
CSCI 331:
Introduction to Computer Security

Instructor: Dan Barowy

Lecture 7: Password Cracking

Topics

Crypto refresher

Password database attacks

Hash chains

Your to-dos

1. Read Trading Time for Space for Monday, 10/2.
2. Read Making a Faster Cryptanalytic Time-

Memory Tradeoff for Thu, 10/5.
i. Please take notes.

3. Project part 1 due Sunday, 10/1.

Cryptography refresher
Encryption is the process of encoding a message so that it can be read 
only by the sender and the intended recipient. 

• A plaintext 𝑝 is the original, unobfuscated data. This is information you want to 
protect.

• A ciphertext 𝑐 is encoded, or encrypted, data.
• A cipher 𝑓 is an algorithm that converts plaintext to cipertext. We sometimes call 

this function an encryption function.
✴More formally, a cipher is a function from plaintext to ciphertext, 𝑓(𝑝)=𝑐. The 

properties of this function determine what kind of encryption scheme is being 
used.

• A sender is the person (or entity) who enciphers or encrypts a message, i.e., the 
party that converts the plaintext into cipertext.  𝑓(𝑝)=𝑐

• A receiver is the person (or entity) who deciphers or decrypts a message, i.e., the 
party that converts the ciphertext back into plaintext.  𝑓-1(c)=p

Why Stolen Password Databases are a Problem has a little more nuance.



A Common Attack

Entire password database leaked (bug; 
misconfiguration; theft by authorized personnel).

We keep password databases in encrypted form.

username_1,password_1
username_2,password_2
...
username_n,password_n

username_1,pwhash_1
username_2,pwhash_2
...
username_n,pwhash_3

Password database attacks

• Random guessing attack
• Enumeration attack
• Dictionary attack
• Precomputed hash chain attack
• Rainbow table attack

Random guessing

for each entry in database:
  not_found = true
  // try until found
  while not_found:
    // random plaintext
    p = randPassword()
    // create ciphertext
    c = hash(p)
    // compare
    if c = entry.pwhash:
      print entry.pwhash, p
      not_found = false

username_1,pwhash_1
username_2,pwhash_2
...
username_n,pwhash_n

Complexity?

Random guessing: complexity (one pw)

username_1,pwhash_1
username_2,pwhash_2
...
username_n,pwhash_n

m = # of possible passwords

p = probability that random 
      guess is correct

   = 1/m

E[X] = (1-p)/p
= m - 1

X = # guesses until success

(geometric dist)

O(m) average per pw O(mn) average for all pw



Wait a sec…
Suppose password is: password

Hashes to 5f4dcc3b5aa765d61d8327deb882cf99

Suppose we guess: b1d78hdd

Hashes to 310fca1c70732a8191d0199bddba3a97

Clearly that was not the passwrd.

Does it make sense to guess: b1d78hdd again?

No!  We should remember bad guesses.

Enumeration: slightly better
for each entry in database:
  i = 0
  not_found = true
  // try until found or out of pt
  while not_found && i < NUM_PT:
    // gen ith possible plaintext
    p = genPassword(i)
    // create ciphertext
    c = hash(p)
    // compare
    if c = entry.pwhash:
      print entry.pwhash, p
      not_found = false
    i++

username_1,pwhash_1
username_2,pwhash_2
...
username_n,pwhash_n

Complexity?

Enumeration: complexity

username_1,pwhash_1
username_2,pwhash_2
...
username_n,pwhash_n

O(m/2)

m = # of possible passwords

Average guesses to find one pw:

Average guesses to find all pw:

O(n x m/2)

A dictionary attack is a form of brute force attack 
technique for recovering passphrases by systematically 
trying all likely possibilities, such as words in a dictionary. 

username_1,password_1
username_2,password_2
...
username_n,password_n

pwhash_1,password_1
pwhash_2,password_2
...
pwhash_n,password_n

Dictionary attack

Critically, a dictionary attack only tries each possibility once.  
It trades space for time.



Dictionary: much better

while i < NUM_PT:
    // gen ith possible plaintext
    p = genPassword(i)
    // create ciphertext
    c = hash(p)
    // save
    cracked_db[c] = p

pwhash_1,password_1
pwhash_2,password_2
...
pwhash_n,password_n

Complexity?

Later:

Ahead of time:

for each entry in database:
  print cracked_db[entry.pwhash]

Dictionary attack: complexity

pwhash_1,password_1
pwhash_2,password_2
...
pwhash_n,password_n

O(m)

m = # of possible passwords

Time to compute dictionary:

Time to lookup one pw:
O(log m)

Time to lookup all pws:
O(n log m)

Space needed:
O(m)

Activity: How much space?
It depends on the number of possible passwords.

Password scheme:
• Uppercase letters and numbers, except O and I.
• Up to 8 digits

How many passwords are there?

Activity: How much space?
m = # of passwords

=
≈ 1.8 trillion passwords

Suppose per-pw storage is always 16 bytes.
(8 bytes for cipertext, 8 bytes for plaintext)

16 x (1.8 x 1012) bytes
≈ 29 terabytes

Is this a feasible attack?
https://www.amazon.com/Seagate-ST18000NM000J-Internal-Surveillance-Supported/dp/B08K98VFXT



Is this a feasible attack?

Time?

(1.8 x 1012) / 106 ≈ (1.8 x 106) seconds

space: ≈ 29 terabytes

This is definitely feasible!

 

Suppose I can generate 1  million pw/sec

≈ 21 days with one computer.

Precomputed hash chains

pwhash_1,pwhash_k
pwhash_k,pwhash_2k
...

A PCHC attack is a form of brute force attack technique for 
recovering passphrases by systematically trying all likely 
possibilities, such as words in a dictionary. 

Critically, a PCHC attack only tries each possibility once.  It 
trades space for time, but it compresses the database.

Hash function

Suppose we have:

𝑓(𝑝)=𝑐, a cipher that maps plaintexts to ciphertexts; in this 
case, a hash function.

Because 𝑓 is a hash function, there is no inverse 
function such that 𝑓−1(𝑓(𝑝))=𝑝.

Space of possible plaintexts Space of possible hashes

hashing

Hash function

plaintext: “9a55302d” ciphertext: “4651f1799e5e36c878f3d980c59e94ae”

8 digits, 0-9, a-f 64 digits, 0-9, a-f

https://www.amazon.com/Seagate-256MB-3-5-Inch-Enterprise-ST14000NM0018/dp/B07RQZJ347


Reducer function

Suppose we have:

𝑟(𝑐)=𝑝, that maps cipertexts to plaintexts, called a 
reducer. 

A reducer is not the inverse of the hash!

Space of possible plaintexts Space of possible hashes

reduction

Reducer function

plaintext: “4651f179”ciphertext: “4651f1799e5e36c878f3d980c59e94ae”

8 digits, 0-9, a-f 64 digits, 0-9, a-f

Reducer function properties

A reducer 𝑟(𝑐)=𝑝 only needs to satisfy a couple properties.

1. A reducer’s output, 𝑝, should map to the same domain as 
the input of the hash function, 𝑓(𝑝)=𝑐 (i.e,. plaintexts)

hashing

reduction

Reducer function properties

A reducer 𝑟(𝑐)=𝑝 only needs to satisfy a couple properties.

2. All plaintexts should be selected, given the space of 
ciphertexts, with equal probability.

hashing

reduction



Space of possible plaintexts Space of possible hashes

hashing

reduction

Hash-reduce “round trip”

plaintext: “4651f179”ciphertext: “4651f1799e5e36c878f3d980c59e94ae”
plaintext: “9a55302d” ciphertext: “4651f1799e5e36c878f3d980c59e94ae”

Space of possible plaintexts Space of possible hashes

start

end

hashing

reduction

Hash chain

Space of possible plaintexts Space of possible hashes

hashing

Hash functions are not usually perfect

Collisions!

Hashes are guaranteed to collide

m

n

If m > n, we know that at least (m-n)/m must collide.

m: # of passwords n: # of hashes

“pigeonhole principle”



Thought experiment
Let’s suspend disbelief for a moment.

1. Our hash function is perfect, chooses ciphertext 
with probability 1/m.

2. Our reducer function is perfect, chooses plaintext 
with probability 1/m.

3. The combination of hash function and reducer 
function is also perfect.

Real cryptographic hash functions are designed to 
approximate #1.

Real reducers can actually be perfect.

Thought experiment

What can we do with this information?

Thought experiment

pm

cm

hash

plaintexts

ciphertexts

reduce

pm-1

cm-1

hash

Suppose 𝑟(𝑐𝑖) = 𝑝𝑖−1 if 𝑖>1 otherwise 𝑝𝑚

c1

reduce

reduce hash
…

Suppose f(𝑝𝑖) = 𝑐𝑖

Thought experiment

pm

cm

hash

plaintexts

ciphertexts

reduce

pm-1

cm-1

hash

Such a scheme (a hash chain) lets us generate all plaintexts 
(and hashes) from a seed plaintext.

c1

reduce

reduce hash
…

Only need to save the seed. Drawbacks?



Thought experiment: drawbacks

pm

cm

hash
reduce

pm-1

cm-1

hash

• Saving just the first password buys us nothing.  On 
average, we have to compute O(m/2) hash-reductions to 
find a password.

• Hash functions collide!

c1

reduce

reduce hash
…

Collisions in a hash chain

pa

ca

hash
reduce

pb

cb

hash
reduce

pc

px

cx

hash
reduce

py

hash

After the collision, the chain “loops.”

Collisions prevent us from enumerating the entire space!

…

…

px

cx

hash
reduce

Reducers can produce collisions too!

pa

ca

hash
reduce

pb

cb

hash
reduce

pc
…

…

Collisions in a hash chain

This is what we mean by an imperfect reducer.

Space of possible plaintexts Space of possible hashes

start

end

hashing

reduction

Hash chain



Hash chain of length k

We are going to chop up our long chain into smaller 
chains of length k.

Space of possible plaintexts Space of possible hashes

start

end

hashing

reduction

Hash chain

end

Space of possible plaintexts Space of possible hashes

start

hashing

reduction

Hash chain of length 2

end



Recap & Next Class

Today we learned:

Next class:
PCHC lookup algorithm

Trading space for time

Password attacks

Password attack complexity


