CSCI 331:
Introduction to Computer Security

Lecture 7: Password Cracking

Instructor: Dan Barowy

Williams

Topics

Crypto refresher
Password database attacks

Hash chains

Your to-dos

1. Read Trading Time for Space for Monday, 10/2.
2. Read Making a Faster Cryptanalytic Time-
Memory Tradeoff for Thu, 10/5.
i. Please take notes.
3. Project part 1 due Sunday, 10/1.

Cryptography refresher

Encryption is the process of encoding a message so that it can be read
only by the sender and the intended recipient.

* Aplaintext p is the original, unobfuscated data. This is information you want to
protect.

* Aciphertext ¢ is encoded, or encrypted, data.

* Acipher f is an algorithm that converts plaintext to cipertext. We sometimes call
this function an encryption function.

*More formally, a cipher is a function from plaintext to ciphertext, f(p)=c. The
properties of this function determine what kind of encryption scheme is being
used.

* Asender is the person (or entity) who enciphers or encrypts a message, i.e., the
party that converts the plaintext into cipertext. f(p)=c

* Areceiver is the person (or entity) who deciphers or decrypts a message, i.e., the
party that converts the ciphertext back into plaintext. f-!(c)=p

Why Stolen Password Databases are a Problem has a little more nuance.

A Common Attack

Entire password database leaked (bug;
misconfiguration; theft by authorized personnel).

We keep password databases in encrypted form.

Password database attacks

Random guessing attack
Enumeration attack

Dictionary attack

Precomputed hash chain attack

BN table attack

Random guessing

for each entry in database:

not_found = true
- // try until found
while not_found:

// random plaintext

p = randPassword()

// create ciphertext

c = hash(p)

// compare

if ¢ = entry.pwhash:
print entry.pwhash, p
not found = false

Complexity?

Random guessing: complexity (one pw)

m = # of possible passwords

- p = probability that random

guess is correct

=1/m
X = # guesses until success
E[X]=(1-p)/p (geometric dist)

=m-1
O(m) average per pw O(mn) average for all pw

Wait a sec...

Suppose password is: password

Hashes to 5f4dcc3b5aa765d61d8327deb882cf99
Suppose we guess: b1d78hdd
Hashesto 310fcalc70732a8191d0199bddba3a97
Clearly that was not the passwrd.
Does it make sense to guess: b1d78hdd again?

No! We should remember bad guesses.

Enumeration: slightly better

for each entry in database:

not found = true
// try until found or out of pt

- while not found && i < NUM PT:
// gen ith possible plaintext
p = genPassword(i)
// create ciphertext
c = hash(p)
// compare
if ¢ = entry.pwhash:
print entry.pwhash, p

not_found = false
i++

Complexity?

Enumeration: complexity

m = # of possible passwords

O(m/2)
Average guesses to find all pw:

O(n x m/2)

- Average guesses to find one pw:

Dictionary attack

A dictionary attack is a form of brute force attack
technique for recovering passphrases by systematically
trying all likely possibilities, such as words in a dictionary.

Critically, a dictionary attack only tries each possibility once.
It trades space for time.

Dictionary: much better

Ahead of time:

while i < NUM PT:
// gen ith possible plaintext

p = genPassword(i)
// create ciphertext
c = hash(p)

// save

cracked db[c] = p

Later:

for each entry in database:
print cracked db[entry.pwhash]

Complexity?

Dictionary attack: complexity

m = # of possible passwords
- Time to compute dictionary:
O(m)
Time to lookup one pw:
O(log m)

Time to lookup all pws:

O(n log m)
Space needed:
O(m)

Activity: How much space?

It depends on the number of possible passwords.

Password scheme:
e Uppercase letters and numbers, except 0 and I.
* Up to 8 digits

How many passwords are there?

Activity: How much space?

m = # of passwords

8
=) 34 =1839908871710
k=1

~ 1.8 trillion passwords

Suppose per-pw storage is always 16 bytes.
(8 bytes for cipertext, 8 bytes for plaintext)

16 x (1.8 x 1012) bytes
~ 29 terabytes
Is this a feasible attack?

https://www.amazon.com/Seagate-ST18000NMO0OJ-Internal-Surveillance-Supported/dp/BO8K98SVFXT

Is this a feasible attack?
space: = 29 terabytes
Time?
Suppose | can generate 1 million pw/sec
(1.8 x1072) / 106 = (1.8 x 106) seconds
~ 21 days with one computer.

This is definitely feasible!

Precomputed hash chains

A PCHC attack is a form of brute force attack technique for
recovering passphrases by systematically trying all likely
possibilities, such as words in a dictionary.

Critically, a PCHC attack only tries each possibility once. It
trades space for time, but it compresses the database.

Hash function

Suppose we have:

f(p)=c, a cipher that maps plaintexts to ciphertexts; in this
case, a hash function.

Because f is a hash function, there is no inverse
function such that f-1(f(p))=p.

Hash function

Space of possible plaintexts Space of possible hashes

I)

___——e

— /|

8 digits, 0-9, a-f 64 digits, 0-9, a-f
———> hashing

plaintext: “9a55302d” ciphertext: “4651£1799e5e36c878£3d980c59e94ae”

https://www.amazon.com/Seagate-256MB-3-5-Inch-Enterprise-ST14000NM0018/dp/B07RQZJ347

Reducer function

Suppose we have:

r(c)=p, that maps cipertexts to plaintexts, called a
reducer.

A reducer is not the inverse of the hash!

Reducer function

Space of possible plaintexts Space of possible hashes

/
/

8 digits, 0-9, a-f 64 digits, 0-9, a-f
<4— reduction

ciphertext: “4651£1799e5e36c878£3d980c59e94ae” plaintext: “4651£179”

Reducer function properties

A reducer r(c)=p only needs to satisfy a couple properties.

1. Areducer’s output, p, should map to the same domain as
the input of the hash function, f(p)=c (i.e,. plaintexts)

N L

——— hashing

<4— reduction

Reducer function properties

A reducer r(c)=p only needs to satisfy a couple properties.

2. All plaintexts should be selected, given the space of
ciphertexts, with equal probability.

——p hashing
<4— reduction

Hash-reduce “round trip”

Space of possible plaintexts

N

Space of possible hashes

—— hashing
<4— reduction

plaintext: “9a553024” ciphertext: “4651£1799e5e36c878£3d980c59e94ae”

ciphertext: “4651£1799e5e36c878£3d980c59e94ae” plaintext: “4651£179”

Hash chain

Space of possible plaintexts Space of possible hashes

—\
—\

]

——p hashing
<4— reduction

Hash functions are not usually perfect

Space of possible plaintexts

Space of possible hashes

——— hashing

Collisions!

Hashes are guaranteed to collide

m: # of passwords n: # of hashes

If m > n, we know that at least (m-n)/m must collide.

“pigeonhole principle”

Thought experiment

Let’s suspend disbelief for a moment.

1. Our hash function is perfect, chooses ciphertext
with probability 1/m.

2. Our reducer function is perfect, chooses plaintext
with probability 1/m.

3. The combination of hash function and reducer
function is also perfect.

Real cryptographic hash functions are designed to
approximate #1.

Real reducers can actually be perfect.

Thought experiment

What can we do with this information?

Thought experiment

. plaintexts
@ ciphertexts

Suppose f(pi) = ¢
Suppose r(ci) = pi-1 if i>1 otherwise pm

reduce

reduce hash .
y ' \ub . / . "’n
o Cm "

Cm-1

i

Pm-1 «
pm \ IIIIIIIIIIIIIIIIIIIIII .
reduce @ <« hash

Thought experiment

. plaintexts
@ ciphertexts

Such a scheme (a hash chain) lets us generate all plaintexts
(and hashes) from a seed plaintext.

reduce

reduce hash .
y . \u> . / . "‘n
o Cm ’

Cm-1

0
o,

Pm-1 «
pm \ ---------------------- .
reduce @ < hash

Only need to save the seed. Drawbacks?

Thought experiment: drawbacks

+ Saving just the first password buys us nothing. On
average, we have to compute O(m/2) hash-reductions to
find a password.

* Hash functions collide!

reduce

hash @ | @,
. Cm Cm-1 '...

Pm-1 <
pm \ ----------------------- -
reduce @ < hash

Collisions in a hash chain

reduce

hash__» @ &, y o— |)
/ . Cb
. Ca

Pb
Pa
reduce

Py
Px

After the collision, the chain “loops.”

Collisions prevent us from enumerating the entire space!

Collisions in a hash chain

reduce

hash o &, y o — o
/ . Cb
’ Ca

Po Pe
reduce ;
_fah—r® .
. @ Cx N U

Px

Reducers can produce collisions too!
This is what we mean by an imperfect reducer.

Hash chain

Space of possible plaintexts Space of possible hashes

———> hashing
<4— reduction

Hash chain of length k R —

Article Edit Discuss Home - Categories - i Logal Maters - La

Go-Authored By:

How to Deal With a Police Polygraph Gilnton M. Sandvick o,
Test Fomer G Ligaio
We are going to chop up our long chain into smaller ooty o Snti 5,00 KA, ooemms

Updated: March 29, 2019 Updatod: March 29,

c h a i ns Of Ie n gt h k A polygraph test is a test that uses a machine to Sl :T; 20457

Explore this Article
measure responses from your body during the =
course of an interview, usually consisting of * Understanding the Test
questions about your past.!] Passing a polygraph Eeparig for thal et
= Taking the Test
e ors “This aricle helped me because | have a
requirement during pre-employment screening for a past that s shameu. | havo the gall o
| uirer '9 P! ploy! 9 Related Articles. pursue a law enforcement position...” more
career in law enforcement(?] The test

References
measures several

Nesha B.

test, also known as a ‘lie detector” test, is often a

More success stories Share yours!
responses, such as changes in breathing, puise, and

sweating, and records these measurements on graph paper. The graph shows what periods of
physiological response coincided with the moment in time when a particular question was
asked. Increased physiological response and high stress while answering a particular question,
according to the theory behind the test, suggests that the examinee is lying.[3] Faith in the
reliability of the polygraph test, however, varies. 4151

Understanding the Test

Hash chain Hash chain of length 2

Space of possible plaintexts Space of possible hashes Space of possible plaintexts Space of possible hashes

——— hashing ———> hashing

<4— reduction <4—— reduction

Recap & Next Class

Today we learned:

Password attacks
Password attack complexity

Trading space for time

Next class:
PCHC lookup algorithm

