-repudiation .

Cryptographic hash functions Brute Force Password Attacks

Suppose we have: Online, using a pseudoterminal.

f(p)=c, a cipher that maps plaintexts to ciphertexts; in this Offline, using a password cracking algorithm.
case, a hash function.

Because f is a hash function, there is no inverse -

function such that f-1(f(p))=p.

A cryptographic hash function is bitwise independent,
meaning that seeing one or more bits of output does not help
an attacker predict the values of the remaining outputs.

Offline password database attacks

Random guessing attack
Enumeration attack

Dictionary attack

Precomputed hash chain attack

IBRREEM table attack

Random guessing: complexity (one pw)

m = # of possible passwords

- p = probability that random
guess is correct
=1/m
X = # guesses until success
E[X] = (geometric dist)

(1-p)/p
=m-1
O(m) average per pw O(mn) average for all pw

Enumeration: complexity

m = # of possible passwords

O(m/2)
Average guesses to find all pw:

O(n x m/2)

- Average guesses to find one pw:

Dictionary attack: complexity
m = # of possible passwords

Time to compute dictionary:
O(m)

Time to lookup one pw:

O(log m)
Time to lookup all pws:
O(n log m)

Space needed:

O(m)

PCHC/rainbow attack: complexity

m = # of possible passwords

- Time to compute data structure:

O(m)
Time to lookup one pw:
O(k)

Time to lookup all pws:
O(mk)
Space needed:
O(m/k)

Hash function

Space of possible plaintexts Space of possible hashes

R A

8 digits, 0-9, a-f 64 digits, 0-9, a-f
——p hashing

plaintext: “9a55302d” ciphertext: “4651£1799e5e36c878£3d980c59e94ae”

Reducer function

Space of possible plaintexts Space of possible hashes

—e
8 digits, 0-9, a-f 64 digits, 0-9, a-f
<4—— reduction
ciphertext: “4651£1799e5e36c878£3d980c59e94ae” plaintext: “4651£179”

Reducer function properties

A reducer r(c)=p only needs to satisfy a couple properties.

1. Areducer’s output, p, should map to the same domain as
the input of the hash function, f(p)=c (i.e,. plaintexts)

N L

——p hashing
<4— reduction

Reducer function properties

A reducer r(c)=p only needs to satisfy a couple properties.

2. All plaintexts should be selected, given the space of
ciphertexts, with equal probability.

/2

——— hashing
<4—— reduction

Hash chain

Space of possible plaintexts

Space of possible hashes

——p hashing
<4— reduction

Hashes are guaranteed to collide

m: # of passwords n: # of hashes

If m > n, we know that at least (m-n)/m must collide.

“pigeonhole principle”

Collisions in a hash chain

reduce

hash

Pb
Pa

hash
reduce as

Py
Px

After the collision, the chain “loops.”

Collisions prevent us from enumerating the entire space!

Hash chain of length k Store only start and end

start, end

We are going to chop up our long chain into smaller Pn , Pn-3

chains of length k.

Ps r P3
j ok} r P1

Store it backward

end, start
Pm-3 r Pm

ps3 r Ps
p1 r P3

Hash function lookup table:
hex plaintext

Pl Hash o plane 0w First three rainbow chains
vovy 4A7D1ED414474E4033AC29CCBB653D9B g —.
vk 25BBDCDO6C32D477F7FA1C3E4A91B032 » iy
vrky FC1198178C3594BFDDA3CA2996EB65CB ok h ro h r h r2
S B¢ YYYY —> 4ATD —> Y ¥¥ —> DB2F —> k ¥k k —> TFI7 —> A vV K
vwkk AE2BAC2E4B4DABOSDO1B2952D7E35BA4
4 vkvy

vhvy DB2F40F24260BC41DB48D82DSE7ABF1D
vkvk 814FOBAB7F40B2CFF77F2C7BDFFD3415 ® Mol h fo h h h r2

func reducer(c,i): 6 ik VYVVV¥hk—> 25BB—>Y¥ k¥ —> FC1ll —> hk Kk Y¥Y —> 1lE6E—> YA 4V
vhkvY 2A66ACBC1C39026B5D70457BB71B1428

Convert the ith hexadecimal 7 vhhok
vhkkk 7D7C45B9A935CFIDBASFCT5679A41559 digit of c into a plaintext h ro h r h r2

using the following table: 8 *vvy > > * > —_ —_— —_—
*vey A9B7BA707838617E9998DC4DDE2EBICS A S 04 FCl1 * %k B59C VYA ¥k 814F A2 44
*vvk BBC37E33DEFDE51CFO1E1E03E51657DA & taditad
*vkv 1E48C4420B7073BC11916C6C1DE226BB A *vkv
*vkk 7F975A56C761DBES0GECAOB37CEGECS? : hvkk end start
*Ave 1EGEOA04D20F50967C64DAC2D630A577 c Kokvy
*kvk COBFF625BDB0393992C9D4DBOCEBBE4S D AAvk *YYk [YVVY
Kk k¥ 2CBCA44843A864533ECO5B321AE1FID1 E *hky YAk AV | vovi
*kkk B59C67BF196A4758191E42F76670CEBA F ok kk

VAVY | YV V

Find the first three rainbow chains of length 3.

width =k

Po P1 P2 pP3 pa

Co Ci C2 C3

| hypothesize that ¢ reduces to pa J

What reducer should | use? reduce(c,3)

width = k

Po Pp1 P2 pPs P4

Co Ci C2 Cs3

| hypothesize that ¢ reduces to pk-2 J

What reducer should | use? reduce(c,2)
Then: reduce(c,3)

Rainbow table (for first 3 chains)

end | start

*VYk | VVVVY
Yk kY| YVVU
VAVY | Y¥%V

Decrypt FC11.
Hypothesis: FC11 is the third link in the chain.
Fc11 2> wwwx IS vwwsk an end? No.

Hypothesis: FC11 is the second link in the chain.

ri h ra
FC1l — %k ¥Yy —> 1lE6E—> Y% % ¥ |S ¥ k¥ anend? Yes.

Decrypt from start veex: ("“"‘ plaintext
h

h r
VYV —> 25BB—O>VV*V FC1l1

Countermeasures Against Cracking Attacks

e Password salts.

* Uniformly-distributed passwords.
¢ Two-factor authentication.

¢ Last-known IP address.

* Make hashing expensive.

Key Stretching

Key stretching is a technique used to make password
decryption attacks computationally expensive. Unlike an
ordinary user, an attacker must invoke a hash function many
times. Key stretching amplifies the cost of a hash
function using a stretch factor s.

fs(p) = csis an iterated hash function, where

fi(p) =f(p) =c!
f2(p) = f(f(p)) = ¢2
3(p) = f(f(f(p))) = ¢3

fr(p) = c»

Practice exam solutions

Recap & Next Class
Today we learned:
Midterm review
Q&A

Next class:
Midterm exam

