
CSCI 331:
Introduction to Computer Security

Instructor: Dan Barowy

Lecture 11: Midterm Exam Review

Announcements

• Next lab: meet in lobby of Jesup. Do not be late! We
will leave promptly at the start of lab.

• CS Colloquium: Allison Koenecke @ MSR/Cornell  
Friday, 2:30pm in Wege Auditorium 
“Racial Disparities in Automatic Speech Recognition”

What topics?

Think about which topics you feel confused about. Take a
few minutes and write them down on a piece of paper.

Everybody needs to tell me something. Things we’ve covered

The C Programming Language

C

procedural

general purpose

structured programmingrecursion

compile
d

high performance

manual memory management

unsafe

portable

low-levelpointers

Makefile

lexically scoped

typed

null

static

dynamicstorage duration

heap
standard library

pass-by-value

eager

struct
type casting

statement

expression

assignment

arithmetic

us
er

-de
fin

ed
 fu

nc
tio

ns
typedef

union

null-terminated

macros

memory addressespreprocessor include

ca
ll s

tac
k

defin
itio

n

declaration

The C Programming Language

• Compilation using gcc.
• Warnings using -Wall
• Programs vs libraries

• Build program with -o and specify name
• Build library with -c

Basics

The C Programming Language

• The pointer as the basic unit of abstraction.
• struct as the basic unit of grouping.
• typedef as a way to give types useful names.
• Printing using printf and format specifiers.
• Memory as a resource that must be manually

managed
• Automatic (“local”) memory, allocated on the

stack
• Manual memory, allocated on the heap using
malloc.

C Features

The C Programming Language

C Rules

0. Pointers are for referring to locations in memory.
1. When using a variable, always ask C to reserve
memory for some duration.
2. Always allocate and deallocate long duration
storage.
3. Always initialize variables.
4. Watch out for off-by-one errors.
5. Always null-terminate “C strings.”

The C Programming Language

State Diagrams
#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

call stack

main

k = 0xbfec 0xbff0

j = 20 0xbfec

i = 20 0xbfe8

(state just before the line indicated by the arrow is executed)

The C Programming Language

State Diagram Rules

target:
 command

program: a.oc.c b.o
tab gcc -o program c.c b.o a.o

tab

command should produce target.

dep1 … depn

Makefiles Makefiles

CFLAGS=-Wall -g

.PHONY: all
all: dictattack hashchain

database.o: database.h database.c
gcc $(CFLAGS) -c database.c

crackutil.o: crackutil.h crackutil.c database.h
gcc $(CFLAGS) -c crackutil.c

dictattack: crackutil.o database.o dictattack.c
gcc $(CFLAGS) -o dictattack dictattack.c crackutil.o database.o -lmd

Libraries: static vs shared

• Static library: compile with -c
• Shared library: link with -l<whatever>

.h files are interfaces

Building with libraries
CFLAGS=-Wall -g

.PHONY: all
all: dictattack

database.o: database.h database.c
gcc $(CFLAGS) -c database.c

crackutil.o: crackutil.h crackutil.c database.o
gcc $(CFLAGS) -c crackutil.c

dictattack: crackutil.o database.o dictattack.c
gcc $(CFLAGS) -o dictattack dictattack.c crackutil.o database.o -lmd

.PHONY: clean
clean:

rm -f *.o
rm -f dictattack
rm -rf *.dSYM

static library

shared library

Finding memory errors with ASan

-fsanitize=address -static-libasan

Kinds of memory errors:

• Segmentation fault
• Memory leak
• Out-of-bounds read
• Buffer overflow (OOB write)
• Use-after-free
• Uninitialized read

Debugging with gdbtui Security as a tradeoff

Security as a tradeoff

e.g., memorability vs guessability

Security as a tradeoff

How to quantify risk-reward tradeoff

• Enumerate potential vulnerabilities
• Assign exploit probabilites
• Estimate cost of exploit
• Compute expected cost
• Rational expenses for mitigation do not

exceed the expected cost of the exploit

Security properties

Confidentiality Integrity

Authenticity Availability

Security properties

Non-repudiation

CIAA graphical model

thing 1 thing 2
A

thing 3
C

Crypto!
Encryption is the process of encoding a message so that it can be read
only by the sender and the intended recipient.

• A plaintext 𝑝 is the original, unobfuscated data. This is information you want to
protect.

• A ciphertext 𝑐 is encoded, or encrypted, data.
• A cipher 𝑓 is an algorithm that converts plaintext to cipertext. We sometimes call

this function an encryption function.
✴More formally, a cipher is a function from plaintext to ciphertext, 𝑓(𝑝)=𝑐. The

properties of this function determine what kind of encryption scheme is being
used.

• A sender is the person (or entity) who enciphers or encrypts a message, i.e., the
party that converts the plaintext into cipertext. 𝑓(𝑝)=𝑐

• A receiver is the person (or entity) who deciphers or decrypts a message, i.e., the
party that converts the ciphertext back into plaintext. 𝑓-1(c)=p

Cryptographic hash functions

Suppose we have:

𝑓(𝑝)=𝑐, a cipher that maps plaintexts to ciphertexts; in this
case, a hash function.

Because 𝑓 is a hash function, there is no inverse
function such that 𝑓−1(𝑓(𝑝))=𝑝.

A cryptographic hash function is bitwise independent,
meaning that seeing one or more bits of output does not help
an attacker predict the values of the remaining outputs.

Brute Force Password Attacks

Online, using a pseudoterminal.

Offline, using a password cracking algorithm.

username_1,pwhash_1
username_2,pwhash_2
...
username_n,pwhash_3

Offline password database attacks

• Random guessing attack
• Enumeration attack
• Dictionary attack
• Precomputed hash chain attack
• Rainbow table attack

Random guessing: complexity (one pw)

username_1,pwhash_1
username_2,pwhash_2
...
username_n,pwhash_n

m = # of possible passwords

p = probability that random 
 guess is correct

 = 1/m

E[X] = (1-p)/p
= m - 1

X = # guesses until success

(geometric dist)

O(m) average per pw O(mn) average for all pw

Enumeration: complexity

username_1,pwhash_1
username_2,pwhash_2
...
username_n,pwhash_n

O(m/2)

m = # of possible passwords

Average guesses to find one pw:

Average guesses to find all pw:

O(n x m/2)

Dictionary attack: complexity

pwhash_1,password_1
pwhash_2,password_2
...
pwhash_n,password_n

O(m)

m = # of possible passwords

Time to compute dictionary:

Time to lookup one pw:
O(log m)

Time to lookup all pws:
O(n log m)

Space needed:
O(m)

PCHC/rainbow attack: complexity

pwhash_1,password_1
pwhash_2,password_2
...
pwhash_n,password_n

O(m)

m = # of possible passwords

Time to compute data structure:

Time to lookup one pw:
O(k)

Time to lookup all pws:
O(mk)

Space needed:
O(m/k)

Space of possible plaintexts Space of possible hashes

hashing

Hash function

plaintext: “9a55302d” ciphertext: “4651f1799e5e36c878f3d980c59e94ae”

8 digits, 0-9, a-f 64 digits, 0-9, a-f

Space of possible plaintexts Space of possible hashes

reduction

Reducer function

plaintext: “4651f179”ciphertext: “4651f1799e5e36c878f3d980c59e94ae”

8 digits, 0-9, a-f 64 digits, 0-9, a-f

Reducer function properties

A reducer 𝑟(𝑐)=𝑝 only needs to satisfy a couple properties.

1. A reducer’s output, 𝑝, should map to the same domain as
the input of the hash function, 𝑓(𝑝)=𝑐 (i.e,. plaintexts)

hashing

reduction

Reducer function properties

A reducer 𝑟(𝑐)=𝑝 only needs to satisfy a couple properties.

2. All plaintexts should be selected, given the space of
ciphertexts, with equal probability.

hashing

reduction

Space of possible plaintexts Space of possible hashes

start

end

hashing

reduction

Hash chain

Hashes are guaranteed to collide

m

n

If m > n, we know that at least (m-n)/m must collide.

m: # of passwords n: # of hashes

“pigeonhole principle”

Collisions in a hash chain

pa

ca

hash
reduce

pb

cb

hash
reduce

pc

px

cx

hash
reduce

py

hash

After the collision, the chain “loops.”

Collisions prevent us from enumerating the entire space!

…

…

Hash chain of length k

We are going to chop up our long chain into smaller
chains of length k.

Store only start and end

start, end
pm , pm-3
…

p5 , p3
p3 , p1

Store it backward
end, start
pm-3 , pm
…

p3 , p5
p1 , p3

func reducer(c,i):
 
Convert the ith hexadecimal
digit of c into a plaintext
using the following table:

Find the first three rainbow chains of length 3.

First three rainbow chains

♥♥♥♥
h

4A7D
r0

♥★♥♥
h

DB2F ★♥★★
r1 h

7F97
r2
★♥♥★

♥♥♥★
h

25BB
r0

♥♥★♥
h

FC11 ★★♥♥
r1 h

1E6E
r2

♥★★♥

♥♥★♥
h

FC11
r0
★★★★

h
B59C ♥★♥★

r1 h
814F

r2
♥★♥♥

★♥♥★ ♥♥♥♥

♥★★♥ ♥♥♥★

♥★♥♥ ♥♥★♥

end start

width = k

p4p0 p1 p2 p3

I hypothesize that c reduces to p4

What reducer should I use? reduce(c,3)

c0 c1 c2 c3

width = k

p4p0 p1 p2 p3

I hypothesize that c reduces to pk-2

What reducer should I use? reduce(c,2)

Then: reduce(c,3)

c0 c1 c2 c3

Rainbow table (for first 3 chains)

★♥♥★ ♥♥♥♥

♥★★♥ ♥♥♥★

♥★♥♥ ♥♥★♥

end start

Decrypt FC11.
Hypothesis: FC11 is the third link in the chain.

FC11 ♥♥♥★
r2 Is ♥♥♥★ an end? No.

Hypothesis: FC11 is the second link in the chain.
FC11

r1
★★♥♥

h
1E6E ♥★★♥

r2 Is ♥★★♥ an end? Yes.
Decrypt from start ♥♥♥★:

♥♥♥★
h

25BB
r0

♥♥★♥
h

FC11

plaintext

Countermeasures Against Cracking Attacks

• Password salts.
• Uniformly-distributed passwords.
• Two-factor authentication.
• Last-known IP address.
• Make hashing expensive.

Key Stretching

Key stretching is a technique used to make password
decryption attacks computationally expensive. Unlike an
ordinary user, an attacker must invoke a hash function many
times. Key stretching amplifies the cost of a hash
function using a stretch factor s.

fs(p) = cs is an iterated hash function, where

f1(p) = f(p) = c1

f2(p) = f(f(p)) = c2

f3(p) = f(f(f(p))) = c3

fn(p) = cn
…

Practice exam solutions

Q&A

Recap & Next Class

Today we learned:

Next class:

Rainbow table lookup

How to craft an exploit

Rainbow table generation

Sample buffer overflow exploit

