
CSCI 331:
Introduction to Computer Security

Instructor: Dan Barowy

Lecture 3: More C

1

Topics

More C

2

Announcements
•CS Colloquium tomorrow @ 2:35pm in Wege
Auditorium (TCL 123)

David Mimno (Cornell)
The data in data science: measuring the impact
of data curation on large language model
pretraining
Large language models like BERT and ChatGPT are fundamentally a
reflection of the data used to train them. Putting together
millions of documents from diverse sources requires innumerable
choices. But because of the time and expense of the initial,
general-purpose “pretraining” phase of model training, many of
these choices are made heuristically without any systematic
evidence-based justification. We train models to measure the
effects of three common curation decisions: document age,
quality and toxicity filtering, and data sources. We find that
these choices have significant, noticeable effects that cannot
be fully overcome by additional training.

3

Your to-dos

1. Second lab (Lab 1) is posted, due 9/24.
i. Read chapters on C if you feel like you need

a refresher.
2. I have office hours today after class.

4

C rules from last class

0. Pointers are for pointing at other values in
memory.
1. Whenever you store a variable, you always ask C
to reserve memory for some duration.

5

Activity: What effect do these
programs have on memory?

#include <stdio.h>

int main() {

 int num = 331;

 printf("%d rocks!\n", num);

 return 0;

}

#include <stdio.h>

#include <stdlib.h>

int main() {

 int *num_ptr = malloc(sizeof(int));

 if (!num_ptr) {

 printf("Unable to allocate.\n");

 exit(1);

 }

 *num_ptr = 331;

 printf("%d rocks!\n", *num_ptr);

 return 0;

}

6

Rule 2:

All long duration storage needs to be both
allocated and deallocated.

#include <stdio.h>

#include <stdlib.h>

int main() {

 int *num_ptr = malloc(sizeof(int));

 if (!num_ptr) {

 printf("Unable to allocate.\n");

 exit(1);

 }

 *num_ptr = 331;

 printf("%d rocks!\n", *num_ptr);

 return 0;

}

Last class we spotted what was wrong here…

free(num_ptr);

Does this bug “matter” for this program?

7

Rule 3:

Always initialize variables.

#include <stdio.h>

int main() {

 int num;

 printf("%d rocks!\n", num);

 return 0;

}

What does this program print?

(always? are you sure?)

8

This program prints “331 rocks!”

#include <stdio.h>

int foo() {

 int a = 331;

 return a;

}

int bar() {

 int b;

 return b;

}

int main() {

 foo();

 int num = bar();

 printf("%d rocks!\n", num);

 return 0;

}

Please do not write code like this!

9

Rule 4:

Watch out for off-by-one errors.

Effects range from subtle to catastrophic!

#include <stdio.h>

int main() {

 int nums[5];

 nums[0] = 0;

 nums[1] = 1;

 nums[2] = 2;

 nums[3] = 3;

 nums[4] = 4;

 int sum = 0;

 for (int i = 0; i <= 5; i++) {

 sum += nums[i];

 }

 printf("sum: %d\n", sum);

 return 0;

}

10

Rule 5:
 
Always null-terminate “C strings.”

C has no String data type.
Instead, it has character arrays.
Character arrays must always be null-terminated.

(otherwise bad things happen)

11

Effects range from subtle to catastrophic!

#include <stdio.h>

#include <string.h>

int main() {

 char str[] = {

 ‘h','o','r','c','r',

 'u','x','e','s'

 };

 printf("'%s' has length '%lu'\n", 
 str,

 strlen(str));

 return 0;

}

Rule 5:
 
Always null-terminate “C strings.”

12

0 1 2 3 4 5 6 7

h o r c r u x \0

s

char *

C Strings

#include <stdio.h>

int baz() {

 char *s = "horcrux";

 printf("%s\n", s);

 return 0;

}

String: just a null-terminated array of chars.
There is no string type in C.

What is the type of s? What does s store? How do I know that s points to an array?

Call stack

baz

…

Where in memory does the data “horcrux\0” live?

13

C Memory

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int bar() {

 char *s;

 s = malloc(8);

 strncpy(s, "horcrux", 7);

 printf("%s\n", s);

 return 0;

}

0 1 2 3 4 5 6 7

h o r c r u x \0

s

char *

Call stack

bar

…

Where in memory does the data “horcrux\0” live now?

14

What happens to s when bar returns?
What happens to the thing s pointed to?

15

C Memory

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int bar() {

 char *s;

 s = malloc(8);

 strncpy(s, "horcrux", 8);

 printf("%s\n", s);

 return 0;

}

0 1 2 3 4 5 6 7

h o r c r u x \0
char *

Call stack

…

Answer: nothing. Memory leak!

16

C Rules

0. Pointers are for pointing at other values in
memory.
1. Remember, when using a variable, you’re always
ask C to reserve memory for some duration.
2. Always allocate and deallocate long duration
storage.
3. Always initialize variables.
4. Watch out for off-by-one errors.
5. Always null-terminate “C strings.”

17

Recap & Next Class

Today we discussed:

Next class:

More C

Virtual memory

Pseudoterminals
Segmentation Faults

18

