
10

Lab 8: Tracing programs

This short assignment introduces you to a tool widely used in debugging and digital forensics: strace. The strace tool
lets a user eavesdrop on all inputs and outputs from a target program. Such information, called a “trace” can be used for
debugging: is my program really reading the right file? Traces can also be used for security: is this program accessing
files it should not be?

10.1 Learning Goals
In this lab, you will practice:

• writing simple programs that do I/O and observing their traces;

• understanding the system call boundary in an operating system; and

• using strace to perform a “black box” analysis on a program.

10.2 Requirements
Collaboration. This is an ungraded assignment. You are encouraged to
work with a partner.

Platform. This assignment must be completed on your Raspberry Pi, as
strace is only available on Linux.

102

10.3 Part 1: A program that does nothing. Or does it?
Let’s start with a simple program, prog1.c, that does not obviously read
or write anything.
int main() {

return 127;
}

Compile the above code in the usual way and run it, then check its out-
put using the following.

$./prog1
$ echo $?
127

You should see the return value of 127. Now let’s run this program
under strace.
$ strace ./prog1

You should see a lot of output, something like this:
execve("./step1", ["./step1"], 0xbefff6b0 /* 22 vars */) = 0
brk(NULL) = 0x22000
uname({sysname="Linux", nodename="raspberrypi", ...}) = 0
access("/etc/ld.so.preload", R_OK) = 0
openat(AT_FDCWD, "/etc/ld.so.preload", O_RDONLY|O_LARGEFILE|O_CLOEXEC) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=54, ...}) = 0
mmap2(NULL, 54, PROT_READ|PROT_WRITE, MAP_PRIVATE, 3, 0) = 0xb6ffc000
close(3) = 0
readlink("/proc/self/exe", "/home/pi/Documents/Code/strace_l"..., 4096) = 41
openat(AT_FDCWD, "/usr/lib/arm-linux-gnueabihf/libarmmem-v6l.so", O_RDONLY|O_LARGEFILE|O_CLOEXEC) =

3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0(\0\1\0\0\0\250\3\0\0004\0\0\0"..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0644, st_size=9512, ...}) = 0
mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb6ffa000
mmap2(NULL, 73772, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb6fbb000
mprotect(0xb6fbd000, 61440, PROT_NONE) = 0
mmap2(0xb6fcc000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1000) = 0

xb6fcc000
close(3) = 0
munmap(0xb6ffc000, 54) = 0
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_LARGEFILE|O_CLOEXEC) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=39242, ...}) = 0
mmap2(NULL, 39242, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb6ff0000
close(3) = 0
openat(AT_FDCWD, "/lib/arm-linux-gnueabihf/libc.so.6", O_RDONLY|O_LARGEFILE|O_CLOEXEC) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0(\0\1\0\0\0\274x\1\0004\0\0\0"..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1296004, ...}) = 0
mmap2(NULL, 1364764, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb6e6d000
mprotect(0xb6fa5000, 65536, PROT_NONE) = 0
mmap2(0xb6fb5000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x138000) =

0xb6fb5000
mmap2(0xb6fb8000, 8988, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0

xb6fb8000
close(3) = 0
set_tls(0xb6ffaf40) = 0
mprotect(0xb6fb5000, 8192, PROT_READ) = 0
mprotect(0xb6fcc000, 4096, PROT_READ) = 0

LAB 8: TRACING PROGRAMS 103

mprotect(0x20000, 4096, PROT_READ) = 0
mprotect(0xb6ffe000, 4096, PROT_READ) = 0
munmap(0xb6ff0000, 39242) = 0
exit_group(127) = ?
+++ exited with 127 +++

There’s a lot of information there, so let’s step back and discuss what
we’re looking at. What strace gives you is a system call trace. A system
call is a fundamental operation in an operating system. The purpose of
an operating system is to provide an abstraction between hardware and
software. The OS, and to a lesser extent, a programming language, are
what make it possible to call open and read to read from a file without
having toworry aboutwhether that file is on a spinningmagnetic disk, a
solid state disk, or a network-mounted file share. The tradeoff is that all
input and output operations that a program performs must be handled
by the operating system.1 1 Calling the operating system performs

what is called a context switch. A context
switch sets aside the running program
to perform work in the kernel. To do
this safely, the operating system must
invalidate the processor’s caches, switch
the processor from user mode to kernel
mode, and perform a substantial amount
of bookkeeping work. Context switches
are costly.

strace is able to produce a system call trace by interposing on the sys-
tem call interface between a program and the operating system. Inter-
position is when a program inserts itself between two other programs,
intercepting calls from one made to the other. strace intercepts all sys-
tem calls, writing them out as log messages on stderr.

operating system

program

op
en

rea
d

wr
ite … clo
se

sta
t

operating system

program

op
en

rea
d

wr
ite … clo
se

sta
t

strace
STDERR

Since strace writes messages to stderr, you can capture them to a
file by running it like so:
$ strace ./prog1 2> trace.txt

where the 2> instructs the operating system to redirect stderr to the
file, trace.txt.

The important takeaway from our trace above is that every line is a
system call made by prog1. And as we see, although our prog1.c pro-
gram does not read or write to anything, the program does indeed per-
form some I/O. We aren’t going to dig in deeply into why, exactly, this
program performs these operations except to say that what you see in
this trace is what every program, at some level must do in order to start

104

up. Key parts shown in the trace are where the shell starts the program
(execve), where the stack is initialized (brk), where the program loads
the program loader (openat of ld.so.preload through mmap2 where
the loader’s TEXT section is placed in memory), and where the C run-
time itself is loaded (openat of libc.so.6, etc.). You can also see which
sections of the program are marked read-only in order to prevent pro-
gram corruption and control-flow attacks (mprotect).

10.4 Part 2: A program that really does something.
Let’s move on to a dangerous program, prog2. To make this interesting,
you do not have access to prog2’s source code. Instead, download the
prog2 binary from the course website.
$ wget https://williams-cs.github.io/cs331-f21-www/assets/labs/lab8/prog2
$ chmod +x prog2

This program is destruc-
tive. The only reason this
program is “safe” to use
in this lab is that its de-
structive actions will not

succeed when run as a normal, unpriv-
ileged user. Do not run this program with
sudo!

This program is already compiled. Just run it using strace.
$ strace ./prog2 2> trace2.txt

What does the program try to do? Use strace to find out.

10.5 Part 3: Tracing a program that launches other programs.
Finally, strace is a flexible program that can perform many functions,
but one of its most useful functions is to trace a program and all the pro-
grams it launches. To do that, we call strace with the -f flag.

Recall one of our earlier labs where we explored how to call each
component of the compiler separately? In other words, instead of call-
ing gcc, we called the C translator, cc1, the assembler, as, and the linker
ld. Ever wonder how I figured out how to call those subprograms? It
wasn’t because I read a book. I used strace to learn how gcc itself called
them so that I could observe what it did.
$ strace -f gcc -Wall prog1.c -o prog1 2> gcctrace.txt

The captured trace, gcctrace.txt contains all the information you
need to figure this out yourself. Be aware that gcctrace.txt contains a
lot of information! But by focusing our attention on the right things, we
can learn a lot. Let’s filter out everything that isn’t a program launch.
Program launches are done with the execve system call.
$ grep execve gcctrace.txt

LAB 8: TRACING PROGRAMS 105

Focusing our attention like this reveals the programs I described above,
cc1, as, and ld.2 This is how I “reversed engineered” the actions of the 2 And the mystery program, collect2.

Bonus: what does collect2 do?gcc wrapper program, without having to read any of its source code.
Mastering strace requires a little practice—and familiarity with the

system call interface can help a lot—but using it can reveal a lot about
what a program does. This is particularly useful if youwant to establish
a baseline to seewhat an uncorrupted program should do. This informa-
tion can be used tominimize the damage a programcando by restricting
the syscalls that a program can perform. For example, the pledge3 util- 3 https://man.openbsd.org/pledge.2

ity from OpenBSD takes a list of permitted system calls; any program
that calls a syscall not on the list is immediately terminated. pledge
can be coupled with unveil4 to restrict access to specified parts of the 4 https://man.openbsd.org/unveil.2

filesystem, and strace can also help determine which files are part of
a program’s normal operation. Sadly, pledge and unveil are not avail-
able on Linux, however efforts are underway to bring similar features
to Linux.5. 5 For example, Landlock: https://

landlock.io/

10.6 Part 4: ptrace
This lab is just a little taste of what you can do with program tracing
utilities like strace. Have a look at the man page to see what else you
can do.

Other operating systems also have similar utilities. The macOS has a
utility called dtrace6 and a popular option on Windows is the Process 6 Running tracing tools in the macOS

requires disabling the operating sys-
tems’s system integrity protection feature.
Be warned!

Monitor tool from Sysinternals.
The strace tool is built on a much more powerful interface called

ptrace, which is built into most UNIX operating systems.7 ptrace al- 7 ptrace is a part of POSIX, the UNIX
standard.lows programmers not to just intercept and log system calls like strace,

but to actually intercept and change system call results. Although a ref-
erence monitor is best implemented as a part of a kernel’s design, one
could implement a lightweight reference monitor using ptrace. Amaz-
ingly, ptrace requires no special privileges—it runs entirely at the priv-
ilege level of the user. Although gdb does not use ptrace for portability
reasons8, one could use ptrace to build a debugger. 8 For example, gdb runs on Windows,

which does not have ptrace.If you’re curious, have a look at man ptrace.

https://man.openbsd.org/pledge.2
https://man.openbsd.org/unveil.2
https://landlock.io/
https://landlock.io/

	Lab 0: Setting up your Raspberry Pi
	Learning Goals
	The Lab Kit
	Step 1: Flash Your SD Card
	Step 2: Connect a Serial Console Adapter to Your Computer
	Step 3: Start a Console Emulator on the Host Computer
	Step 4: Observe the Blinkenlights
	Step 5: Connect a Serial Console Adapter to the Raspberry Pi
	Step 6: Insert microSD Card and Power Up
	Step 7: Do a clean shutdown
	Step 8: Configure Console Dimensions
	Step 9: Configure Wifi
	Step 10: Install Some Software
	Step 11: Have a Little Fun: Network Scanning

	Lab 1: Login Security
	Learning Goals
	Required Reading
	Computing Environment
	Finding Documentation for C Functions
	Starter Code
	The Password Database
	Part 1: login0, a naïve login program
	Part 2: Attacking login0
	Part 3: login1, an improved login program
	Part 4: attack1, a brute force attack on login1
	Part 5: login2, an even-better login program
	Reflection Questions
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Pseudoterminals
	Terminals
	Pseudo Terminals
	How to Write a Control Program
	Development Tips

	Lab 2: Hashtables in C
	Learning Goals
	Requirements
	Inputs and Outputs
	Starter Code
	How to Start
	Gotchas

	Lab 3: Password Cracking
	Required Reading
	Requirements
	Inputs and Outputs
	Part 1: Dictionary Attack
	Part 2: Trading Time for Space
	Reflection Questions
	Bonus
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Lab 4: The A32 Calling Convention
	Learning Goals
	Requirements
	Starter Code
	Compilation
	Part 1: What does each step do?
	Part 2: Simulate a program on paper
	Part 3: Did you get it right?
	Part 4: Where are the following sections?
	Part 5: Modify the program

	Lab 5: Stack Smashing, Part 1
	Learning Goals
	Required Reading
	Requirements
	Application code
	Environment set-up
	Step 1: Find the vulnerability
	Step 2: Jump to a different function
	Step 3: Filling a buffer with shellcode and executing it
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Lab 6: Removing NULL bytes
	Learning Goals
	Requirements
	Starter Code
	Part 1: Producing assembly
	Part 2: Compiling assembly
	Part 3: Viewing object code to look for NULLs
	Part 4: Replacing instructions
	Part 5: Running your code
	Bonus: Replace symbols
	Tips

	Lab 7: Stack Smashing, Part 2
	Learning Goals
	Requirements
	Lab 5
	Step 1: Jump to a function that takes input
	Step 2: Remove NULL bytes from input3
	Step 3: Call the decrypt function
	Step 4: Call the decrypt function with your student ID
	Submitting Your Lab
	Bonus: Extra Challenges
	Bonus: Feedback
	Bonus: Mistakes

	Lab 8: Tracing programs
	Learning Goals
	Requirements
	Part 1: A program that does nothing. Or does it?
	Part 2: A program that really does something.
	Part 3: Tracing a program that launches other programs.
	Part 4: ptrace

	Assembly-Level Debugging with gdb
	Disassembly mode
	Running programs
	Running programs that read from STDIN
	Setting assembly breakpoints
	Inspecting registers
	Stepping, stepping over, and continuing
	Printing values
	Inspecting values

	Appendix A: ARM Reference
	Register Mnemonics for A32 Calling Convention
	Status Flags
	A32 Calling Convention
	Instruction Mnemonics

	Appendix A: Instructor Notes
	To modify a Raspbian binary image
	To enable serial console in Raspbian
	To configure wireless in Raspbian
	To change the size of a terminal display

