
CSCI 331:
Introduction to Computer Security

Instructor: Dan Barowy

Lecture 3: More C

Announcements

• No CS Colloquium this week
• Instead, intro Women in CS event,

Friday 2:35-4pm @ Eco Cafe  

(WITH SNACKS!!!)
• Lab 1/RR2 will be posted tonight.

Topics

The Cuckoo’s Egg discussion

Office hours today: 4-6pm in TBL 301

More C
Using a LaTeX template

Your to-dos

1. Lab 1 out.
i. Note that it includes some reading.
ii. Lab 1 due Sunday 9/26 by 11:59pm.
iii. Be sure to get your RPi setup soon.

2. Reading response 2 (Schneier) due Wed, 9/22.
3. Keep on reading The Cuckoo’s Egg.

Reading discussion

C rules from last class

0. Pointers are for pointing at other values in
memory.
1. Whenever you store a variable, you always ask C
to reserve memory for some duration.

Activity: What effect do these
programs have on memory?

#include <stdio.h>

int main() {
 int num = 331;
 printf("%d rocks!\n", num);
 return 0;
}

#include <stdio.h>
#include <stdlib.h>

int main() {
 int *num_ptr = malloc(sizeof(int));
 if (!num_ptr) {
 printf("Unable to allocate.\n");
 exit(1);
 }
 *num_ptr = 331;
 printf("%d rocks!\n", *num_ptr);
 return 0;
}

Rule 2:

All long duration storage needs to be both
allocated and deallocated.

#include <stdio.h>
#include <stdlib.h>

int main() {
 int *num_ptr = malloc(sizeof(int));
 if (!num_ptr) {
 printf("Unable to allocate.\n");
 exit(1);
 }
 *num_ptr = 331;
 printf("%d rocks!\n", *num_ptr);
 return 0;
}

Last class we spotted what was wrong here…

free(num_ptr);

Does this bug “matter” for this program?

Rule 3:

Always initialize variables.

#include <stdio.h>

int main() {
 int num;
 printf("%d rocks!\n", num);
 return 0;
}

What does this program print?

(always? are you sure?)

This program prints “331 rocks!”

#include <stdio.h>

int foo() {
 int a = 331;
 return a;
}

int bar() {
 int b;
 return b;
}

int main() {
 foo();
 int num = bar();
 printf("%d rocks!\n", num);
 return 0;
}

Rule 4:

Watch out for off-by-one errors.

Effects range from subtle to catastrophic!

#include <stdio.h>

int main() {
 int nums[5];
 nums[0] = 0;
 nums[1] = 1;
 nums[2] = 2;
 nums[3] = 3;
 nums[4] = 4;

 int sum = 0;
 for (int i = 0; i <= 5; i++) {
 sum += nums[i];
 }

 printf("sum: %d\n", sum);

 return 0;
}

Rule 5:
 
Always null-terminate “C strings.”

C has no String data type.
Instead, it has character arrays.
Character arrays must always be null-terminated.

(otherwise bad things happen)

0 1 2 3 4 5 6 7

h o r c r u x \0

s

char *

C Strings

#include <stdio.h>

int baz() {
 char *s = "horcrux";
 printf("%s\n", s);
 return 0;
}

String: just a null-terminated array of chars.
There is no string type in C.

What is the type of s? What does s store? How do I know that s points to an array?

Call stack

baz

…

Where in memory does the data “horcrux\0” live?

C Memory

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int bar() {
 char *s;
 s = malloc(8);
 strncpy(s, "horcrux", 7);
 printf("%s\n", s);
 return 0;
}

0 1 2 3 4 5 6 7

h o r c r u x \0

s

char *

Call stack

bar

…

What happens to s when bar returns?
What happens to the thing s pointed to?

C Memory

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int bar() {
 char *s;
 s = malloc(8);
 strncpy(s, "horcrux", 7);
 printf("%s\n", s);
 return 0;
}

0 1 2 3 4 5 6 7

h o r c r u x \0
char *

Call stack

…

Answer: nothing. Memory leak!

C Rules

0. Pointers are for pointing at other values in
memory.
1. Remember, when using a variable, you’re always
ask C to reserve memory for some duration.
2. Always allocate and deallocate long duration
storage.
3. Always initialize variables.
4. Watch out for off-by-one errors.
5. Always null-terminate “C strings.”

Recap & Next Class

Today we discussed:

Next class:

The Cuckoo’s Egg
More C

Virtual memory

Pseudoterminals
Segmentation Faults

