__0]
Lab 4: The A32 Calling Convention

In this assignment, we will explore the A32 calling convention. A32 dictates how a C compiler running on a 32-bit ARM
Linux computer should organize its memory—particularly its call stack—to ensure interoperability.

Every C implementation on every platform is expected to adhere to a
calling convention. Although this lab is specific to Raspberry Pi and
similar computers, what you learn is largely transferrable other plat-
forms like Intel x86 and AMD64 with minor changes. Furthermore,
many programming languages—like Java, Python, and the .NET languages—
go to great lengths to interoperate with C code, which is the lingua

franca’ of library code. So even if you never touch C code again in your ! The term lingua franca literally refers

to the “language of the Franks,” a

language that was widely spoken in

other languages and serve you well in the future. the Mediterranean throughout the
middle ages. At the time, the people of
Western Europe were referred to as “the
Franks.” The language itself was a pidgin
comprised of Italian, Greek, Slavic,
Arabic, and Turkish. The term has since

life, learning about calling conventions will give you deep insight into

, come to refer to any language regularly
L&U’nmg Goals used for communication between people
who do not share a native language, like
In this lab, you will learn: English, Hindi, and Spanish.

e how to preprocess C macros to create expanded C code;
e how to generate an assembly listing from expanded C source code;
e how to generate object code from assembly; and
e how to link objects to produce an executable.
You will also learn:
e how C generates machine code to maintain the A32 call stack;
e how arguments are passed during function calls; and finally,

e how values are returned from a function call.

68

Requirements

Collaboration. This is an ungraded assignment. You are encouraged to
work with a partner.

Platform. This assignment must be completed on your Raspberry Pi, as
it is specific to the ARMv6 architecture, the Linux operating system, and
the C programming language.

Starter Code

Type the following programs into a text editor. We start with a Makefile.

.PHONY: all clean
all: lab4

lab4_expanded.c: lab4d.c
cpp lab4.c -o lab4_expanded.c

lab4_expanded.s: lab4_expanded.c
/usr/lib/gcc/arm-linux-gnueabihf/8/ccl lab4_expanded.c

lab4.0o: lab4_expanded.s
as lab4_expanded.s -o lab4.o

lab4: labéd.o
1d \

-dynamic-linker=/1ib/ld-linux-armhf.so0.3 \
/usr/lib/gcc/arm-linux-gnueabihf/8/../../../arm-linux-gnueabihf/crti.o \
/usr/lib/gcc/arm-linux-gnueabihf/8/crtbegin.o \
/usr/lib/gcc/arm-linux-gnueabihf/8/crtend.o \
/usr/lib/gcc/arm-linux-gnueabihf/8/../../../arm-linux-gnueabihf/crtn.o \
/usr/lib/gcc/arm-linux-gnueabihf/8/../../../arm-linux-gnueabihf/crtli.o \
labd.o \
-o lab4 \
-lc

clean:
@rm -f lab4_expanded.c
Q@rm -f *.s
@rm -f *.o
@rm -f lab4d

The above Makefile performs all the same steps that occur when sim-
ply running gcc -o lab4 lab4.c. Separating them out makes it easy
to inspect the outputs of all the steps.

LAB 4: THE A32 CALLING CONVENTION 69

You will also need the following C program, called 1ab4.c.

#include <stdio.h>

#define FORMAT_STRING "Y%s"
#define MESSAGE "Hello world!\n"

int main() {
printf (FORMAT_STRING, MESSAGE);
return O;

}

Compilation

When you ask a C compiler like gcc or clang to compile your program,
it works in at least four distinct phases. Those phases are preprocessing,
translation, assembly, and linking.

Preprocessor. The C preprocessor converts the C prepreprocessor macros
into C code, inserting them into a programmer’s C program. Macros are
widely used to save typing, to name symbolic constants, and to make
code more portable across platforms.

Translator. C code must be converted into assembly opcodes for the tar-
get platform. Assembly is human readable output. Although a C com-
piler could just as easily produce machine code from C source code—
because there is a 1:1 correspondence between assembly code and ma-
chine code—virtually all compilers keep this step separate. This allows
compilers for different languages to reuse assembler programs, which
are often created by hardware vendors themselves.

Assembler. Assembler code is then converted into machine code by the
assembler. At this stage, because of separate compilation, each assem-
bled machine code object is not yet executable, which is why it is called
object code.

Linker. The linker produces a single binary executable file from multi-
ple object code files, linking a user’s code and libraries together, along
with other necessary libraries like the C runtime. C runtime files are
usually named crt*.o. These small snippets of the C language are writ-
ten in assembly language and are usually assembled ahead of time and
placed in a common location by an operating system’s designers. The
C runtime tells the operating system how to implement the calling con-
vention, among other low-level details.

70

Part 1: What does each step do?

With your partner, answer the following questions.

1. What happens when you run make lab4_expanded.c? Use a text
editor or less to examine the output. In particular, what happens
to the symbols #include <stdio.h>, FORMAT_STRING, and MESSAGE?
What purpose do you think cpp serves?

2. What happens when you run make lab4_expanded.s? Use a text
editor or less to examine the output. What purpose does does cc1
serve?

3. What happens when you run make lab4.o?

(a) Use file to learn what kind of file 1ab4. o is:

$ file lab4d.o

(b) The previous step should suggest why we can’t just view lab4.o
in a text editor. Use hexdump to view lab4.o in human-readable
form.

$ hexdump -C lab4d.o

(c) When examining object code, we can use the objdump utility to re-
cover opcodes from machine code. The output of this tool should
remind you of the output of another tool. Which one was it?

$ objdump -D lab4d.o

4. What happens when you run make lab4? Use file again and com-
pare lab4 with 1lab4.o. What's the difference? Try running objdump
on lab4. You should see a lot of extra output. In general, what func-
tion do you think that extra output performs?

Part 2: Simulate a program on paper

Modify your Makefile to build the following program, doesnothing. c:
void foo() {}

int main() {
foo();
return O;

}

LAB 4: THE A32 CALLING CONVENTION 71

Generate an assembly listing for this program, and then simulate this
program on paper. You will need to refer to the Appendix A: ARM Ref-
erence handout. You should draw all 12 steps made by this program.

Note that certain opcodes can be created by multiple instruction mn-
memonics. For example, pushing one register to the call stack is the
same as copying that same register to memory using a “side-effecting
store.” For this lab, refer to the following simplifications.

e str fp, [sp, #-4]! isequivalent to the simpler push {fp, 1r}.
e 1ldr fp, [spl, #4isequivalent to the simpler pop {fp}.
Note that objdump usually prints the simpler mnemonic when there are

multiple possibilities.

When executing each instruction, be sure to follow these rules:

1. Put a frame (a box) around the values between sp and £p, inclusive.

2. Onceitis clear that a frame belongs to a different function, write that
different function’s name to the left of the frame. E.g., the first one is
labeled _start.

3. Every instruction adds 4 to the pc except the branch instructions, b,
bl, bx, etc.

4. When updating pc, sp, and £fp, be sure to draw in an arrow repre-
senting the location that it points into the instruction buffer or the
call stack, respectively.

72

To start you off, I've drawn the first two steps here.

foo:
0 push {fp}
4 add fp, sp, #0 992
8 nop
12 add sp, fp, #0 996
16 pop {r11} 1000
20 bx 1r
main: 1004
Cﬁu push {fp, lr}

? 28 add fp, sp, #4 Eoue

32 bl foo 1012

36 mov r3, #0

40 mov r0, r3 1016
44 pop {fp, pc} 1020
_start:
- 1024
48 bl main 1028
52 ..
1032
0= O 1036
r3 = O 1040
1r = ql 1044 k. sP
c =
F " L"‘ _start 1048
sp = foYy
fp = 205 2 1052 &= L?
foo:
0 push {fp}
4 add fp, sp, #0 992
8 nop
12 add sp, fp, #0 o
16 pop {rll} 1000
20 bx 1r
main: 1004
24 push ({fp, 1lr} 1008
P(_ wPP28 add £fp, sp, #4
32 bl foo 1012

36 mov r3, #0
40 mov r0, r3
44 pop {fp, pc}
_start:

48 bl main

52 ..
0 = @0

r3 (-]
ir=8%%

pc =19

sp = f0] (L
fe=loeSo

Part 3: Did you get it right?

In this part, we are going to verify that we got the steps correct using gdb.
You may have used gdb before to debug C code. Here, we are going to

LAB 4: THE A32 CALLING CONVENTION 73

use gdb to debug assembly code.

Note that, for simplicity, I changed the addresses of instructions and
the call stack in the paper example above. Since you are now going to
run this program for real, those addresses will be different. In other
words, although things will be at different locations, the basic stack
structure should remain the same.

1. Start gdb.

$ gdbtui doesnothing

2. We are going to set a breakpoint at the start of main. One funny thing
about gdb is that it sets breakpoints after the end of the function pream-
ble, which is the set of instructions that set up the stack frame for the
callee. We will first set our breakpoint at main so that we can find
main’s address, then back up and set the breakpoint at the start of
instead.

(gdb) b main

3. Start the program running.

(gdb) r
It should break at main+8.

4. After starting gdb, switch it into assembly mode.

(gdb) layout asm

5. Find the start of main. On my computer, it is 0x103e8.

6. Now restart the program. The easiest way to do this without confus-
ing gdb is to quit and start over.

(gdb) quit
A debugging session is active.

Inferior 1 [process 18345] will be killed.

Quit anyway? (y or n) y

$ gdbtui doesnothing

(gdb) b *0x103e8

Breakpoint 1 at 0x103e8

(gdb) r

Starting program: doesnothing

Breakpoint 1, 0x000103e8 in main ()
(gdb) layout asm

Note that you have to use the * above to let gdb know that you mean
the location 0x103e8 and not the function named 0x103e8.

7. You can inspect the processor’s registers with the following com-
mand:

74

10.

(gdb) info registers

You can print a specific register, like sp, with the following:
(gdb) p/x $sp

You can also print the stack “as an array” using gdb’s artificial array
syntax. For example, to print the three words between sp and fp

(gdb) p/x *Oxbefff538@3
$2 = {0xb6£b7000, Oxbefff684, 0x1}

Observe that in the above, I used the raw address stored in $sp. If
you want, you can use $sp instead, but you need to tell gdb how it
should interpret the pointer. In other words, what kind of pointer is
it? For example, this following does not work.

(gdb) p/x *$spe3
Attempt to dereference a generic pointer.
But this does.

(gdb) p/x *(intx*)$sp@3
$3 = {0xb6fb7000, Oxbefff684, Ox1}

Finally, you can step an instruction using the si command. To step
to the next instruction after a function call, use ni instead. ni is useful
because we sometimes don’t want to step inside certain functions,
like printf.

Part 4: Where are the following sections?

With your partner, identify which sections of the code correspond to the

following purposes.

Function preamble: sets up the call stack for the callee.

Function epilogue: restores the call stack in order to return control to
the caller.

Transfer of control: causes the program to jump to a different sequence
of instructions.

Preparing return value: puts the return value in a standard location,
usually r0.

Function body: the section of code that performs the function’s pur-
pose.

LAB 4: THE A32 CALLING CONVENTION 75

Part 5: Modify the program

In this last part, change the program so that main passes an argument
to foo and foo returns something. Start simply. Now, use the skills you
just learned in this lab to observe how your program passes arguments.
Feel free to experiment with this. For example, recall that at some point,
C will spill extra arguments to the call stack instead of passing them
through registers. Can you observe that happening?

	Lab 0: Setting up your Raspberry Pi
	Learning Goals
	The Lab Kit
	Step 1: Flash Your SD Card
	Step 2: Connect a Serial Console Adapter to Your Computer
	Step 3: Start a Console Emulator on the Host Computer
	Step 4: Observe the Blinkenlights
	Step 5: Connect a Serial Console Adapter to the Raspberry Pi
	Step 6: Insert microSD Card and Power Up
	Step 7: Do a clean shutdown
	Step 8: Configure Console Dimensions
	Step 9: Configure Wifi
	Step 10: Install Some Software
	Step 11: Have a Little Fun: Network Scanning

	Lab 1: Login Security
	Learning Goals
	Required Reading
	Computing Environment
	Finding Documentation for C Functions
	Starter Code
	The Password Database
	Part 1: login0, a naïve login program
	Part 2: Attacking login0
	Part 3: login1, an improved login program
	Part 4: attack1, a brute force attack on login1
	Part 5: login2, an even-better login program
	Reflection Questions
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Pseudoterminals
	Terminals
	Pseudo Terminals
	How to Write a Control Program
	Development Tips

	Lab 2: Hashtables in C
	Learning Goals
	Requirements
	Inputs and Outputs
	Starter Code
	How to Start
	Gotchas

	Lab 3: Password Cracking
	Required Reading
	Requirements
	Inputs and Outputs
	Part 1: Dictionary Attack
	Part 2: Trading Time for Space
	Reflection Questions
	Bonus
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Lab 4: The A32 Calling Convention
	Learning Goals
	Requirements
	Starter Code
	Compilation
	Part 1: What does each step do?
	Part 2: Simulate a program on paper
	Part 3: Did you get it right?
	Part 4: Where are the following sections?
	Part 5: Modify the program

	Lab 5: Stack Smashing, Part 1
	Learning Goals
	Requirements
	Application code
	Environment set-up
	Step 1: Find the vulnerability
	Step 2: Jump to a different function
	Step 3: Filling a buffer with shellcode and executing it

	Appendix A: ARM Reference
	Register Mnemonics for A32 Calling Convention
	Status Flags
	A32 Calling Convention
	Instruction Mnemonics

	Appendix A: Instructor Notes
	To modify a Raspbian binary image
	To enable serial console in Raspbian
	To configure wireless in Raspbian
	To change the size of a terminal display

