
CSCI 331:
Introduction to Computer Security

Instructor: Dan Barowy

Lecture 4: C wrap-up

Announcements

• Congratulate your classmates

Jihong Lee and Atlas Yilmaz, your

new CoSSAC representatives!

Topics

Pointers

Makefiles

Static vs shared libraries

Your to-dos

1. Lab 1 out.
i. Note that it includes some reading.
ii. Lab 1 due Sunday 9/26 by 11:59pm.
iii. If your RPi is not set up, what are you waiting

for?
2. Reading response 2 (Schneier) due Wed, 9/22.
3. Keep on reading The Cuckoo’s Egg.

Quiz

Quiz solution: caveat
The C specification says nothing about the location of a
variable.

The words stack and heap literally do not appear in the
document.

It only says how short-lived (automatic) and long-lived
(allocated) storage should behave.

Virtually every compiler uses the stack for automatic
variables, and the heap for allocated variables.

Practically, it does not matter where you put your
variables as long as you put them in stack and heap
locations as appropriate.

#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

Quiz solution: after step 1

call stack

main

k = ??? 0xbff0

j = 0 0xbfec

i = 10 0xbfe8

(state just before the line indicated by the arrow is executed)

#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

Quiz solution: after step 2

call stack

main

k = 0xbfe8 0xbff0

j = 0 0xbfec

i = 10 0xbfe8

(state just before the line indicated by the arrow is executed)

#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

Quiz solution: after step 3

call stack

main

k = 0xbfe8 0xbff0

j = 0 0xbfec

i = 20 0xbfe8

(state just before the line indicated by the arrow is executed)

#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

Quiz solution: after step 4

call stack

main

k = 0xbfec 0xbff0

j = 0 0xbfec

i = 20 0xbfe8

(state just before the line indicated by the arrow is executed)

#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

Quiz solution: after step 5

call stack

main

k = 0xbfec 0xbff0

j = 20 0xbfec

i = 20 0xbfe8

(state just before the line indicated by the arrow is executed)

#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

Quiz solution: print output

call stack

main

k = 0xbfec 0xbff0

j = 20 0xbfec

i = 20 0xbfe8

(state just before the line indicated by the arrow is executed)

printf prints “i = 20, j = 20, *k = 20”

#include <stdio.h>

int main() {
 int i = 10, j = 0, *k;
 k = &i;
 *k = 20;
 k = &j;
 *k = i;
 printf("i = %d,
 j = %d,
 *k = %d\n",

 i, j, *k);
 return 0;
}

Quiz solution: static data?

call stack

main

k = 0xbfec 0xbff0

j = 20 0xbfec

i = 20 0xbfe8

(state just before the line indicated by the arrow is executed)

Yes. “i = %d,\nj = %d,\n*k = %d\n”

How might you verify my solution?

gdb Makefiles

Makefiles

A Makefile is a specification used by the make tool to
automate the compilation of programs.

Rationale

Programmers build software frequently.

Lazy
(don’t want to retype)

Impatient
(don’t want to wait for gcc)

Insight
An entire project does not need to rebuilt every time.

int foo (int a) {
 return a + 1;
}

a.c
int bar (int b) {
 return b - 1;
}

b.c

#include <stdio.h>
#include "a.h"
#include "b.h"

int main() {
 int c = bar(foo(1));
 printf("c = %d\n", c);
 return 0;
}

c.c

depends on depends on

Insight
An entire project does not need to rebuilt every time.

int foo (int a) {
 return a + 1;
}

a.c
int bar (int b) {
 return b - 1;
}

b.c

#include <stdio.h>
#include "a.h"
#include "b.h"

int main() {
 int c = bar(foo(2));
 printf("c = %d\n", c);
 return 0;
}

c.c

depends on depends on

make a change

a.c and b.c
do not change.

Do we really need 
to rebuild them?

c.c

A Makefile encodes dependencies

program

$ gcc a.c b.c c.c -o program

Small catch: make can only avoid rebuilding if there is a
produced thing that it can avoid rebuilding.

There is only one produced thing here: program

depends on

depends on depends on

a.c

b.c

(produced things are circles; source files are squares)

A Makefile encodes dependencies

c.c program

depends on

depends on depends on

a.c

b.c

Fix: make more produced things.

A Makefile encodes dependencies

program

Fix: make more produced things.

depends on

depends on depends on

a.o

b.o
depends on

depends on

This still has a problem.

c.c

a.c

b.c

c.c is not a produced thing. 
Only produced things can depend on other things.

A Makefile encodes dependencies

program

Fix: make program depend on a.o and b.o.

depends on

depends on

a.o

b.o
depends on

depends on

c.c

a.c

b.c

depends on

Observe: The same amount of work is being done. But the
things are smaller.

A Makefile encodes dependencies

program

Suppose we update c.c.

depends on

depends on

a.o

b.o
depends on

depends on

c.c

a.c

b.c

depends on

What needs to be rebuilt?

Just program.

We don’t need to rebuild a.o or b.o at all.

program:

A Makefile encodes dependencies

program

depends on

depends on

a.o

b.o
depends on

depends on

c.c

a.c

b.c

depends on

Let’s write a Makefile for this, starting with program.
a.oc.c b.o

tab gcc -o program c.c b.o a.o

3 things, 3 rules.

program:

A Makefile encodes dependencies

program

depends on

depends on

a.o

b.o
depends on

depends on

c.c

a.c

b.c

depends on

Let’s write a Makefile for this, starting with program.
a.oc.c b.o

tab gcc -o program c.c b.o a.o

b.o: b.c
tab gcc -c b.c 3 things, 3 rules.

program:

A Makefile encodes dependencies

program

depends on

depends on

a.o

b.o
depends on

depends on

c.c

a.c

b.c

depends on

Let’s write a Makefile for this, starting with program.
a.oc.c b.o

tab gcc -o program c.c b.o a.o

b.o: b.c
tab gcc -c b.c

a.o: a.c
tab gcc -c a.c

3 things, 3 rules.

Makefile syntax

target:
 command

program: a.oc.c b.o
tab gcc -o program c.c b.o a.o

tab

command should produce target.

dep1 … depn

What are .h files?

What are .h files?

A .h file provides interface information so that a compiler
can separately compile sources.

int foo (int a) {
 return a + 1;
}

a.c int foo (int a);a.h

Should we put .h files in our Makefile?

Ask yourself: “if a file changes, should I rebuild?”

Answer: yes! If an interface changes, we should recompile.

Activity
login0: console.o database.o login.c
 gcc -o login0 console.o database.o login.c

console.o: console.c console.h
 gcc -c console.c

database.o: database.c database.h
 gcc -c database.c

1. Draw the dependence graph for this Makefile.

2. Assume that the project is built with make login0,
 database.h is then updated, and then the user types 
 make login0 again. What commands are run?

Libraries: static vs shared Libraries: static vs shared

library.o

library.so

Static library:

Shared library:

Shared libraries must be linked with the
-l<libraryname> linker flag for gcc.

Static libraries are copied into program.

Shared libraries leave a “forwarding address”.

Recap & Next Class

Today we learned:

Next class:

Stack layouts

Password security

Makefiles
Static vs. shared libraries

Pseudoterminals

