Pseudoterminals

This chapter explains how to set up a pseudoterminal to control an in-
teractive program.

kBl Terminals

A terminal is a device for providing input to a program and printing
output from the same program. The original terminals used paper. This
device is called a teletype.

A

At some point, “terminals” became CRT screens,

38

i | §
i |

L
F

a;-a-ng
PTTTEEEEEE]
il

Ui

t
¥
!-

3 ssuusgge s Raud
B

PR

=
ir
[

{EH TR

ié
b

L

(=]

2013 armvél

This is where we are now. Terminals still behave almost exactly the
same way they did when they were invented in the 1960s.

Whenever you start a program on your computer, the program is
attached to a terminal. By default, the program is attached to the termi-
nal in which you started it. Your operating system knows how to route
inputs and outputs to your program, and not to some other program
or device, because your program is attached to your terminal. In fact,
there are likely hundreds of terminals in use in your operating system,
attached to various devices and programs. Go ahead, have a look.

Type at the command prompt:
$ 1s /dev/ttyx*

PSEUDOTERMINALS 39

Here are the terminals I see on my Mac.

$ 1s /dev/ttyx*

/dev/tty /dev/ttyr9 /dev/ttyu3
/dev/tty.Bluetooth-Incoming-Port /dev/ttyra /dev/ttyud
/dev/tty.MALS /dev/ttyrb /dev/ttyub
/dev/tty.S0C /dev/ttyrc /dev/ttyub
/dev/tty.iPhone-WirelessiAPv2 /dev/ttyrd /dev/ttyu’?
/dev/ttypO /dev/ttyre /dev/ttyu8
/dev/ttypl /dev/ttyrf /dev/ttyu9
/dev/ttyp2 /dev/ttysO /dev/ttyua
/dev/ttyp3 /dev/ttys000 /dev/ttyub
/dev/ttyp4 /dev/ttys001 /dev/ttyuc
/dev/ttypb /dev/ttys003 /dev/ttyud
/dev/ttyp6 /dev/ttys004 /dev/ttyue
/dev/ttyp7 /dev/ttys1 /dev/ttyuf
/dev/ttyp8 /dev/ttys2 /dev/ttyv0
/dev/ttyp9 /dev/ttys3 /dev/ttyvi
/dev/ttypa /dev/ttys4 /dev/ttyv2
/dev/ttypb /dev/ttysb /dev/ttyv3
/dev/ttypc /dev/ttys6 /dev/ttyv4
/dev/ttypd /dev/ttys7 /dev/ttyvb
/dev/ttype /dev/ttys8 /dev/ttyv6
/dev/ttypf /dev/ttys9 /dev/ttyv7
/dev/ttyq0 /dev/ttysa /dev/ttyv8
/dev/ttyql /dev/ttysb /dev/ttyv9
/dev/ttyq2 /dev/ttysc /dev/ttyva
/dev/ttyq3 /dev/ttysd /dev/ttyvb
/dev/ttyq4 /dev/ttyse /dev/ttyvce
/dev/ttyqb /dev/ttysf /dev/ttyvd
/dev/ttyq6 /dev/ttyt0 /dev/ttyve
/dev/ttyq7 /dev/ttytl /dev/ttyvf
/dev/ttyq8 /dev/ttyt2 /dev/ttyw0
/dev/ttyq9 /dev/ttyt3 /dev/ttywl
/dev/ttyqa /dev/ttyt4 /dev/ttyu2
/dev/ttyqb /dev/ttyth /dev/ttyw3
/dev/ttyqc /dev/ttyt6 /dev/ttywd
/dev/ttyqd /dev/ttyt7 /dev/ttywb
/dev/ttyqe /dev/ttyt8 /dev/ttyub
/dev/ttyqf /dev/ttyt9 /dev/ttyw7
/dev/ttyr0 /dev/ttyta /dev/ttyw8
/dev/ttyri /dev/ttytb /dev/ttyw9
/dev/ttyr2 /dev/ttytc /dev/ttywa
/dev/ttyr3 /dev/ttytd /dev/ttywb
/dev/ttyr4d /dev/ttyte /dev/ttywc
/dev/ttyrb /dev/ttytf /dev/ttywd
/dev/ttyré /dev/ttyu0 /dev/ttywe
/dev/ttyr7 /dev/ttyul /dev/ttywf
/dev/ttyr8 /dev/ttyu2

You can also find out to which terminal your current shell is attached.

$ tty
/dev/ttys000

A little more abstractly, you should think of a terminal as a thing with
two ends. Typically, at one end of a terminal, a keyboard (input) and
a screen (output) are attached, and at the other end, a program’s input
and output are attached.

\L
Figure 3.1: This is a 007. My ttyisa
000. Consider that the next time you
take a late day on your homework.

40

@ Keyboard STDIN

— —l
Screen Terminal STDOUT | Program

— —

You

Controlling Programs That Attach To Terminals

Every program designed for use on the UNIX command line interface
attaches to a terminal. Because the designers of UNIX expected that
users would want to control programs from other programs, command
line programs frequently adhere to the following convention: input is
fed to the program via a special file, called the standard input stream, or
stdin, and output is printed to another special file, called the standard
output stream, or stdout.! When you use the so-called UNIX “pipe” op-
erators, |, <, or >, what you are doing is redirecting stdin or stdout to
different programs or files. The ability to easily redirect inputs and out-
puts helps explain the relative popularity of UNIX over other operating
systems among programmers and systems administrators.

For example, I can use the du command (“disk usage”) to find out
the sizes of the files and folders in a directory, and then sort them, in
reverse order, by their size. Pipes make doing this easy. I sometimes
run these commands in order to find ways to cleanup my hard disk.
$ du -sk * | sort -rn
377728 install65.iso
207340 notes
120820 save

114752 customMap.pdf
32832 customMap. jpg

11072 selenium-server-standalone-3.141.59. jar
8320 swell

4672 businessCards.zip

3656 papers

3040 Feds Say That Banned Researcher Commandeered a Plane.pdf
424 version_dependencies.key

300 aslr_entropy.pdf

256 Stream under rocks Great Gulf.m4a

196 18F-CSCI-331_Intro_to_Computer_Security.pdf
164 me.png

132 two-stage-workflow

108 334 _Extra.zip

100 debug.html

28 csci331_assnl_startercode

main.tex
csci331_assnl_startercode.zip
assignment3_code.zip

todos infrastructor.txt
meeting with david.txt

331 todos.txt

N R I

! There is another standard output
stream called the standard error stream,
or stderr, that is also attached to your
screen by default. stderr is useful

for displaying diagnostic information,
and since it is distinct from stdout, it
can be silenced by redirecting it to the
“system’s trash can,” /dev/null.

UNIX __ ==
Programming

>

=
=4
Z
A
7
=
=
5
i
=
=<
=
3
(o)
<
m
2
L]
3
b4
<
=
Q
a
)
<
3
Z
(3}
»
@
2
B
2

Figure 3.2: If you want to learn more
about the elegant UNIX design philos-
ophy, I recommend The Art of UNIX
Programming, 1st edition, by Eric S.
Raymond, Addison-Wesley Professional
Computing, 2003. ISBN: 0131429019.
This book is an easy read, but informa-
tive. Personally, it influenced me to go
graduate school to study programming
languages.

PSEUDOTERMINALS 41

The things that take up the most space are at the top. Oh, it looks like
I have a big ISO file that I should probably get rid of.

Unfortunately, the above scheme only works for so-called batch pro-
grams. A batch program is one that reads all of its input and produces
all of its output without requiring any additional input along the way. A
batch program typically reads all of its data from stdin and then prints
everything to stdout and terminates. These programs are easy to redi-
rect because they don’t do anything sophisticated. Both du and sort are
batch programs.

Other programs fundamentally require additional input while they
run. This latter kind of program is called an interactive program. For in-
stance, a login program may do different things depending on what you
type; it may terminate immediately, or it may prompt you for additional
input. If you type in the correct username and password, it grants you
access. If you type in the wrong username and password, it prompts
you again, or it may ask you for additional information. If you want
to control one of these interactive programs with another program—
for instance, a program that tries to guess passwords—this interactivity
means that you can't just redirect inputs and outputs using UNIX pipe
commands.

Controlling interactive programs are why we have pseudo terminals.

Pseudo Terminals

A pseudo terminal is what it sounds like: a fake terminal. Unlike a real
terminal, a pseudo terminal lets you attach programs at both ends. You
can attach a program you want to control at one end, and at the other
end, instead of attaching a human, you attach a controlling program. The
best part about pseudo terminals is that they are available via a set of

standard POSIX calls,? so you can write code in your favorite program- 2POSIX, short for “portable operating

systems interface,” is a mostly successful

ming language to use them. _ o
attempt to define what it is about UNIX

The phrases “pseudo terminal” or “pseudoterminal” are long, so peo-

ple often shorten this to pty.’

Unfortunately, in POSIX, setting up a pseudoterminal is a bit of a

hassle.

Keyboard STDIN that makes it UNIX. Programmers who
Controlling |=———> = Controlled write “POSIX-compatible” programs
Program Screen Terminal STDOUT | Program usually find it easier to get their soft-
(master) — — (slave) ware running on dlfiferenfc UNIX-like
operating systems, like Linux and the

macOS.

% The UNIX world is filled with these
little gems of jargon, and I think it is

annoying. You just have to learn the

jargon if you want to play along.

https://en.wikipedia.org/wiki/POSIX

42

1% Because programs attached to terminals are often thought of as being controlled by humans,
A someone at some point thought it would be a good idea to call the human side the “master”

—u

-, and the controlled program side the “slave.” You are likely to encounter this terminology

;9.'//"//'0. when reading man pages. I am quite aware that these terms come off as tone deaf nowadays,

\!

so I will avoid using them myself. Fortunately, many in our community are aware of the
problem, and we’re working on it.

A Helper Function That Makes Things Easier

For the purposes of this class, I have created library called ptyhelper
to make working with pseudo terminals straightforward. ptyhelper
includes a function called exec_on_pty that you'll use to set up a pty.
The exec_on_pty function calls the system’s lower-level pseudo termi-
nal functions openpty and login_tty for you. exec_on_pty has the fol-
lowing function declaration:

int exec_on_pty(char **argv);

This is a function called exec_on_pty, and it has one argument, argv.
exec_on_pty returns a file descriptor referring to the new pseudo ter-
minal. Here’s what the argument argv means.
argv is an array of strings (i.e., command-line options) to be given
to the program when exec_on_pty starts it up. By convention, argv [0]
contains the name of the program to control. argv[1] through argv[n]
are whatever arguments you need to pass to the program. Note that
argv [0] should be the full path of the program you want to control. Also
note that the last element, argv[n], should be NULL.4 4 In other words, argv is null-

When run, exec_on_pty does the following. It terminated.

1. sets up a pseudo terminal;

2. starts a child process for your target program and attaches one end of
the pseudo terminal to it; and

3. returns a file descriptor for the parent side of the pseudo terminal.

Now, by manipulating the file descriptor returned by exec_on_ptyin
your parent program, you can control the child program.

1 01 Have a look at the exec_on_pty code when you have a minute, which is distributed as a
0 1

0
(probably learn a thing or two about systems programming.

0
part of your starter code in the file ptyhelper.c. The function is not complicated, and you’ll

PSEUDOTERMINALS 43

How to Write a Control Program

Using exec_on_pty to control a program is easy! Here’s an example.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include "ptyhelper.h"

#define RESPONSE_LEN 500
#define PATH_TO_PROGRAM "./loginO"

int main() {
// to store a response from the child
char buf [RESPONSE_LEN];

// set up the argument array
char* args[] = { PATH_TO_PROGRAM, NULL };

// start child in a pty and get the fd of the pty
int fd = exec_on_pty(args);

// do some stuff, like
/7 read (fd, buf, RESPONSE_LEN);
// write(fd, ..., ...);

return 0; // assuming all went well

Development Tips

Multiplexed file descriptor. One quirk about the pseudoterminal facility
in UNIX is that it returns a single file descriptor over which one sends
input and receives output for the child process. The significance of this
fact is that you'll need to remember that the parent and child take turns
communicating over this single file descriptor. The first trip-up that
people run into is that input and output are buffered.

Buffered input and output. In UNIX, a stream will not usually be written
out, unless

e the buffer is full, or
e a newline character, \n, is encountered.

A symptom of this problem is that when you send input to a con-
trolled program, it does not respond. Often, when this happens, it’s
because the controlled program is waiting for you to tell it that you're
done giving it input. In other words, it’s waiting for you to signal that

44

it’s time for the child process to take its turn. Appending a newline char-
acter or explicitly flushing the output stream signals to the child process
to proceed.

Timing. Another common issue is timing. Data flows through a pseudo
terminal quickly but not instantly. If you find that your controlling pro-
gram is not reading all the input sent from the program, you may want
to try making it wait. For example, the pseudoterminal might still writ-
ing data to the child program when the controlling program attempts to
read. Inserting a delay can help you work out if that’s what’s going on.
Two library calls that can help with this are sleep and usleep (see their
man pages) which make a program wait for seconds and microseconds,
respectively.

	Lab 0: Setting up your Raspberry Pi
	Learning Goals
	The Lab Kit
	Step 1: Flash Your SD Card
	Step 2: Connect a Serial Console Adapter to Your Computer
	Step 3: Start a Console Emulator on the Host Computer
	Step 4: Observe the Blinkenlights
	Step 5: Connect a Serial Console Adapter to the Raspberry Pi
	Step 6: Insert microSD Card and Power Up
	Step 7: Do a clean shutdown
	Step 8: Configure Console Dimensions
	Step 9: Configure Wifi
	Step 10: Install Some Software
	Step 11: Have a Little Fun: Network Scanning

	Lab 1: Login Security
	Learning Goals
	Required Reading
	Computing Environment
	Finding Documentation for C Functions
	Starter Code
	The Password Database
	Part 1: login0, a naïve login program
	Part 2: Attacking login0
	Part 3: login1, an improved login program
	Part 4: attack1, a brute force attack on login1
	Part 5: attack2, an even-better login program
	Reflection Questions
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Pseudoterminals
	Terminals
	Pseudo Terminals
	How to Write a Control Program
	Development Tips

	Lab 3: Password Cracking
	Required Reading
	Requirements

	Lab 4: Stack Smashing, Part 1
	Learning Goals
	Requirements
	Application code
	Environment set-up
	Step 1: Find the vulnerability
	Step 2: Jump to a different function
	Step 3: Filling a buffer with shellcode and executing it

	Appendix A: ARM Reference
	Register Mnemonics for A32 Calling Convention
	Status Flags
	A32 Calling Convention
	Instruction Mnemonics

	Appendix A: Instructor Notes
	To modify a Raspbian binary image
	To enable serial console in Raspbian
	To configure wireless in Raspbian
	To change the size of a terminal display

