CSCI 331:
Introduction to Computer Security

Lecture 10: Stack Smashing

Instructor: Dan Barowy

Williams

Announcements

- TA applications open tomorrow; due by Oct 27.

TA feedback survey Oct 27.

Announcements

*Midterm exam, in class, Thursday, Oct 19.

*Colloquium: What | Did Last Summer (Research
Edition), 2:35pm in Wege Auditorium.

Topics

Rainbow Table Generation
Rainbow Table Lookup
A Sample Exploit

Your to-dos

1. Start studying for midterm.
2. Lab 3 part 2, due Sunday 10/15.
3. Project part 2, out soon.

Class activity:

generating rainbow chains

of length 3

How I think about rainbow lookups

plaintext

vy

Hash function lookup table:

Hash of plaintext
4A7D1ED414474E4033AC29CCB8653D9B
25BBDCD06C32D477F7FA1C3E4A91B032
FC1198178C3594BFDDA3CA2996EB65CB
AE2BAC2E4B4DA805D01B2952D7E35BA4
DB2F40F24260BC41DB48D82D5SE7ABF1D
814F06AB7F40B2CFF77F2C7BDFFD3415
2AB6ACBC1C39026B5D70457BB71B142B
7D7C45B9A935CFIDB45FC75679A41559
A9B7BA70783B617E9998DC4DD82EB3C5
B8C37E33DEFDES1CF91E1E03E51657DA
1E48C4420B7073BC11916C6C1DE226BB
7F975A56C761DB65S06ECAOB37CEGEC87

1E6E0A04D20F50967C64DAC2D639A577

C6BFF 9D4DBOC6BBE45
2CBCA44843A864533EC05B321AE1FID1

B59C67BF196A4758191E42F76670CEBA

func reducer(c,i):

Convert the ith hexadecimal
digit of c¢ into a plaintext
using the following table:

plaintext

vokok

vhvk

*vvk

vy
vk

kv

vkvy

vhokv
vkokok

*yvy

*vky
*vkok
*kvy
*okvk
*kky
okokok

Find the first three rainbow chains of length 3.

First three rainbow chains

h ro h r h r2
VVYVYY —> 4A7D —> YK VY —> DB2F —> % Y%k —> 7F97 —> hvv %

h ro h r h r2
YYV¥ 4k —> 25BB —> WYY KXY —> FC1l —> %k ¥Y —> 1E6E—> VA AV

h r h r h r
VY V—> FC11 — ok ek h—> B59C —> Wk ¥k —> BL4F —> Y A ¥V

end start
XYYk | YVVY
Yk k¥ | YOV
VAVY | V¥V

Rainbow table (for first 3 chains)

end | start

*YYk | vovY
VA XY | YOOk
YAVY | vOxV
Decrypt FC11.
Hypothesis: FC11 is the third link in the chain.

FC11 2 wwwx IS vwwx an end? No.
Hypothesis: FC11 is the second link in the chain.
r h r;
FC11 —» kA ¥y —» 1E6E—> YA *¥ IS v k¥ an end? Yes.

Decrypt from start vwwsx: ("“’—'—' plaintext

ro
YVYV¥ 4k —> 25BB—> YV %V

Countermeasures Against Cracking Attacks

Key Stretching

Key stretching is a technique used to make password
decryption attacks computationally expensive. Unlike an
ordinary user, an attacker must invoke a hash function many
Password salts. times. Key stretching amplifies the cost of a hash

* Uniformly-distributed passwords. function using a stretch factor s.
¢ Two-factor authentication.

Last-known IP address.

Make hashing expensive. fs(p) = csis an iterated hash function, where

fi(p) =f(p) = ¢!
f2(p) = f(f(p)) = 2
B3(p) = f(f(f(p))) = 3

fr(p) = cn

Key Stretching

There are many publicly-available key stretching
implementations. Two commonly-used implementations:

* berypt (default hash function in OpenBSD)
+ PBKDF2 (part of the RSA encryption standard)

Both are interesting in that the stretch factor can be tied to
available computational power.

LastPass««s|

We're also taking this as an opportunity to roll out something we've been planning for a while: PBKDF2 using SHA-256 on the server with a
256-bit salt utilizing 100,000 rounds. We'll be rolling out a second implementation of it with the client too. In more basic terms, this further

mitigates the risk if we ever see something suspicious like this in the future. As we continue to grow we'll continue to find ways to reduce
how large a target we are.

Paper Discussion

Bugs

)5"1/1 ANNIVERSARY EDITION
L SRS

MATTHEW DABNEY JOHN ALY
BRODERICK. COLEMAN W0OD - SHEEDY

Isitagame, orisitreal?

1

Anatomy of a bug

We can use the GCC assembler to figure out what’s going
on.

Note that | use a large number of GCC flags here. Don't let
them scare you. These flags essentially reduce the program
to its simplest form in assembly.

+-S : output assembly

*-c : compile as library (no C startup routines)

+ -fno-dwarf2-cfi-asm : no control flow integrity

+ -fno-asynchronous-unwind-tables : no exception support
+ -fno-exceptions : exception support

+ -z execstack : allow executable stacks

+ -fno-stack-protector : disable stack canaries

Recap & Next Class

Today we learned:

Rainbow table generation
Rainbow table lookup
Sample buffer overflow exploit

Next class:

Midterm review / low-level programming

