
CSCI 331:
Introduction to Computer Security

Instructor: Dan Barowy

Lecture 7: Password Cracking, part 2

Topics

Precomputed Hash Chains

Address Sanitizer

Keyed Encryption Functions

Password Salts

Your to-dos

1. Read Oeschlin for Thursday 10/5 and take
notes.

2. Lab 3, part 1 due Sunday 10/8.

Address Sanitizer

Add
-fsanitize=address -static-libasan

to gcc’s flags.

Keyed encryption functions

Oeschlin uses terminology like

where Sk is a cipher from family S with index k

where P0 is the first (of many) plaintexts in space P

and where C0 is the first (of many) ciphertexts in
space C

Keyed encryption functions

Example cipher family

ROT-0

a b c … x y z

a b c … x y z

I B M

I B M

Keyed encryption functions

Example cipher family

ROT-1

a b c … x y z

b c d … y z a

I B M

J C N

Keyed encryption functions

Example cipher family

ROT-25

a b c … x y z

z a b … w x y

I B M

H A L

Keyed encryption functions

Example cipher family

ROT-25

a b c … x y z

z a b … w x y

I B M

H A L

Keyed encryption functions

def rot(i, p):
 alpha = "abcdefghijklmnopqrstuvwxyz"
 j = i % len(alpha)
 out = ""
 for char in p:
 idx = alpha.index(char)
 idx2 = (idx + j) % len(alpha)
 out += alpha[idx2]
 return out

print(rot(25, "ibm"))

Password salts

User types: password

login prepends salt: pxZ6j!

Database stores: pxZ6j!password

Interesting fact about salts:
usually stored in plaintext!

When you change your password, the /bin/passwd program
selects a salt based on the time of day. The salt is converted
into a two-character string and is stored in the /etc/passwd
file along with the encrypted “password.” In this manner,
when you type your password at login time, the same salt is
used again. Unix stores the salt as the first two characters of
the encrypted password.

— Practical UNIX and Internet Security, 3rd Edition by
Simson Garfinkel, Gene Spafford, Alan Schwartz

https://learning.oreilly.com/library/view/practical-unix-and/0596003234/
https://learning.oreilly.com/library/view/practical-unix-and/0596003234/
https://learning.oreilly.com/library/view/practical-unix-and/0596003234/

Precomputed Hash Chains

Precomputed Hash Chains
Motivation: dictionaries are too big to distribute

Recall:

About 29 terabytes!

Want: something smaller

Ordinary dictionary

plaintext ciphertext

Ordinary dictionary

plaintext ciphertext

hash()

Ordinary dictionary

plaintext ciphertext

hash()

Ordinary dictionary

plaintext ciphertext

ciphertext plaintext

m = # of possible passwords

mm

……

So storing a table takes roughly O(m) space.

We can enumerate all plaintexts*

pm

cm

hash

plaintexts

ciphertexts

reduce

pm-1

cm-1

hash

Suppose 𝑟(𝑐𝑖) = 𝑝𝑖−1 if 𝑖>1 otherwise 𝑝𝑚

c1

reduce

reduce hash
…

Suppose f(𝑝𝑖) = 𝑐𝑖

*in principle, assuming no collisions

Hash chain

plaintext ciphertext

a

hash()

Hash chain

plaintext ciphertext

a b hash() reduce()

Hash chain

plaintext ciphertext

a a

b

hash() reduce()

hash()

Hash chain

plaintext ciphertext

a a

b b

hash() reduce()

hash() reduce()

Hash chain

plaintext ciphertext

a a

b b

c

hash() reduce()

hash() reduce()

hash()

Hash chain

plaintext ciphertext

a a

b b

c …

reduce()

reduce()

hash()

hash()

hash()

Hash chain of length 2

plaintext ciphertext

a a

b b

c

Chain length: # of calls to reduce()

start end

Hash chain of length 2

plaintext ciphertext

a c

Discard everything but start and end points and store them in a table

c a

Hash chain of length 2

plaintext ciphertext

But store the end as the key and start as the data.

end start

(e.g., using the hsearch(3) implementation we explored in lab)

c a

Hash chain of length 2

plaintext ciphertext

Each chain contains roughly k plaintexts

end start

So storing a table now takes roughly O(m/k) space.

f d

i g

l j

o m

……

Thought experiment: drawbacks

pm

cm

hash
reduce

pm-1

cm-1

hash

• Saving just the first password buys us nothing. On
average, we have to compute O(m/2) hash-reductions to
find a password.

• It is probably not possible to find a reducer that lets you
explore the entire password space.

• Hash functions collide!

c1

reduce

reduce hash
…

Collisions from hash functions

pa

ca

hash
reduce

pb

cb

hash
reduce

pc

px

cx

hash
reduce

py

hash

After the collision, the chain “loops.”

Collisions prevent us from enumerating the entire space!

…

…
px

cx

hash
reduce

Reducers can produce collisions too!

pa

ca

hash
reduce

pb

cb

hash
reduce

pc
…

…

Collisions from reducers

This is what we mean by an imperfect reducer.

Hash chain of length k

We are going to chop up our long chain into smaller
chains of length k.

Precomputed hash chain

while i < NUM_PT:
 // gen ith possible plaintext
 p = genPassword(i)
 start = p

 for j from 0 to k-1:
 // create ciphertext
 c = hash(p)
 // reduce

 p = reduce(c)
// save chain in table

 table[p] = start
 i++

plaintext, plaintext
plaintext, plaintext
plaintext, plaintext
plaintext, plaintext
…

Ahead of time:

Suppose you are given c4

end, start
pm-3 , pm
…

p3 , p5
p1 , p3

Is p3 an end point? yes
c4 p3

reduce

Hash and reduce from start point.
original ciphertextpassword!

p4
reducep5 c5

hash c4
hash

Hash chain lookup pseudocode

def lookup(c, db, len):
 // look for endpoint
 p = reduce(c)
 i = 0
 while p not end in db && i < len:
 c2 = hash(p)
 p = reduce(c2)
 i++
 if p not end: FAIL
 // we found chain; lookup start pt
 s = db[p]
 c2 = hash(s)
 // decrypt
 i = 0
 while c2 != c && i < len:
 s = reduce(c2)
 c2 = hash(s)
 i++
 if i == len: FAIL
 return s

ciphertext

chain table
chain length

end,start
♥♥★♥,♥♥♥♥
♥★★★,♥♥♥★
★♥★★,★★♥★
★★★★,♥★♥★

chain table

Stores plaintexts!

Hash chain lookup pseudocode

def lookup(c, db, len):
 // look for endpoint
 p = reduce(c)
 i = 0
 while p not end in db && i < len:
 c2 = hash(p)
 p = reduce(c2)
 i++
 if p not end: FAIL
 // we found chain; lookup start pt
 s = db[p]
 c2 = hash(s)
 // decrypt
 i = 0
 while c2 != c && i < len:
 s = reduce(c2)
 c2 = hash(s)
 i++
 if i == len: FAIL
 return s

ciphertext

chain table
chain length

end,start
♥♥★♥,♥♥♥♥
♥★★★,♥♥♥★
★♥★★,★★♥★
★★★★,♥★♥★

chain table

Stores plaintexts!

Class Activity

Decrypt the hash
7F975A56C761DB6506ECA0B37CE6EC87

Answer:
★♥★★

Recap & Next Class

Today we learned:

Next class:

PCHC algorithm

Rainbow algorithm

