CSCI 331:
Introduction to Computer Security

Lecture 15: Shellcode

Instructor: Dan Barowy
Williams

Announcements

Williams Computer Science Presents:
Class of '60s Speaker, Jon Kleinberg, Cornell University

Thursday, November 04 @ 7:00pm in Wege
"Designing Algorithms for High-Stakes Decisions"

As algorithms are deployed to make sensitive decisions about people, recent work has
focused on several challenges that can result. First, concerns have been raised about
the effects of algorithmic monoculture, in which multiple decision-makers all rely on
the same algorithm. In a set of models drawing on minimal assumptions, we show that
when competing decision-makers converge on the use of the same algorithm as part of
a decision pipeline, the result can potentially be harmful for social welfare even when
the algorithm is more accurate than any decision-maker acting on their own. Second,
we consider some of the canonical ways in which data is simplified over the course of
these decision-making pipelines, showing how this process of simplification can
introduce effects that connect to principles from the psychology of stereotype
formation. (This talk will be based on joint work with Sendhil Mullainathan and
Manish Raghavan.)

Announcements

Williams Computer Science Presents:
Class of '60s Speaker, Jon Kleinberg, Cornell University

Friday, November 05 @ 2:35pm in Wege
"Monoculture and Simplicity in Algorithmic
Decision-Making"

Topics

Paper discussion
Defensive programming
Shellcode: the big idea

Crafting shellcode

Your to-dos

1. Lab 5, due Sunday 11/7.

2. Reading response (Wang), due Wed 11/10.

3. Project part 2, due Sunday 11/14.

Paper discussion

Is fuzzing still effective?

yes

2019

Is fuzzing still effective?

2021

no

" DO NOT BLOCK
THIS PANEL

Stevq C_?PPS

x
x
x
x
x
x
X

ARXXXXX
X
X!
XXXX
X!
X:
X
X
X:
X
X
X
x

XX XXX

Home | About Folklore

!7 l The Original Macintosh: € 200f 131 =

—

Monkey Lives
Author: Andy Hertzfeld
Date: October 1983
Characters: Steve Capps, Bill Atkinson
" & File Edit Goodies Font Fonts & Topics: Software Design, Testing, Technical
| Summary: The very first location in low memory

he original Macintosh only had 128K bytes of RAM (that's one eighth of a megabyte), so

dealing with memory management was usually the hardest part of writing both the system and
applications. We allocated around 16K bytes for system use, and another 22K bytes for the 512 by
342 black and white screen, so applications were left with only 90K bytes or so. The bigger ones
like MacWrite or MacPaint seemed to be bursting at the seams.

By the fall of 1983, MacWrite and MacPaint were pretty much feature complete but still needed a
lot of testing, especially in low memory conditions. MacPaint needed to allocate three off-screen
buffers, with each the size of the entire screen, so it was always skirting the edge of running out of
memory, especially when you brought up a desk accesory, but the specific sequences that led to
crashes were difficult to reproduce.

Steve Capps had been working on a "journaling" feature for the "Guided Tour" tutorial disc, where
the Macintosh could demo itself by replaying back events that were recorded in a prior session. He
realized that the so-called "journaling hooks" that were used to feed pre-recorded events to the
system could also be the basis of a testing tool he called "The Monkey".

The Monkey was a small desk accessory that used the journaling hooks to feed random events to
the current application, so the Macintosh seemed to be operated by an incredibly fast, somewhat
angry monkey, banging away at the mouse and keyboard, generating clicks and drags at random
positions with wild abandon. It had great potential as a testing tool, so Capps refined it to generate
more semantically rich events, with a certain percentage of the events as menu commands, a
certain percentage as window drags, etc.

The Monkey proved to be an excellent testing tool, and a great amusement, as well. Its manic
activity was sort of hypnotic, and it was interesting to see what kind of MacPaint pictures the
Monkey could draw, or if it would ever produce something intelligible in MacWrite. At first it could
crash the system fairly easily, but soon we fixed the more obvious bugs. We thought it would be a aﬂ-fu Y4 demo
good test for an application to see if it could run the Monkey all night, but usually it didn't run for
more than 20 minutes, even if it didn't crash, because the Monkey would invariably select the quit
command.

Bill Atkinson came up with the idea of defining a system flag called "MonkeyLives" (pronounced
with a short "i" but often mispronounced with a long one), that indicated when the Monkey was
running. The flag allowed MacPaint and other applications to test for the presence of the Monkey
and disable the quit command while it was running, as well as other areas they wanted the Monkey
to avoid. This allowed the Monkey to run all night, or even longer, driving the application through
every possible situation.

An Empirical Study of the Robustness of MacOS Applications
Using Random Testing

Barton P. Miller Gregory Cooksey Fredrick Moore

{bart,cooksey, fredrick}@cs.wisc.edu

Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685 USA

RT’06, July 20, 2006, Portland, ME, USA
Copyright 2006 ACM 1-59593-457-X/06/0007....$5.00

In 1995 [14], we re-tested UNIX command line utilities,
increasing the number of utilities and UNIX versions tested, and
also extending fuzz testing to X-Window GUI applications, the X-
‘Window server itself, network services, and even the standard
library interface. Of the commercial systems that we tested, we
were still able to crash 15-43% of the command line utilities, but

‘We are back again, this time testing a relatively new and pop-
ular computing platform, Apple’s Mac OS X. Mac OS X was a
major step for Apple, switching to a UNIX-based (BSD) operating
system with NeXTSTEP (now called “Cocoa”) [2] and Apple
extensions. We tested both the UNIX command line utilities and
GUI-based application programs.

only 6% of the open-source GNU utilities and 9% of the utilities

distributed with Linux. The causes of these crashes were similar pecifically we found the following key results:

(or occasionally identical) to the 1990 study. Of the X-Window O Of the 135 command line utilities that we tested, ten crashed
applications that we tested, we could crash or hang 26% of them (a failure rate of 7%) and none hung. These results are similar
based on random valid keyboard and mouse events. The causes of to the best results (the GNU utilities) of the 1995 study.

the crashes and hangs were similar to those of the command line O Testing the GUI-based utilities on valid mouse and keyboard
utilities. The most memorable result of the 1995 study was the dis- input produced a large number of failures. Of the thirty pro-
tinctly better reliability (under our testing) of the open-source grams that we tested, 20 crashed and two hung (a failure rate
tools. of 73%). This result is the worst showing that we have had in

the history of our testing effort.

O The types of simple programming errors that led to many of
the failures in 1990, 1995, and 2000 are still present in the
current tests. In fact, some of the same failures found in ear-
lier tests are still present in our new study.

In 2000 [5], we shifted our focus to the commodity desktop
operating system, Microsoft Windows. Using the Win32 interface,
we sent random valid mouse and keyboard events to the applica-
tion programs and could crash or hang at least 45% of the pro-
grams tested on Windows NT 4.0 and Windows 2000.

PLDI 2013 Seattle

Microsoft Research Open House Event

SAGE: Whitebox Fuzzing for Security Testing

Ella Bounimova Patrice Godefroid David Molnar

Basic idea: 1.Run the program with first inputs,
2.gather constraints on inputs at conditional statements,
3.use a constraint solver to generate new test inputs,
4.repeat - possibly forever!

R Vi Wb\

Check for Code Generate . Solve
Crashes || F> Coverage | || ‘\> Constraints | [[| \/> Constraints
(AppVerifier) ~ | (Nirvana) (TruScan) ‘ (23)
nput
npu

SAGE was developed in — Inputh MSR algorithms
collaboration with CSE _ & code inside

Research Challenges:

- How to recover from imprecision ? PLDI’05, PLDI'11

- How to scale to billions of x86 instructions? NDSS’08
- How to check many properties together? EMSOFT’08
- How to leverage grammar specifications? PLDI’08

- How to deal with path explosion ? POPL'07,TACAS’08
- How to reason precisely about pointers? ISSTA’09

- How to deal with floating-point instr.? ISSTA’10

- How to deal with input-dependent loops? ISSTA’11

- How to synthesize x86 circuits automatically? PLDI’12
- How to run 24/7/365 for months at a time? ICSE’2013
+ research on constraint solvers

Impact: since 2007 How bugs were found

- 500+ machine years (in largest fuzzing lab in the world) (Win7 WEX Security)
- 3.4 Billion+ constraints (largest SMT solver usage ever!)

- 100s of apps, 100s of bugs (missed by everything else...)

- Ex: 1/3 of all Win7 WEX security bugs found by SAGE - . .

- Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs Regression* A1l Others SAGE
- Millions of dollars saved (for Microsoft and the world) Random testing
- SAGE is now used daily in Windows, Office, etc.

PLDI 2013

REDMOND, WASHINGTON | JUNE 18, 2013 Microsoﬂ Research

Common C bugs

gets
strcat
strcpy
printf
sprintf
vsprintf
scanf
strncpy (!!!)

strncat (!!!)

format string vulnerability

Arsenal of tools

* Memory safety: Address Sanitizer / Valgrind
* Fuzz testing: AFL-fuzz
* Unit testing: junit

@Test
public void testAdditionExampleBased() {
Calculator calculator = new Calculator();
calculator.add(2);
assertEquals(calculator.getResult(), 2);

}
* Property-based testing: Quickcheck

@Property(trials = 5)

public void testAddition(int number) {
Calculator calculator = new Calculator();
calculator.add(number);
assertEquals(calculator.getResult(), number);

}

* Formal verification: Agda, Coq, etc.
(remains very difficult— automated approaches
remain open research problems)

Shellcode —the big idea

Make an overflow happen

buf —

old fp

vuln_function retaddr

main

Make an overflow happen

Arbitrary code

buf —— aaaa buf — aaaa
aaaa aaaa
aaaa aaaa
aaaa aaaa
aaaa aaaa
aaaa aaaa
aaés eaa¢ea But what if we want to run
saas aaas arbitrary code?
aaaa aaaa
aaaa aaaa
aaaa aaaa
old Efm aaaa
vuln_function sesBEdEro1 vuln_function PE— «— address of func
main main
Arbitrary code Arbitrary code
buf —— buf ——
E.g., E.g.,
eor r2, r2 eor r2, r2
adr rl, shell adr rl, shell
push {rl, fp, 1lr} push {rl, fp, 1r}
pop {r0, fp, 1r} pop {r0, fp, 1r}
strb r2, [rl, #7] First, where can we strb r2, [rl, #7]
push {rl, fp, 1lr} put this code? push {rl, fp, 1lr}
add fp, sp, #4 add fp, sp, #4
mov r7, #11 mov r7, #11
old fp old fp
vuln_function retaddr vuln_function ek
main main

Put arbitrary code in the buffer

buf —

vuln_function

main

eor r2, r2

adr rl, shell

push {rl, fp, 1lr}

pop {r0, fp, 1lr}

strb r2, [rl, #7]

push {rl, fp, 1r}

add fp, sp, #4

mov r7, #11

old fp

retaddr

Short answer: in the buffer

How to call arbitrary code?

buf —

vuln_function

main

eor r2, r2

adr rl, shell

push {rl, fp, 1lr}

pop {r0, fp, 1lr}

strb r2, [rl, #7]

push {rl, fp, 1r}

add fp, sp, #4

mov r7, #11

old fp

retaddr

How do we call it?

How to call arbitrary code?

buf —

Overflow the return address,
and point it into the buffer!

vuln_function

main

eor r2, r2

<

adr rl, shell

push {rl, fp, 1lr}

pop {r0, fp, 1lr}

strb r2, [rl, #7]

push {rl, fp, 1lr}

add fp, sp, #4

mov r7, #11

old fp

(addr of buf)

Caveat #1: environment variables

adr rl, shell

push {rl, fp, 1lr}

pop {r0, fp, 1r}

strb r2, [rl, #7]

push {rl, fp, 1lr}

add fp, sp, #4

mov r7, #11

old fp

(addr of buf) ==

environment

oops!
adr rl, shell

push {rl, fp, 1r}

pop {r0, fp, 1r}

strb r2, [rl, #7]

push {rl, fp, 1r}

add fp, sp, #4

mov r7, #11

old fp

(addr of buf)

SHELL=sh;

TERM=vt100;

Fix #1: NOP sled

eor r2, r2

adr rl, shell

push {rl, fp, 1lr}

pop {r0, fp, 1lr}

old fp
(addr of buf) -

environment

wO0ot!

eor r2, r2

adr rl, shell

push {rl, fp, 1lr}

pop {r0, fp, 1r}

old fp

(addr of buf)

SHELL=sh;

TERM=vt100;

Caveat #2: program does stuff after overflow

buf —

n_missiles —
allowaccess —»

old fp

retaddr

Caveat #2: program does stuff after overflow

buf —»

n_missiles ——
allowaccess —»

eor r2, r2

adr rl, shell

push {rl, fp, 1lr}

pop {r0, fp, 1lr}

strb r2, [rl, #7]

push {rl, fp, 1lr}

add fp, sp, #4

mov r7, #11

sub sp, #8

str rl, [fp, #-12]

str r2, [fp, #-8]

new fp

addr of buf

Caveat #2: program does stuff after overflow

buf —

n_missiles ——
allowaccess —»

poush {rl, fp, 1lr}

for 7z, 7]

1
l
|
|
|
|
1
1

]
o

kel

-~
]
o

0
=
%)
=

-~
R
=

.
add fp, sp, #4
fmov r7, #11

str rl, [fp, #-12]

str r2, [fp, #-8]

new fp

addr of buf

extent of buf

Caveat #2: program does stuff after overflow

et t2, 12 |
box o1, oheit |
tpop {r0, fp, 1lr}

bush (23, 70, 101}

buf ——

—
urd

] extent of buf

dd fp, sp, #4 ‘

i
f
|
|
l
i
I

jmov r7, #11
n_missiles —— 2
allowaccess —» 1
new fp
addr of buf

Caveat #2: program does stuff after overflow

z " !

bar o2, e |
poush {rl, fp, 1lr}
tpop {r0, fp, 1r}

strb r2, [rl, #7]

l
l
2
1
i

extent of buf
n_missiles —

|
allowaccess —» |} danger zone!

addr of buf

Fix #2: pad program on both sides

“landing pad”

adr rl, shell

push {rl, fp, 1lr}

pop {r0, fp, 1lr}

n_missiles ——

!
allowaccess » danger zone! ok

addr of buf

Recap & Next Class

Today we learned:
Shellcode: the big idea

Next class:
NULL byte removal

