
CSCI 331:
Introduction to Computer Security

Instructor: Dan Barowy

Lecture 4: Even more C

1

Topics

More pointers

Makefiles

Static vs shared libraries

Segmentation faults

2

Your to-dos

1. Lab 1 out.
i. Note that it includes some reading.
ii. Lab 1 due Sunday 9/24 by 10:00pm.
iii. If your RPi is not set up, what are you waiting

for?
iv. Office hours Thur & Fri.

2. Read On User Choice in Graphical Password
Schemes by Thur, 9/21 and take notes to
discuss in class.

3

Announcements

•CS Colloquium this Friday, Sept 22 @ 2:35pm in
Wege Auditorium (TCL 123)

Your classmates
What I Did Last Summer, Industry Edition
Short presentations by your fellow CS students about
internship experiences in industry. CS Colloquium
credit awarded for attendance.

4

Activity

5

Activity solution: caveat
The C specification says nothing about the location of a
variable.

The words stack and heap literally do not appear in the
document.

It only says how short-lived (automatic) and long-lived
(allocated) storage should behave.

Virtually every compiler uses the stack for automatic
variables, and the heap for allocated variables.

Practically, it does not matter where you put your
variables as long as you put them in stack and heap
locations as appropriate.

6

#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

Activity solution: after step 1

call stack

main

k = ??? 0xbff0

j = 0 0xbfec

i = 10 0xbfe8

(state just before the line indicated by the arrow is executed)

7

#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

Activity solution: after step 2

call stack

main

k = 0xbfe8 0xbff0

j = 0 0xbfec

i = 10 0xbfe8

(state just before the line indicated by the arrow is executed)

8

#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

Activity solution: after step 3

call stack

main

k = 0xbfe8 0xbff0

j = 0 0xbfec

i = 20 0xbfe8

(state just before the line indicated by the arrow is executed)

9

#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

Activity solution: after step 4

call stack

main

k = 0xbfec 0xbff0

j = 0 0xbfec

i = 20 0xbfe8

(state just before the line indicated by the arrow is executed)

10

#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

Activity solution: after step 5

call stack

main

k = 0xbfec 0xbff0

j = 20 0xbfec

i = 20 0xbfe8

(state just before the line indicated by the arrow is executed)

11

#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

Activity solution: print output

call stack

main

k = 0xbfec 0xbff0

j = 20 0xbfec

i = 20 0xbfe8

(state just before the line indicated by the arrow is executed)

printf prints “i = 20, j = 20, *k = 20”

12

#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

Activity solution: static data?

call stack

main

k = 0xbfec 0xbff0

j = 20 0xbfec

i = 20 0xbfe8

(state just before the line indicated by the arrow is executed)

Yes. “i = %d,\nj = %d,\n*k = %d\n”

13

How might you verify my solution?

14

gdb

15

What is a variable (in a program)?

16

What is a segmentation fault?

17

Question

0 4 8 12 16 20 … big

Physical memory:

Problem: we typically want to run multiple programs at
the same time.

Any program that uses memory must say where in
memory its variables are stored.

How do we know that another program isn’t already
using the space we reserve for our variable?

18

Answer: virtual memory

0 4 8 12 16 20 … big

Virtual memory maps virtual addresses to physical
addresses.

Physical memory:

0 4 8 12 16 20 … less big

19

OS view of memory

0 8 GB

chrome javac league ls

Each of these programs is given the illusion that it
controls all of memory.

20

OS view of memory

0 8 GB

A virtual memory map is not necessarily contiguous.

Memory is broken into chunks called pages.

Allocation requests for programs are filled from
pages; when a page fills, the memory manager maps a
new page to the program’s virtual address space.

chrome

21

OS view of memory

0 8 GB

The program “sees” a contiguous address space.

22

OS view of memory

0 8 GB

The program “sees” a contiguous address space.

0 1 GB

23

What is a segmentation fault?

24

Segmentation fault

A segmentation fault (often shortened to segfault) or
access violation is a fault, or failure condition, raised by
hardware with memory protection, notifying an operating
system that the software has attempted to access a
restricted area of memory.

25

Segmentation fault

0 8 GB

Reading here will fail. Also…

26

Address zero

0 8 GB

Address zero in virtual memory is special.

0

char *buf1 = malloc(MAX_INT);
char *buf2 = “something”;
strncpy(buf1, buf2, strlen(buf2));

Attempting to read or write to address 0 segfaults.

This is why NULL equals 0. Protects against alloc fail.
Segmentation faults are a safety feature.

27

Does this segfault?

A 4k page of memory (vaddr 4096-8191):

… 4223 4224 4225 4226 4227 4228 …

You write “ephs” into this buffer.
You ask malloc for 3 bytes and get

Does the write segfault?

e p h s \0

No!
Write did not cross page boundary.

28

Makefiles

29

Makefiles

A Makefile is a specification used by the make tool to
automate the compilation of programs.

30

Rationale

Programmers build software frequently.

Lazy
(don’t want to retype)

Impatient
(don’t want to wait for gcc)

31

Insight
An entire project does not need to rebuilt every time.

int foo (int a) {
 return a + 1;
}

a.c
int bar (int b) {
 return b - 1;
}

b.c

#include <stdio.h>
#include "a.h"
#include "b.h"

int main() {
 int c = bar(foo(1));
 printf("c = %d\n", c);
 return 0;
}

c.c

depends on depends on

32

Insight
An entire project does not need to rebuilt every time.

int foo (int a) {
 return a + 1;
}

a.c
int bar (int b) {
 return b - 1;
}

b.c

#include <stdio.h>
#include "a.h"
#include "b.h"

int main() {
 int c = bar(foo(2));
 printf("c = %d\n", c);
 return 0;
}

c.c

depends on depends on

make a change

a.c and b.c
do not change.

Do we really need 
to rebuild them?

33

c.c

A Makefile encodes dependencies

program

$ gcc a.c b.c c.c -o program

Small catch: make can only avoid rebuilding if there is a
produced thing that it can avoid rebuilding.

There is only one produced thing here: program

depends on

depends on depends on

a.c

b.c

(produced things are circles; source files are squares)

34

A Makefile encodes dependencies

c.c program

depends on

depends on depends on

a.c

b.c

Fix: make more produced things.

35

A Makefile encodes dependencies

program

Fix: make more produced things.

depends on

depends on depends on

a.o

b.o
depends on

depends on

This still has a problem.

c.c

a.c

b.c

c.c is not a produced thing. 
Only produced things can depend on other things.

36

A Makefile encodes dependencies

program

Fix: make program depend on a.o and b.o.

depends on

depends on

a.o

b.o
depends on

depends on

c.c

a.c

b.c

depends on

Observe: The same amount of work is being done. But the
things are smaller.

37

A Makefile encodes dependencies

program

Suppose we update c.c.

depends on

depends on

a.o

b.o
depends on

depends on

c.c

a.c

b.c

depends on

What needs to be rebuilt?

Just program.

We don’t need to rebuild a.o or b.o at all.

38

program:

A Makefile encodes dependencies

program

depends on

depends on

a.o

b.o
depends on

depends on

c.c

a.c

b.c

depends on

Let’s write a Makefile for this, starting with program.
a.oc.c b.o

tab gcc -o program c.c b.o a.o

3 things, 3 rules.

39

program:

A Makefile encodes dependencies

program

depends on

depends on

a.o

b.o
depends on

depends on

c.c

a.c

b.c

depends on

Let’s write a Makefile for this, starting with program.
a.oc.c b.o

tab gcc -o program c.c b.o a.o

b.o: b.c
tab gcc -c b.c 3 things, 3 rules.

40

program:

A Makefile encodes dependencies

program

depends on

depends on

a.o

b.o
depends on

depends on

c.c

a.c

b.c

depends on

Let’s write a Makefile for this, starting with program.
a.oc.c b.o

tab gcc -o program c.c b.o a.o

b.o: b.c
tab gcc -c b.c

a.o: a.c
tab gcc -c a.c

3 things, 3 rules.

41

Makefile syntax

target:
 command

program: a.oc.c b.o
tab gcc -o program c.c b.o a.o

tab

command should produce target.

dep1 … depn

42

Recap & Next Class

Today we learned:

Next class:

Stack layouts

Password security

Makefiles
Static vs. shared libraries

Pseudoterminals

43

