
CSCI 331:
Introduction to Computer Security

Instructor: Dan Barowy

Lecture 2: C Review

Topics

More about grades

Drop/add deadline: Friday, 17th of September

Anonymous feedback

C review

(for more review, see lectures page on www)

Quiz

Grades

Purpose:
1. to reduce your stress level about grades, and
2. to make feedback actionable.

Grading Grading

A 90-100%

B ≥ 80% and < 90%

C ≥ 70% and < 80%

D ≥ 60% and < 70%

F < 60%

4 Proficient on all standards

3 Proficient on most standards

2 Proficient on half of the
standards

1 Proficient on less than half of
the standards

0 Missing

These aren’t supposed to line up.

Grading

4 Proficient on all standards

3 Proficient on most standards

2 Proficient on half of the
standards

1 Proficient on less than half of
the standards

0 Missing

Here are the “point conversions”

100%

88%

74%

48%

0

Grading

Here are the “point conversions”

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6

25

50

75

100

Grade spreadsheet

Grading

No “attendance hacking”!
No more than 3 unexcused absences.

Rarely, I will award bonuses for exceptional work.

Questions? Feedback

Anonymously or eponymously

Anonymous Feedback Your to-dos

1. Answer “Getting to Know You” survey by
tomorrow.

2. Reading response (Stoll) due Wed.
i. LaTeX optional.
ii. Must be printed, put in my box.

3. Sign and return Code of Ethics by Wed.
1. Put in my box.

4. First lab on Wednesday. 
Do you know what section you are in?

Readings for Lab 0

1. Lab 0 writeup. 
Not a bad idea to skim labs ahead of time.

Lab 0

If you have a laptop that you plan to use for the
semester, please bring it to our first lab meeting.

If you prefer to use a lab machine, you don’t need
to bring anything.

The C Programming Language
Activity: What do you know about C?

C

procedural

general purpose

structured programmingrecursion

compile
d

high performance

manual memory management

unsafe

portable

low-levelpointers

Makefile

lexically scoped

typed

null

static

dynamicstorage duration

heap
standard library

pass-by-value

eager

struct
type casting

statement

expression

assignment

arithmetic

us
er

-de
fin

ed
 fu

nc
tio

ns

typedef
union

null-terminated

macros

memory addressespreprocessor include

ca
ll s

tac
k

defin
itio

n

declaration

Let’s start with the easy stuff

Like Java, C programs need to be compiled
before you can run them.

$ gcc helloworld.c

The C compiler ignores many problems

So you should always ask it to report warnings.

$ gcc -Wall helloworld.c

If you don’t like a.out

Tell the compiler what you want the output
named.

$ gcc -Wall helloworld.c -o helloworld

C Background
1. Despite its quirks, it has many of the features

that you know and love in Java/Python, etc. 
(it looks sort of like Java!)

2. Often used in low-level or “systems”
programming.

3. Nearly as fast as expert assembly code; usually
faster than non-expert assembly.

4. No safety net. Very easy to write programs with
subtle bugs.

1. No garbage collector: no memory safety.
2. No bounds checker: off-by-one is subtle!
3. No objects: roll your own!!
4. No strings: null-terminated char arrays!!!
5. This list is not exhaustive!!!!

The problem with C is not its complexity.
The problem is its simplicity.

Remember these rules and you’ll be OK!

Rule 0:

Pointers are for pointing at other values in
memory.

#include <stdio.h>

int main() {
 int num = 4;
 int *num_ptr = #
 printf("num = %d, and it is stored at %p.\n", num, num_ptr);
 return 0;
}

Rule 1:

Whenever you store a variable, you always ask
C to reserve memory for some duration.

#include <stdio.h>

int main() {
 int num = 331;
 printf("%d rocks!\n", num);
 return 0;
}

#include <stdio.h>
#include <stdlib.h>

int main() {
 int *num_ptr = malloc(sizeof(int));
 if (!num_ptr) {
 printf("Unable to allocate.\n");
 exit(1);
 }
 *num_ptr = 331;
 printf("%d rocks!\n", *num_ptr);
 return 0;
}

short (automatic) long (allocated)

Activity: What effect do these
programs have on memory?

Rule 2:

All long duration storage needs to be both
allocated and deallocated.

#include <stdio.h>
#include <stdlib.h>

int main() {
 int *num_ptr = malloc(sizeof(int));
 if (!num_ptr) {
 printf("Unable to allocate.\n");
 exit(1);
 }
 *num_ptr = 331;
 printf("%d rocks!\n", *num_ptr);
 return 0;
}

What’s wrong with this program?

free(num_ptr);

(does this bug actually matter for this program?)

You cannot understand a C program if you
don’t know rules 0, 1, and 2.

Recap & Next Class

Today we learned:

Next class:

More course mechanics

Feedback

Some C

Cuckoo’s Egg discussion

More C

