
CSCI 331:
Introduction to Computer Security

Instructor: Dan Barowy

Lecture 2: C Review

1

2

Topics

Drop/add deadline: Friday, 15th of September

Anonymous feedback

C review

3

Discussion

4 Discuss Schneier reading.

Feedback

Anonymously or eponymously

5 You are always welcome to send me feedback, either via email or
anonymously, via the course website.

Anonymous Feedback
6 You can find it here.

Your to-dos

1. First lab (Lab 0) tomorrow. 
Do you know what section you are in?

2. Reading (pseudoterminals) due Thu.
i. Please use crib notes form
ii. Reading discussions will be on Thursdays

from this point forward
3. Second lab (Lab 1) is posted, due 9/24.

7

Readings for Lab 0

1. Lab 0 writeup. 
Not a bad idea to skim labs ahead of time.

8

Lab 0

If you have a laptop that you plan to use for the
semester, please bring it to our first lab meeting.

If you prefer to use a lab machine, you don’t need
to bring anything.

9

The C Programming Language

10 Let’s refresh our memory on the C language. You should have had some
prior exposure via 237. We are going to go deeper, so prepare yourself to
learn more! These two people, Brian Kernighan on the left, and Dennis
Ritchie on the right, invented the C programming language in the early
1970s. C’s invention was in a large part motivated by the desire for a
“portable” programming language. In other words, Kernighan and Ritchie
wanted a programming language where programs could be written once
and reused on different computers. Believe it or not, in the early 1970s,
portable programs were NOT common!

Activity: What do you know about C?

C

procedural

general purpose

structured programmingrecursion

compile
d

high performance

manual memory management

unsafe

portable

low-levelpointers

Makefile

lexically scoped

typed

null

static

dynamicstorage duration

heap
standard library

pass-by-value

eager

struct
type casting

statement

expression

assignment

arithmetic

us
er

-de
fin

ed
 fu

nc
tio

ns

typedef
union

null-terminated

macros

memory addressespreprocessor include

ca
ll s

tac
k

defin
itio

n

declaration

11 Take a moment and look at the following list of terms. If there are terms
whose meanings you don’t know, write them down. We will spend some
time next class discussing these.

Let’s start with the easy stuff

Like Java, C programs need to be compiled
before you can run them.

$ gcc helloworld.c

12

The C compiler ignores many problems

So you should always ask it to report warnings.

$ gcc -Wall helloworld.c

13

If you don’t like a.out

Tell the compiler what you want the output
named.

$ gcc -Wall helloworld.c -o helloworld

14

C Background
1. Despite its quirks, it has many of the features

that you know and love in Java/Python, etc. 
(it looks sort of like Java!)

2. Often used in low-level or “systems”
programming.

3. Nearly as fast as expert assembly code; usually
faster than non-expert assembly.

4. No safety net. Very easy to write programs with
subtle bugs.

1. No garbage collector: no memory safety.
2. No bounds checker: off-by-one is subtle!
3. No objects: roll your own!!
4. No strings: null-terminated char arrays!!!
5. This list is not exhaustive!!!!

15

The problem with C is not its complexity.
The problem is its simplicity.

Remember the following rules and you’ll be OK!

16

Rule 0:

Pointers are for pointing at other values in
memory.

#include <stdio.h>

int main() {

 int num = 4;

 int *num_ptr = #

 printf("num = %d, and it is stored at %p.\n", num, num_ptr);

 return 0;

}

17 The value stored in num_ptr is the address of the location of the num
variable. Both num and num_ptr are “automatic variables” and are stored
on the call stack.

Rule 1:

Whenever you store data, you must always ask
C to reserve memory for some duration.

#include <stdio.h>

int main() {

 int num = 331;

 printf("%d rocks!\n", num);

 return 0;

}

#include <stdio.h>

#include <stdlib.h>

int main() {

 int *num_ptr = malloc(sizeof(int));

 if (!num_ptr) {

 printf("Unable to allocate.\n");

 exit(1);

 }

 *num_ptr = 331;

 printf("%d rocks!\n", *num_ptr);

 return 0;

}

short (automatic) long (allocated)

18 If you don’t ask for anything special, values are given automatic duration,
meaning that they are invalid at the end of their scope (e.g., when a
function returns, or outside of a loop, etc). If you use malloc, a value has
“allocated duration” and must be MANUALLY freed later. Note that in the
program on the right, num_ptr is itself a variable whose value has
automatic duration; the thing IT POINTS TO has allocated duration. We
will discuss this more next class.

Recap & Next Class

Today:

Next class:

Schneier discussion

Feedback

Some C

More C

19

