
CSCI 331:

Introduction to Computer Security

Instructor: Dan Barowy

Lecture 12: How C functions work

Topics

Midterm solutions

How C functions work

Your to-dos

1. Reading response (Aleph One), due Wed 10/27.

2. Lab 5, due Sunday 11/7.

3. Project part 2, due Sunday 11/14.

Dunning-Kruger Effect

A cognitive bias in which people mistakenly
assess their cognitive ability as greater than it is.

“20-item logical reasoning test that we created using questions taken from a Law
School Admissions Test (LSAT) test preparation guide”

Dunning-Kruger Effect: Security Implications

Thinking that you have more ability than you do
is a security vulnerability.

An incompetent security audit may leave
important parts of your system undefended.

Countermeasures? Do what Stoll does:
• Have a “beginner’s mind.” What do you know
for sure? What don’t you know? Be honest.

• Seek external validation of both facts and your
abilities.

• It’s fine if you don’t know something as long as
you know you don’t know. But then learn it
thoroughly.

Midterm

ARM

ARM
The ARM instruction set architecture is a family of
microprocessors initially introduced in 1985.

We will focus on a 32-bit version, ARMv6, in this class.
ARMv8 added 64 bit instructions, and the CPU in your
cellphone is very likely to be a related architecture.

Instruction Set Architecture

An instruction set architecture (ISA) is an abstraction of
a computer processor, much in the same way that an
interface is an abstraction of a Java class.

You can think of an ISA as the software interface for the
hardware processor device. Each instruction is a
procedure provided by the device.

Compilers and ISAs
When a compiler compiles a program, it essentially
converts your (C/C++/<whatever>) program into opcodes
written in a given ISA.

#include <stdio.h>

int main() {

 printf("Hello world!\n");

 return 0;

}

e9 2d 48 00

e2 8d b0 04

e5 9f 00 0c

eb ff ff fe

e3 a0 30 00

e1 a0 00 03

e8 bd 88 00

00 00 00 00

The resulting file, which is filled with binary representations
of opcodes (i.e., machine language) is usually referred to
as a “binary.”

Instruction Mnemonics
Opcodes are difficult to understand. When understanding
is important, we use shorthand labels called instruction
mnemonics.

e9 2d 48 00

e2 8d b0 04

e5 9f 00 0c

eb ff ff fe

e3 a0 30 00

e1 a0 00 03

e8 bd 88 00

00 00 00 00

There is a 1:1 correspondence between opcodes and
mnemonics.

push	{fp, lr}

add	fp, sp, #4

ldr	r0, [pc, #12]

bl	 0 <puts>

mov	r3, #0

mov	r0, r3

pop	{fp, pc}

andeq	 r0, r0, r0

Mnemonic Syntax
You might have seen assembly before, and if so, you
probably saw either AT&T syntax or Intel syntax.

ARM has its own syntax! We’re using unified ARM syntax.

It looks a bit like Intel syntax.

lea 0x4(%esp),%ecx

and $0xfffffff0,%esp

pushl -0x4(%ecx)

push %ebp

mov %esp,%ebp

push %ecx

sub $0x4,%esp

sub $0xc,%esp

push $0x0

call 1a <main+0x1a>

add $0x10,%esp

mov $0x0,%eax

mov -0x4(%ebp),%ecx

leave

lea -0x4(%ecx),%esp

ret

AT&T

lea ecx,[esp+0x4]

and esp,0xfffffff0

push DWORD PTR [ecx-0x4]

push ebp

mov ebp,esp

push ecx

sub esp,0x4

sub esp,0xc

push 0x0

call 1a <main+0x1a>

add esp,0x10

mov eax,0x0

mov ecx,DWORD PTR [ebp-0x4]

leave

lea esp,[ecx-0x4]

ret

Intel

Mnemonic Syntax

Do I remember ARM mnemonics? Not really.

I look them up.

ARMv6

“32-bit” refers both to the size of a basic data unit, or word,
for integers used in a processor as well as the size of
instructions.

Each cell in the image above stores one bit (binary digit).

Endianness
Suppose you have the decimal number 1075843080
stored as a binary number (as an unsigned int).

0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0 1 0 0 0 0 0 0 0 0 01 0 0 0 0 1 0 0 0 0 10 0 0 0 0 0 0 0 0 0

There are many ways to store this number.
The most intuitive format is “big endian,” where the most
significant bytes are stored first (before less significant
bytes) in memory.

byte 1 (MSB) byte 4 (LSB)byte 2 byte 3

big part of number little part of number

Endianness

In this class, we will use “little endian” format. This means
that the most significant byte is stored last.

ARM processors have configurable endianness.

Endianness

Big endian:

0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0 1 0 0 0 0 0 0

byte 1 (MSB)

10 0 0 0 0 0 0

byte 4 (LSB)

0 0 01 0 0 0 0

byte 2

1 0 0 0 00 0 0

byte 3

Endianness

Little endian:

0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0 1 0 0 0 0 0 0

byte 1 (MSB)

10 0 0 0 0 0 0

byte 4 (LSB)

0 0 01 0 0 0 0

byte 2

1 0 0 0 00 0 0

byte 3

To be clear, this is the same decimal number 1075843080
stored in binary. We simply interpret it differently.

Rule: least significant bit is stored at smallest index.

Running a program
The details of how a program is loaded into memory varies
by

0 8 GB

chrome

chrome

$./chrome

loader

In Linux, a program called the loader reads the program
from disk and puts it in memory.

architecture, operating system, and language.

Note: d iagram shows
physical address space.

Running a program

After loading the program, on Linux, the loader:

1. allocates memory for the runtime call stack,

2. copies CLI program arguments into the stack,

3. calls _start(), which starts the C runtime.

4. _start() eventually calls main().

Running a program
In the virtual address space of the program (e.g., chrome),

the loader puts

0 8 GB

TEXT Initial-
ized

chrome loader

$./chrome

Uninit-
ialized STACKHEAP

Note: stack grows toward
low addresses!

DATA BSS

local variables

top of previous stack
return address

“spilled” arguments

Runtime call stack
The runtime call stack tracks the state of the currently
running function.

The basic element is a data structure called a stack frame.
low

high

sp

fp

Stack smashing
Stack smashing takes advantage of the fact that writing off
the end of a stack-allocated buffer writes toward the
return address.

low

high

f o o b
a r f o
o b a r

f o o b

a r \0

0x12345678

0x0000ab1f

\0

Stack smashing
Stack smashing takes advantage of the fact that writing off
the end of a stack-allocated buffer writes toward the
return address.

low

high

f o o b
a r f o
o b a r

f o o b

a r f o

o b a r
f o o b

Program

“returns”

wherever

this points!

Call stack

How does a function “happen”?

main

How does a function “happen”?

How does a function “happen”?

main

How does a function “happen”?

main

1052

1048

1044

1040

1036

1032

1028

1024

1020

1016

1012

1008

1004

1000

996

992

lower

higher

stack grows down

How does a function “happen”?

main

1052

1048

1044

1040

1036

1032

1028

1024

1020

1016

1012

1008

1004

1000

996

992

lower

higher

stack grows down

4 bytes

Calling convention

A calling convention is a specification for the functioning
of a call stack. Calling conventions describe:

• How parameters are passed to a function.

• The order in which parameters are passed.

• Which registers are used to store stack metadata.

• Who saves registers (caller or callee), and

• Who restores registers (caller or callee) after calling.

This information is necessary to ensure that code
generated by different compilers interoperates.

ARM Calling Convention
How functions “work” for the C language on 32-bit ARM
machines running UNIX.

• How parameters are passed to a function.

✓in registers; spill to the stack

• The order in which parameters are passed.

✓right-to-left

• Which registers are used to store stack metadata.

✓pc: program counter (i.e., instruction pointer)

✓sp: pointer to top of stack

✓fp: pointer to bottom of stack

• Who saves registers,

✓callee saves v1-v5, fp, sp, etc; caller saves lr.

• Who restores registers after calling.

✓callee restores v1-v5, fp, sp, etc.; callee restores lr

void foo() {}

int main() {

 foo();

}

For next class:

This program does almost nothing.

What does it do?

Recap & Next Class

Today we learned:

Next class:
How argument passing works

How C functions work

