
NP hardness Reductions

Admin
• Midterm 2 back

• Wider range of grades than before

• We’ll go over answers on Monday

• Study anything missing for the final!

• Problem set 8 released (last one!)

• Some remaining homeworks back to you on Monday

• Tentative early final: Monday May 19th from 7-10pm

• By the way: you may take it early if you want; I’ll send an email
last week asking for a final commitment

Approaching NP-Hardness Reductions
• Write down the specifics of each problem
• Look for similarities between the problems
• Goal: you are trying to map an instance of one

problem to another
• Similarities between the problems may give hints

as to how to map between them
• Ask:

• What does a solution look like?
• What are the restrictions and constraints?

VERTEX-COVER SET-COVER≤p

Vertex-Cover

• Given a graph , a vertex cover is a subset of vertices
 such that for every edge , either or .

• VERTEX-COVER Problem. Given a graph and an integer ,
does have a vertex cover of size at most ?

G = (V, E)
T ⊆ V e = (u, v) ∈ E u ∈ T v ∈ T

G = (V, E) k
G k

vertex cover of size 4

independent set of size 6

Set Cover
• Set-Cover. Given a set of elements, a collection of subsets of

and an integer , are there at most subsets whose union
covers , that is,

U 𝒮 U
k k S1, …, Sk

U U ⊆ ∪k
i=1 Si

Vertex Cover Set Cover≤p

• Theorem. VERTEX-COVER SET-COVER

• Proof. Given instance of vertex cover, construct an instance
 of set cover problem such that

• has a vertex cover of size at most if and only if has a
set cover of size at most .

≤p

⟨G, k⟩
⟨U, 𝒮, k′ ⟩

G k ⟨U, 𝒮, k′ ⟩
k′

Instance of
VertexCover ⟨G, k⟩

Instance of
SetCover

⟨U, 𝒮, k′ ⟩

Algorithm for SetCover

Yes

No

Yes

No
Poly time

Algorithm for VertexCover

• Theorem. VERTEX-COVER SET-COVER

• Proof. Given instance of vertex cover, construct an instance
 of set cover problem that has a set cover of size iff has

a vertex cover of size .

• Reduction. , for each node , let

≤p

⟨G, k⟩
⟨U, 𝒮, k⟩ k G

k

U = E v ∈ V
Sv = {e ∈ E | e incident to v}

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }

Sc = { } Sd = { }

Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

Vertex Cover Set Cover≤p

Correctness
• Claim. If has a vertex cover of size at most , then can be

covered using at most subsets.

• Proof. Let be a vertex cover in

• Then, is a set cover of of the same size

(⇒) G k U
k

X ⊆ V G

Y = {Sv | v ∈ X} U

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }

Sc = { } Sd = { }

Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff

Correctness
• Claim. If can be covered using at most subsets then

has a vertex cover of size at most .

• Proof. Let be a set cover of size

• Then, is a vertex cover of size

(⇐) U k G
k

Y ⊆ 𝒮 k

X = {v | Sv ∈ Y} k

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }

Sc = { } Sd = { }

Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff

Class Exercise
IND-SET Clique≤p

Independent set:
no two vertices in
the set share an

edge

Clique

• A clique in an undirected graph is a subset of nodes such that every
two nodes are connected by an edge. A -clique is a clique that
contains nodes.

• CLIQUE. Given a graph and a number , does contain a
-clique?

k
k

G k G k

IND-SET Clique≤p

Clique

• A clique in an undirected graph is a subset of nodes such that every
two nodes are connected by an edge. A -clique is a clique that
contains nodes.

• CLIQUE. Given a graph and a number , does contain a
-clique?

• CLIQUE

• Certificate: a subset of vertices

• Poly-time verifier: check is each pair of vertices have an edge
between them and if size of subset is

k
k

G k G k

∈ 𝖭𝖯

k

IND-SET Clique≤p

IND-SET to CLIQUE

• Theorem. IND-SET CLIQUE.

• In class exercise. Reduce IND-SET to Clique. Given instance of
independent set, construct an instance of clique such that

• has independent set of size iff has clique of size .

≤p

⟨G, k⟩
⟨G′ , k′ ⟩

G k G′ k′

Instance of
IND-SET ⟨G, k⟩

Instance of
CLIQUE ⟨G′ , k′ ⟩

Algorithm for CLIQUE

Yes

No

Yes

No
Poly time

Algorithm for IND-SET

IND-SET to CLIQUE

Independent set:
no two vertices in
the set share an

edge

Clique: All pairs of
vertices in the set

share an edge

Instance of
IND-SET ⟨G, k⟩

Instance of
CLIQUE ⟨G′ , k′ ⟩

Algorithm for CLIQUE

Yes

No

Yes

No
Poly time

Algorithm for IND-SET

• Theorem. IND-SET CLIQUE.

• Proof. Given instance of independent set, we construct
an instance of clique such that has independent set
of size iff has clique of size

• Reduction.

• Let , where iff and

• has an independent set of size , then is a
clique in

• has a clique of size , then is an independent
set in

≤p

⟨G, k⟩
⟨G′ , k′ ⟩ G

k G′ k′

G′ = (V, E) e = (u, v) ∈ E e ∉ E k′ = k

(⇒) G S k S
G′

(⇐) G′ Q k Q
G

IND-SET to CLIQUE

Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary

instance of Problem into a special instance of Problem

• Prove that:

• If is a “yes” instance of , then is a “yes” instance of

• If is a “yes” instance of , then is a “yes” instance of
 if is a "no" instance of , then is a "no" instance of

x X y Y

x X y Y

y Y x X
⟺ x X y Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

IND-SET is NP Complete:
3SAT IND-SET≤p

Problem Definition: 3-SAT
• Literal. A Boolean variable or its negation or

• Clause. A disjunction of literals

• Conjunctive normal form (CNF). A boolean formula that is a
conjunction of clauses

• SAT. Given a CNF formula , does it have a satisfying truth assignment?

• 3SAT. A SAT formula where each clause contains exactly 3 literals
(corresponding to different variables)

•

• SAT, 3SAT are both NP complete

• We will use 3SAT to prove other problems are NP hard

xi xi

Cj = x1 ∨ x2 ∨ x3

ϕ
Φ = C1 ∧ C2 ∧ C3

Φ

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

IND-SET
• Given a graph , an independent set is a subset of

vertices such that no two of them are adjacent, that is, for
any ,

• IND-SET Problem.
Given a graph and an integer , does have an
independent set of size at least ?

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E) k G
k

IND-SET: NP Complete
• To show Independent set is NP complete

• Show it is in NP (already did in previous lectures)

• Reduce a known NP complete problem to it

• We will use 3-SAT

• Looking ahead: once we have shown 3-SAT IND-SET

• Since IND-SET Vertex Cover

• And Vertex Cover Set Cover

• We can conclude they are also NP hard

• As they are both in NP, they are also NP complete!

≤p

≤p

≤p

IND-SET: NP hard
• Theorem. 3-SAT IND-SET

• Given an instance of 3-SAT, we construct an instance
of IND-SET s.t. has an independent set of size iff is
satisfiable.

≤p

Φ ⟨G, k⟩
G k ϕ

ϕ ⟨G, k⟩

 AlgorithmInd-Set

 has a IS
of size

G
k

 is
satisfiable

ϕ

Poly time
Reduction

Algorithm for 3SAT

 does not
have a IS of

size

G

k

 is
satisfiable

ϕ

 is not
satisfiable
ϕ

Map the Problems

What is a possible solution?

An assignment of T/F to variables A selection of vertices to be an IS S

What is the requirement?

3SAT Ind-Set

Each clause must contain at least
one literal that is True must contain at least verticesS k

What are the restrictions?

 can be true iff is assigned falsex x If , then both and
cannot be in

(u, v) ∈ E u v
S

3SAT IND-SET≤p

• Reduction. Let be the number of clauses in .

• has vertices, one for each literal in

• (Clause gadget) For each clause, connect the three literals in a
triangle

• (Variable gadget) Each variable is connected to its negation in
any other clause

k Φ

G 3k Φ

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

3SAT IND-SET≤p

• Observations.

• Any independent set is can contain at most 1 vertex from
each clause triangle

• Only one of or can be in an independent set
(consistency)

G

xi xi

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

3SAT IND-SET≤p

• Claim. is satisfiable iff has an independent set of size

• Suppose is satisfiable, consider a satisfying
assignment

• There is at least one true literal in each clause

• Select one true literal from each clause/triangle

• This is an independent set of size

Φ G k

(⇒) Φ

k

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

• Claim. is satisfiable iff has an independent set of size

• Let be in an independent set in of size

• must contain exactly one node in each triangle

• Set the corresponding literals to true

• Set remaining literals arbitrarily

• All clauses are satisfied — is satisfiable

Φ G k
(⇐) S G k

S

Φ ∎

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

3SAT IND-SET≤p

• Our reduction is clearly polynomial time in the input

• has 3 nodes, where is #clauses, and edges

• Thus, independent is NP hard

• Since independent set is in NP (shown previously)

• Independent set is NP complete

G k k < (3k)2

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

3SAT IND-SET≤p

Reduction Strategies
• Equivalence

• VERTEX-COVER IND-SET

• Special case to general case

• VERTEX-COVER SET-COVER

• Encoding with gadgets

• 3-SAT IND-SET

• Transitivity

• 3-SAT IND-SET VERTEX-COVER SET-COVER

• Thus, IND-SET, VERTEX-COVER and SET-COVER are NP hard

• Since they are all in NP, also NP - complete

≡p

≤p

≤p

≤p ≤p ≤p

SUBSET-SUM is NP Complete:
Vertex-Cover SUBSET-SUM≤p

This reduction is
noticeably harder
than the previous

ones and very clever

Subset Sum Problem
• SUBSET-SUM.

Given positive integers and a target integer , is
there a subset of numbers that adds up to exactly

• SUBSET-SUM

• Certificate: a subset of numbers

• Poly-time verifier: checks if subset is from the given set
and sums exactly to

• Problem has a pseudo-polynomial -time dynamic
programming algorithm similar to Knapsack

• Will prove SUBSET-SUM is NP hard: reduction from vertex cover

n a1, …, an T
T

∈ 𝖭𝖯

T

O(nT)

Vertex Cover to Subset Sum
• Theorem. VERTEX-COVER SUBSET-SUM

• Proof. Given a graph with vertices and edges and a
number , we construct a set of numbers and a target
sum such that has a vertex cover of size iff there is a
subset of numbers that sum to

≤p

G n m
k a1, …, at

T G k
T

⟨G, k⟩ ⟨a1, …an, T⟩

Subset-Sum Algorithm

 subset that
sums to

∃
T

 vertex cover
of size

∃
k

Poly time
Reduction

Algorithm for Vertex Cover

 subset that
sums to

∄
T

 vertex cover
of size

∄
k

Map the Problems

What is a possible solution?

A selection of vertices to be in VC C A selection of numbers in subset S

What is the requirement?

Vertex Cover Subset Sum

 must contain at most verticesC k numbers in must sum to S T

What are the restrictions?

If , then either or
must be in

(u, v) ∈ E u v
S must be a subset of input integersS

Vertex Cover to Subset Sum
• Theorem. VERTEX-COVER SUBSET-SUM

• Proof. Label the edges of as .

• Reduction.

• We'll create one integer for every vertex, and one integer
for every edge

• Force selection of vertex integers: so will make sure that
we can't sum to unless we have that

• Force edge covering: for every edge , we will force
that number can't sum to unless either or is picked

≤p

G 0,1,…, m − 1

k
T

(u, v)
T u v

Vertex Cover to Subset Sum
• Theorem. VERTEX-COVER SUBSET-SUM

• Label the edges of as .

• Reduction. Create integers and a target value as follows

• Each integer is a -bit number (in base ten)

• Vertex integer : th (most significant) bit is and for ,
the th bit is 1 if th edge is incident to vertex

• Edge integer : th digit is and for , the th bit is 1 if
this integer represents an edge

•
Target value

≤p

G 0,1,…, m − 1

n + m T

m + 1

av m 1 i < m
i i v

buv m 0 i < m i
i = (u, v)

T = k ⋅ 10m +
m−1

∑
i=0

2 ⋅ 10i

Vertex Cover to Subset Sum
• Example: consider the graph where

and

• If then

G = (V, E) V = {u, v, w, x}
E = {(u, v), (u, w), (v, w), (v, x), (w, x)}

k = 2 T = 222222

u v

w x

5th 4th : (wx) 3rd : (vx) 2nd : (vw) 1st : (uw) 0th: (uv)

1 0 0 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

au

av

aw

ax

buv

bvw

bvx

bwx

buw

Correctness
• Claim. has a vertex cover of size if and only there is a subset of

corresponding integers that sums to value

• Let be a vertex cover of size in , define as

G k X
T

(⇒) C k G X
X := {av | v ∈ C} ∪ {bi | edge i has exactly one endpoint in C}

T = k ⋅ 10m +
m−1

∑
i=0

2 ⋅ 10i

C = {v, w}

T = 222222

u v

w x

5th 4th : (wx) 3rd : (vx) 2nd : (vw) 1st : (uw) 0th: (uv)
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

au

av

aw

ax

buv

bvw

bvx

bwx

buw

Correctness
• Claim. has a vertex cover of size if and only there is a subset of

corresponding integers that sums to value

• Let be a vertex cover of size in , define as

G k X
T

(⇒) C k G X
X := {av | v ∈ C} ∪ {bi | edge i has exactly one endpoint in C}

T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

C = {v, w}

T = 222222

u v

w x

5th 4th : (wx) 3rd : (vx) 2nd : (vw) 1st : (uw) 0th: (uv)
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

au

av

aw

ax

buv

bvw

bvx

bwx

buw

Correctness
• Claim. has a vertex cover of size if and only there is a subset of

corresponding integers that sums to value

• Let be a vertex cover of size in , define as

• Sum of the most significant bits of is

• All other bit must sum to , why?

• Consider column for edge :

• Either both endpoints are in , then we get two 's from and
and none from

• Exactly one endpoint is in : get bit from and bit from or

• Thus the elements of sum to exactly

G k X
T

(⇒) C k G X
X := {av | v ∈ C} ∪ {bi | edge i has exactly one endpoint in C}

X k

2

(u, v)

C 1 av au
buv

C 1 buv 1 au av

X T

Vertex Cover to Subset Sum
• Claim. has a vertex cover of size if and only there is a subset

of corresponding integers that sums to value

• Let be the subset of numbers that sum to

• That is, there is s.t.

• These numbers are base 10 and there are no carries

• Each only contributes to the th digit, which is 2

• Thus, for each edge , at least one of its endpoints must be in

• is a vertex cover

• Size of is : only vertex-numbers have a in the th position

G k X
T

(⇐) X T

V′ ⊆ V, E′ ⊆ E

X := ∑
v∈V′

av + ∑
i∈E′

bi = T = k ⋅ 10m +
m−1

∑
i=0

2 ⋅ 10i

bi 1 i

i V′

V′

V′ k 1 m

Subset Sum: Final Thoughts
• Polynomial time reduction?

• since we check vertex/edge incidence for each
vertex/edge when creating numbers

• Does a subset-sum algorithm mean vertex cover can be
solved in polynomial time?

• No!

• NP hard problems that have pseudo-polynomial algorithms are
called weakly NP hard

O(nm)
n + m

O(nT)

T ≈ 10m

Steps to Prove is NP CompleteX
• Step 1. Show is in NP

• Step 2. Pick a known NP hard problem from class

• Step 3. Show that

• Show both sides of reduction are correct: if and
only if directions

• State that reduction runs in polynomial time in input
size of problem

X

Y

Y ≤p X

Y

List of NPC Problems So Far
• SAT/ 3-SAT

• INDEPENDENT SET

• VERTEX COVER

• SET COVER

• CLIQUE

• Subset-Sum

• Knapsack

• Next:

• 3-COLOR (-coloring of graphs for is also hard).

• Traveling salesman problem

• Hamiltonian cycle / path

k k ≥ 3

