
CSCI 331:
Introduction to Computer Security

Instructor: Dan Barowy

Lecture 21: Information Flow

Topics

Bell-LaPadula model

Denning’s information flow model

Reference monitors

Your to-dos

1. Reading response (Provos), due Wed 12/1.
2. Doodle poll (see email), due Wed 12/1.
3. Final project, due Friday 12/10 at 5:00pm.
4. Resubmissions due Saturday, Dec 18.

Physical security audit
What did you find?

Reference Monitor

Invented by James P. Anderson in 1972.

Reference Monitor

A principled mechanism for mitigating
attacks by limiting access based on
rules.

Reference Monitor

Traditional OS Design

OSa.out
(dbarowy)

re
ad
(f
il
e)

“Does dbarowy have access to file?”

fe
tc
h
da
ta

yes

Traditional OS Design

OSa.out
(dbarowy)

“Does dbarowy have access to file?”

no

pr
ot
ec
ti
on

fa
ul
t

re
ad
(f
il
e)

Reference Monitor Reference Monitor Design

OSa.out
(dbarowy)

re
ad
(f
il
e)

“Does dbarowy have access to file?”

yes

monitor
fe
tc
h
da
ta

OS does not have direct
access to protected
resources.

All the monitor does is
check that requests
are valid.

Reference Monitor Design

OSa.out
(dbarowy)

monitor

OS: big codebase,
difficult to verify
correctness.

Monitor: small
codebase, easy to
verify correctness.

A reference monitor reduces the size
of the trusted compute base.

Trusted Compute Base

A trusted compute base is the set of all hardware
and software components such that any bug might
jeopardize the enforcement of a given security
policy.

Observe that this definition depends on the given
security policy.

Reference Monitor

With respect to unbounded resource access, a
reference monitor removes even the operating
system from the TCB.

How can we guarantee that a monitor “does the right thing”?

Information Flow
A formalism that deals with trust

Bell-LaPadula Model

1.The Simple Security Property states that a subject at
a given security level may not read an object at a higher
security level.

2.The * (star) Property states that a subject at a given
security level may not write to any object at a lower
security level.

3.The Discretionary Security Property allows
information to flow to lower levels (e.g., generals to
soldiers).

Developed in 1973 by David Bell and Leonard
LaPadula at MITRE for the Multics OS.

These rules are a little vague.

• Invented in 1975 by Dorothy
Denning, then a PhD student at
Purdue.

• “A Lattice Model of Secure
Information Flow” (1976)

• A formal model that ensures that a
computer will always “do the right
thing” with respect to a security
policy.

• A reference monitor can be proven
secure provided that it faithfully
(verifiably) implements the Denning
model.

Secure Information Flow Model
• The Denning model is

about keeping secrets.
• It depends on being able to

reliably authenticate (i.e.,
“Identity” from CIAA)
principals (subjects and
objects).

• It guarantees that high-
security information cannot
be leaked to low-security
principals.

• Is general enough to work
in secure operating
systems, secure compilers,
military organizations, etc.

Secure Information Flow Model

You have almost certainly seen a mathematical
model (or “abstraction”) used in CS before.

Mathematical Models

E.g., a Turing machine.

I like to think of models as games.

Like games, they tell you what the rules are.

Like games, we want to know whether we can
“win” at some objective while following the rules.

Mathematical Models

The Denning model defines a realistic and clear
set of rules, unlike the Bell-LaPadula model.

The Denning model is built on top of a lattice,
which is a kind of graph.

Specifically, vertices denote classes of things, or
tags, and edges denote how things can be
accessed, or flow relationships.

Secure Information Flow Model

FM = <N, P, SC, {→}, {⊕}>

A set of join relations.

A set of flow relations.

A set of security tags.

A set of principals.

A set of objects.

Secure Information Flow Model

FM = <N, P, SC, {→}, {⊕}>

A set of objects.

These could be things like files, memory locations, etc.

Secure Information Flow Model

FM = <N, P, SC, {→}, {⊕}>

These are processing agents, e.g., a computer
processor, or a computer program, or people.

A set of principals.

Secure Information Flow Model

FM = <N, P, SC, {→}, {⊕}>

These are labels, like “top secret,” “classified,” “sensitive,”
and “public.”

A set of security tags.

Secure Information Flow Model

FM = <N, P, SC, {→}, {⊕}>

These are functions that take two SCs and return true
or false; they say whether information can flow from one
SC to another.

A set of flow relations.

Secure Information Flow Model

FM = <N, P, SC, {→}, {⊕}>

These are functions that take two SCs and return an
SC; they say what security class is derived by
combining information from SCs.

A set of join relations.

Secure Information Flow Model

FM = <N, P, SC, {→}, {⊕}>

A set of join relations.

A set of flow relations.

A set of security tags.

A set of principals.

A set of objects.

Secure Information Flow Model

s(x) : SC

In other words, the function s gives you the security tag
of an object or a principal.

where x is either a N or an P.

Helper function:

Secure Information Flow Model

FM = <N, P, SC, {→}, {⊕}>

A set of join relations.

A set of flow relations.

A set of security tags.

A set of principals.

A set of objects.

Secure Information Flow Model

Flow relations are:
a) reflexive: x → x
b) transitive: x → y and y → z then x → z
c) anti-symmetric: x → y and y → x then x = y

x y z

x

x y

→ means can flow

if a → b then data can flow from tag a to tag b

Secure Information Flow Model

Join relations are:
a) reflexive: x ⊕ x = x
b) commutative: x ⊕ y = y ⊕ x

⊕ means join

a ⊕ b denotes the class obtained by combining a and b

i.e., what happens when you staple things together

Secure Information Flow Model

The following relations are always true, to avoid
absurdities:
a) x → (x ⊕ y) and y → (x ⊕ y) 

 
 

b) if x → z and y → z then (x ⊕ y) → z

x x y⊕ y x y⊕

x z y z zx y⊕

Example

FM = <N, P, SC, {→}, {⊕}>

N = { petitions, holy scripture}

P = { king, peon }

SC = { kingly, public }

→ = { public → kingly }

⊕ = { public ⊕ kingly = kingly }

s(king) = kingly

s(peon) = public

s(petitions) = public

s(holy scripture) = kingly

Can peons read petitions?
Can peons read scripture?

Can peons share petitions with the king?

Class Activity

FM = <N, P, SC, {→}, {⊕}>

N = { your diary, dinner plans, parents’ diary}

P = { you, your little sister (YLS), parents }

SC = { ??? }

→ = { ??? }

⊕ = { ??? }

Fill in SC, →, and ⊕ and provide tags s.

1. Only parents should be able to read the parents’ diary.
2. Only you should be able to read your diary.
3. Anyone can read the dinner plans.

Class Activity

• Can you read your diary?
• Can you write about dinner in your diary?
• Can your parents copy dinner information from their diary

into the dinner plans?
• What happens if a page from your diary and a page from

your parents diary both just happen to fall out at the
same time and stick together. Who can read those
pages?

Your model should be able to answer
these questions mechanically.

Practicality issues for access controls

Mandatory vs Discretionary Controls

Can parents tell the kids the dinner plans at all?

Not the way we formulated it.

Access controls are discretionary in the sense that a
principal with a certain access permission is capable of
performing that action unless restrained by a
mandatory access control.

Implicit flow

int l;
bool h;
if (h) {
 l = 3
} else {
 l = 42
}

Consider the following program.

Suppose s(l) = public and s(h) = private.

The value of h can be deduced because
of a “side channel vulnerabilty”.

Recap & Next Class

Today we learned:

Next class:

Reference monitors

Principle of least privilege

Bell-LaPadula

Denning model

Security in depth

Privilege separation

