Announcements

+ Next lab: meet in lobby of Jesup. Do not be late! We
CSCI 331: will leave promptly at the start of lab.

Introduction to Computer Security + CS Colloquium: Allison Koenecke @ MSR/Cornell
Friday, 2:30pm in Wege Auditorium

“Racial Disparities in Automatic Speech Recognition”

Lecture 11: Midterm Exam Review

Instructor: Dan Barowy
Williams

What topics?

Think about which topics you feel confused about. Take a
few minutes and write them down on a piece of paper.

Everybody needs to tell me something. Things we've covered

The C Programming Language

The C Programming Language

Basics

e Compilation using gcc.

e Warnings using -Wall

* Programs vs libraries
e Build program with -o and specify name
e Build library with -c

The C Programming Language

C Features

The pointer as the basic unit of abstraction.

struct as the basic unit of grouping.

typedef as a way to give types useful names.

Printing using print £ and format specifiers.

Memory as a resource that must be manually

managed

e Automatic (“local”) memory, allocated on the
stack

* Manual memory, allocated on the heap using
malloc.

The C Programming Language
C Rules

0. Pointers are for referring to locations in memory.
1. When using a variable, always ask C to reserve
memory for some duration.

2. Always allocate and deallocate long duration
storage.

3. Always initialize variables.

4. Watch out for off-by-one errors.

5. Always null-terminate “C strings.”

The C Programming Language

State Diagrams

#include <stdio.h>

i

}

nt main() {
int i = 10, j = 0, *k;
k = &i; i=20 Oxbfe8
*k = %O; main j = 20 Oxbfec
k = &j;
*k = i; k = Oxbfec Oxbf£0
printf("i = %d,
j = %d, call stack
*k = %d\n",
i, jl *k);

return 0;

(state just before the line indicated by the arrow is executed)

The C Programming Language

State Diagram Rules

The Rules
1. Initialize diagram with empty stack and heap.
2. When a function is called, put a box on the stack, and label it with the function’s name.
3. Put global variables outside the box.
4. Put local (automatic) variables inside the box, including function parameters.
5. Manage allocated variables on the heap.

(a) malloc adds objects.

(b) free removes objects.

=

. As the function runs, update values.

]

. Returning from a function pops the stack frame and, if the function returns a value, assigns it to
the storage awaiting the return value.

Makefiles

program: c.c b.o a.o
tab gcc -0 program c.c b.o a.o

target: dep: .. depn
tab | command

command should produce target.

Makefiles

CFLAGS=-Wall -g

.PHONY: all
all: dictattack hashchain

database.o: database.h database.c
gcc $(CFLAGS) -c database.c

crackutil.o: crackutil.h crackutil.c database.h
gcc $(CFLAGS) -c crackutil.c

dictattack: crackutil.o database.o dictattack.c
gcc $(CFLAGS) -o dictattack dictattack.c crackutil.o database.o -1md

Libraries: static vs shared

e Static library: compile with -c
e Shared library: link with -1<whatever>

. h files are interfaces

18

Building with libraries

CFLAGS=-Wall -g

.PHONY: all

static libra
all:s dictatta:t——_____———_————— ry
database.o: /database.h database.c shared library
LAGS) -c database.c

crackutil.o: crackutil.h crackutil.c database.o
gcc $(CFLAGS) -c crackutil.c

dictattack: crackutil.o database.o dictattack.c
gcc $(CFLAGS) -o dictattack dictattack.c crackutil.o database.o{—lmd!

.PHONY: clean
clean:
rm -f *.o
rm -f dictattack
rm -rf *.dSYM

Finding memory errors with ASan

-fsanitize=address -static-libasan

Kinds of memory errors:

e Segmentation fault
Memory leak
Out-of-bounds read

Buffer overflow (OOB write)
Use-after-free

Uninitialized read

Debugging with gdbtui Security as a tradeoff

}

// generate the table

printf("Generating table...\n");

int numchains = genTable(tt, width, height, keys);

printf("Generated %d chains for table type %d\n", numchains, EXHAUSTIVE);

// decrypt all the keys that we can find
printf("Decrypting...\n");
B+>
int num_decrypt = 0;
while(finger) {
charx username = finger->data.username;
charx ciphertext = finger->data.password;
char plaintext[PTLEN];
bool found = lookup(ciphertext, tt, width, height, plaintext);
if (found) {
num_decrypt++;
fprintf(outf, "%s,%s\n", username, plaintext);

}
multi-thre Thread @xb6fee24@ (In: main L69 PC: 0x11dd50

[Thread debugging using libthrea enabled

Using host libthread_db library "/lib/arm-linux-gnueabihf/libthread_db.so.1".

[Inferior 1 (process 7528) exited with code 01]

(gdb) r epassword.db password.db exhaustive 5 10000

Starting program: /home/pi/Documents/Code/cs331-pwcrack-solution/hashchain epassword.db password.db exhaustive 5 1000

[Thread debugging using libthread_db enabled
Using host libthread_db library "/lib/arm-linux-gnueabihf/libthread_db.so.1".

Breakpoint 1, main (argc=6, argv=@xbefff5f4) at hashchain.c:69
(gdb)

Security as a tradeoff Security as a tradeoff

How to quantify risk-reward tradeoff

e Enumerate potential vulnerabilities

» Assign exploit probabilites

e Estimate cost of exploit

e Compute expected cost

e Rational expenses for mitigation do not
exceed the expected cost of the exploit

e.g., memorability vs guessability

Security properties Security properties

SANDRA BULLOCK

Confidentiality

iz oot

—— MAGTI | oo . 145225

Non-repudiation

—————e—

Authenticity Availability

CIAA graphical model Crypto!

Encryption is the process of encoding a message so that it can be read
only by the sender and the intended recipient.

» Aplaintext p is the original, unobfuscated data. This is information you want to
protect.

* Aciphertext ¢ is encoded, or encrypted, data.
N N thing 3 + Acipher fis an algorithm that converts plaintext to cipertext. We sometimes call
this function an encryption function.

¥ More formally, a cipher is a function from plaintext to ciphertext, f(p)=c. The
properties of this function determine what kind of encryption scheme is being
used.
* A sender is the person (or entity) who enciphers or encrypts a message, i.e., the
party that converts the plaintext into cipertext. f(p)=c
* Areceiver is the person (or entity) who deciphers or decrypts a message, i.e., the
party that converts the ciphertext back into plaintext. f-!(c)=p

Cryptographic hash functions

Suppose we have:

f(p)=c, a cipher that maps plaintexts to ciphertexts; in this
case, a hash function.

Because f is a hash function, there is no inverse
function such that /-1(f(p))=p.

A cryptographic hash function is bitwise independent,
meaning that seeing one or more bits of output does not help
an attacker predict the values of the remaining outputs.

Brute Force Password Attacks

Online, using a pseudoterminal.

Offline, using a password cracking algorithm.

Offline password database attacks

Random guessing attack
Enumeration attack

Dictionary attack

* Precomputed hash chain attack

I table attack

Random guessing: complexity (one pw)

m = # of possible passwords

- p = probability that random

guess is correct

=1/m
X = # guesses until success
E[X]=(1-p)/p (geometric dist)

=m- 1
O(m) average per pw O(mn) average for all pw

Enumeration: complexity

m = # of possible passwords

O(m/2)
Average guesses to find all pw:

O(n x m/2)

Average guesses to find one pw:

Dictionary attack: complexity

m = # of possible passwords

- Time to compute dictionary:

O(m)
Time to lookup one pw:
O(log m)
Time to lookup all pws:
O(n log m)
Space needed:
O(m)

PCHC/rainbow attack: complexity
m = # of possible passwords

Time to compute data structure:
O(m)
Time to lookup one pw:
O(k)
Time to lookup all pws:
O(mk)
Space needed:
O(m/k)

Hash function

Space of possible plaintexts Space of possible hashes

I}
(
8 digits, 0-9, a-f 64 digits, 0-9, a-f

———p hashing

plaintext: “9a553024d” ciphertext: “4651£1799e5e36c878£3d980c59%9e94ae”

Reducer function

Space of possible plaintexts Space of possible hashes

8 digits, 0-9, a-f

64 digits, 0-9, a-f
<4—— reduction

ciphertext: “4651£1799e5e36c878£3d980c59e94ae” plaintext: “4651£179”

Reducer function properties

A reducer r(c)=p only needs to satisfy a couple properties.

1. Areducer’s output, p, should map to the same domain as
the input of the hash function, f(p)=c (i.e,. plaintexts)

N

———p hashing
<4— reduction

Reducer function properties

A reducer r(c)=p only needs to satisfy a couple properties.

2. All plaintexts should be selected, given the space of
ciphertexts, with equal probability.

/

——— hashing
<4—— reduction

Hash chain

Space of possible plaintexts

Space of possible hashes

———p hashing
<4—— reduction

Hashes are guaranteed to collide

m: # of passwords n: # of hashes

If m > n, we know that at least (m-n)/m must collide.

“pigeonhole principle”

b @—— .4
. . Cx

Collisions in a hash chain

reduce hash
. Ca

Po
Pa

reduce

Py
Px

After the collision, the chain “loops.”

Collisions prevent us from enumerating the entire space!

Hash chain of length k

We are going to chop up our long chain into smaller
chains of length k.

Store only start and end

start, end

Pm r Pm-3
Ps r P3
ps r P1

Store it backward

end, start
Pm-3 r Pm

ps r Ps
p1 r P3

Hash function lookup table:

plaintext
vy
vk
kv
vvkok
vkvy
vhvk
vhky
vhokk
vy
*vvk
* vk
*vkk
*okvy
*okvk
*okky
*okkk

hex plaintext

Hash of plaintext 0 vy
4A7D1ED414474E4033AC29CCB8653D9B 4 K
25BBDCDO06C32D477F7FA1C3E4A91B032

2 kv
FC1198178C3594BFDDA3CA2996EB65CB

3 vvkok
AE2BAC2E4B4DA805D01B2952D7E35BA4

4 vhkvy
DB2F40F24260BC41DB48D82D5E7ABF1D

5 vhkvk
814F06AB7F40B2CFF77F2C7BDFFD3415 .

func reducer(c,i): 6 vhoky

2A66ACBC1C39026B5D70457BB71B142B
Convert the ith hexadecimal 7 vk

7D7C45B9A935CF9DBA5FC75679A41559 digit of c into a plaintext

using the following table: 8 *vvy
A9B7BA70783B617E9998DCADD82EB3CS
B8C37E33DEFDES1CF91E1E03E51657DA g LSRR
1E48C4420B7073BC11916C6C1DE226BB A hvky
7F975A56C761DB6S0BECAOB37CESECE? B kvkk
1E6EOAO4D20F50967C64DAC2DB3IAST7 c *kvy
C6BFF625BDB0393992CID4DBOCEBBE4S D Kk vk
2CBCA44843A864533EC05B321AE1FID1 E *hky
B59C67BF196A4758191E42F76670CEBA F Fokhok

Find the first three rainbow chains of length 3.

First three rainbow chains

h ro h ry h r2
VVYVY — 4A7D —> Y% V¥YY¥ —> DB2F — % Y%k %k —> 7F97 — %k vy &k

h ro h rq h r2
VYV 5k —> 25BB—>YY¥ (V¥ —> FC1ll —> k Kk ¥Y¥Y —> 1E6E—> ¥k % V¥

h r h r h r
VYA V—> FC11 —0>****—> B59C—1> YAV — 814F—2> Y VY

end start
*VYk | YVVY
VA AV | VYV
VAVY | YV AV

width =k

Po Pp1 P2 ps pa

Co C1 C2 C3

| hypothesize that ¢ reduces to pa

What reducer should | use? reduce(c, 3)

width =k

Po Pt P2 pP3 P4

Co Ci C2 C3

| hypothesize that ¢ reduces to pk-2

What reducer should | use? reduce(c,2)
Then: reduce(c,3)

Rainbow table (for first 3 chains) Countermeasures Against Cracking Attacks

end | start

*Yvk | vewey
YAk AV | VOV
VAVYY | oV
Password salts.
Uniformly-distributed passwords.
Two-factor authentication.
Last-known IP address.

Make hashing expensive.

Decrypt FC11.
Hypothesis: FC11 is the third link in the chain.

FC11 2 vvvx Isvwwx anend? No.
Hypothesis: FC11 is the second link in the chain.
r h r
FC11 —> kA ¥¥ —> 1E6E —> ¥4 ¥ |S A x¥ an end? Yes.

Decrypt from start vwwsx: ("‘“"~ plaintext

ro
VVYVk—> 25BB—> YV % V¥

Key Stretching

Key stretching is a technique used to make password
decryption attacks computationally expensive. Unlike an
ordinary user, an attacker must invoke a hash function many
times. Key stretching amplifies the cost of a hash

function using a stretch factor s. . .
Practice exam solutions

f5(p) = csis an iterated hash function, where

fi(p) =f(p) = ¢!
f2(p) = f(f(p)) = 2
B3(p) = f(f(f(p))) = ¢

fo(p) =cn

Q&A

Recap & Next Class

Today we learned:

Rainbow table generation
Rainbow table lookup
Sample buffer overflow exploit

Next class:

How to craft an exploit

