
CSCI 331:
Introduction to Computer Security

Instructor: Dan Barowy

Lecture 15: Shellcode

AnnouncementsAnnouncements

Thursday, November 04 @ 7:00pm in Wege
"Designing Algorithms for High-Stakes Decisions"

Announcements

Friday, November 05 @ 2:35pm in Wege
"Monoculture and Simplicity in Algorithmic
 Decision-Making"

Topics

Defensive programming
Shellcode: the big idea

Paper discussion

Crafting shellcode

Your to-dos

1. Lab 5, due Sunday 11/7.
2. Reading response (Wang), due Wed 11/10.
3. Project part 2, due Sunday 11/14.

Paper discussion

0

2

4

6

8

10

12

14

16

yes no

Is fuzzing still effective?

2019

2021

Steve Capps

afl-fuzz demo

SAGE: Whitebox Fuzzing for Security Testing

Research Challenges:
- How to recover from imprecision ? PLDI’05, PLDI’11
- How to scale to billions of x86 instructions? NDSS’08
- How to check many properties together? EMSOFT’08
- How to leverage grammar specifications? PLDI’08
- How to deal with path explosion ? POPL’07,TACAS’08
- How to reason precisely about pointers? ISSTA’09
- How to deal with floating-point instr.? ISSTA’10
- How to deal with input-dependent loops? ISSTA’11
- How to synthesize x86 circuits automatically? PLDI’12
- How to run 24/7/365 for months at a time? ICSE’2013
+ research on constraint solvers

Impact: since 2007
- 500+ machine years (in largest fuzzing lab in the world)
- 3.4 Billion+ constraints (largest SMT solver usage ever!)
- 100s of apps, 100s of bugs (missed by everything else…)
- Ex: 1/3 of all Win7 WEX security bugs found by SAGE Æ
- Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs
- Millions of dollars saved (for Microsoft and the world)
- SAGE is now used daily in Windows, Office, etc.

Ella Bounimova Patrice Godefroid David MolnarSAGE: Whitebox Fuzzing for Security Testing

Research Challenges:
- How to recover from imprecision ? PLDI’05, PLDI’11
- How to scale to billions of x86 instructions? NDSS’08
- How to check many properties together? EMSOFT’08
- How to leverage grammar specifications? PLDI’08
- How to deal with path explosion ? POPL’07,TACAS’08
- How to reason precisely about pointers? ISSTA’09
- How to deal with floating-point instr.? ISSTA’10
- How to deal with input-dependent loops? ISSTA’11
- How to synthesize x86 circuits automatically? PLDI’12
- How to run 24/7/365 for months at a time? ICSE’2013
+ research on constraint solvers

Impact: since 2007
- 500+ machine years (in largest fuzzing lab in the world)
- 3.4 Billion+ constraints (largest SMT solver usage ever!)
- 100s of apps, 100s of bugs (missed by everything else…)
- Ex: 1/3 of all Win7 WEX security bugs found by SAGE Æ
- Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs
- Millions of dollars saved (for Microsoft and the world)
- SAGE is now used daily in Windows, Office, etc.

Ella Bounimova Patrice Godefroid David Molnar

Common C bugs

gets

strcat

strcpy

sprintf

vsprintf

scanf

strncpy (!!!)

strncat (!!!)

printf

format string vulnerability

Arsenal of tools

• Memory safety: Address Sanitizer / Valgrind
• Fuzz testing: AFL-fuzz
• Unit testing: junit 

@Test
 public void testAdditionExampleBased() {

 Calculator calculator = new Calculator();
 calculator.add(2);
 assertEquals(calculator.getResult(), 2);

 }

• Property-based testing: Quickcheck 
@Property(trials = 5)

 public void testAddition(int number) {
 Calculator calculator = new Calculator();
 calculator.add(number);
 assertEquals(calculator.getResult(), number);

 }

• Formal verification: Agda, Coq, etc. 
(remains very difficult— automated approaches
remain open research problems)

Shellcode—the big idea

main

vuln_function

Make an overflow happen
buf

retaddr
old fp

main

vuln_function

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

0xabcdef01

buf

retaddr
old fp

Make an overflow happen

main

vuln_function

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

0xabcdef01

buf

address of func

But what if we want to run
arbitrary code?

Arbitrary code

main

vuln_function

 eor r2, r2

 adr r1, shell

 push {r1, fp, lr}

 pop {r0, fp, lr}

 strb r2, [r1, #7]

 push {r1, fp, lr}

 add fp, sp, #4

 mov r7, #11

 …

retaddr
old fp

E.g.,
buf

Arbitrary code

main

vuln_function

 eor r2, r2

 adr r1, shell

 push {r1, fp, lr}

 pop {r0, fp, lr}

 strb r2, [r1, #7]

 push {r1, fp, lr}

 add fp, sp, #4

 mov r7, #11

 …

retaddr
old fp

E.g.,
buf

First, where can we
put this code?

Arbitrary code

main

vuln_function

 eor r2, r2

 adr r1, shell

 push {r1, fp, lr}

 pop {r0, fp, lr}

 strb r2, [r1, #7]

 push {r1, fp, lr}

 add fp, sp, #4

 mov r7, #11

 …

retaddr
old fp

Short answer: in the buffer

buf

Put arbitrary code in the buffer

main

vuln_function

 eor r2, r2

 adr r1, shell

 push {r1, fp, lr}

 pop {r0, fp, lr}

 strb r2, [r1, #7]

 push {r1, fp, lr}

 add fp, sp, #4

 mov r7, #11

 …

retaddr
old fp

How do we call it?

buf

How to call arbitrary code?

main

vuln_function

 eor r2, r2

 adr r1, shell

 push {r1, fp, lr}

 pop {r0, fp, lr}

 strb r2, [r1, #7]

 push {r1, fp, lr}

 add fp, sp, #4

 mov r7, #11

 …

(addr of buf)
old fp

Overflow the return address,
and point it into the buffer!

buf

How to call arbitrary code?

 eor r2, r2

 adr r1, shell

 push {r1, fp, lr}

 pop {r0, fp, lr}

 strb r2, [r1, #7]

 push {r1, fp, lr}

 add fp, sp, #4

 mov r7, #11

 …

(addr of buf)

old fp

Caveat #1: environment variables

 eor r2, r2

 adr r1, shell

 push {r1, fp, lr}

 pop {r0, fp, lr}

 strb r2, [r1, #7]

 push {r1, fp, lr}

 add fp, sp, #4

 mov r7, #11

 …

(addr of buf)

old fp

environment
SHELL=sh;

TERM=vt100;

…

oops!

 nop

 nop

 nop

 nop

 eor r2, r2

 adr r1, shell

 push {r1, fp, lr}

 pop {r0, fp, lr}

 …

(addr of buf)

old fp

Fix #1: NOP sled

 nop

 nop

 nop

 nop

 eor r2, r2

 adr r1, shell

 push {r1, fp, lr}

 pop {r0, fp, lr}

 …

(addr of buf)

old fp

environment
SHELL=sh;

TERM=vt100;

…

w00t!

retaddr

old fp

Caveat #2: program does stuff after overflow

n_missiles
allowaccess

buf

 eor r2, r2

 adr r1, shell

 push {r1, fp, lr}

 pop {r0, fp, lr}

 strb r2, [r1, #7]

 push {r1, fp, lr}

 add fp, sp, #4

 mov r7, #11

 sub sp, #8

 str r1, [fp, #-12]

 str r2, [fp, #-8]

Caveat #2: program does stuff after overflow

n_missiles
allowaccess

buf

addr of buf

new fp

 eor r2, r2

 adr r1, shell

 push {r1, fp, lr}

 pop {r0, fp, lr}

 strb r2, [r1, #7]

 push {r1, fp, lr}

 add fp, sp, #4

 mov r7, #11

 sub sp, #8

 str r1, [fp, #-12]

 str r2, [fp, #-8]

Caveat #2: program does stuff after overflow

n_missiles
allowaccess

buf

extent of buf

addr of buf

new fp

 eor r2, r2

 adr r1, shell

 push {r1, fp, lr}

 pop {r0, fp, lr}

 strb r2, [r1, #7]

 push {r1, fp, lr}

 add fp, sp, #4

 mov r7, #11

 sub sp, #8

 2

 1

addr of buf

new fp

Caveat #2: program does stuff after overflow

n_missiles
allowaccess

buf

extent of buf

 eor r2, r2

 adr r1, shell

 push {r1, fp, lr}

 pop {r0, fp, lr}

 strb r2, [r1, #7]

 push {r1, fp, lr}

 add fp, sp, #4

 mov r7, #11

 sub sp, #8

 2

 1

addr of buf

new fp

Caveat #2: program does stuff after overflow

n_missiles
allowaccess

buf

extent of buf

danger zone!

 nop

 nop

 nop

 nop

 eor r2, r2

 adr r1, shell

 push {r1, fp, lr}

 pop {r0, fp, lr}

 nop

 nop

 nop

addr of buf

new fp

Fix #2: pad program on both sides

n_missiles
allowaccess

buf

danger zone! ok

“landing pad”

Recap & Next Class

Today we learned:

Next class:

Shellcode: the big idea

NULL byte removal

