
NP hardness Reductions



Admin
• Midterm 2 back 

• Wider range of grades than before 

• We’ll go over answers on Monday 

• Study anything missing for the final! 

• Problem set 8 released (last one!) 

• Some remaining homeworks back to you on Monday 

• Tentative early final: Monday May 19th from 7-10pm 

• By the way: you may take it early if you want; I’ll send an email 
last week asking for a final commitment



Approaching NP-Hardness Reductions
• Write down the specifics of each problem 
• Look for similarities between the problems 
• Goal: you are trying to map an instance of one 

problem to another 
• Similarities between the problems may give hints 

as to how to map between them 
• Ask: 

• What does a solution look like? 
• What are the restrictions and constraints?



VERTEX-COVER    SET-COVER≤p



Vertex-Cover

• Given a graph , a vertex cover is a subset of vertices 
 such that for every edge , either  or . 

• VERTEX-COVER Problem.  Given a graph  and an integer , 
does  have a vertex cover of size at most ?

G = (V, E)
T ⊆ V e = (u, v) ∈ E u ∈ T v ∈ T

G = (V, E) k
G k

vertex cover of size 4

independent set of size 6



Set Cover
• Set-Cover. Given a set  of elements, a collection  of subsets of  

and an integer , are there at most  subsets  whose union 
covers , that is,  

U 𝒮 U
k k S1, …, Sk

U U ⊆ ∪k
i=1 Si



Vertex Cover  Set Cover≤p

• Theorem.  VERTEX-COVER    SET-COVER 

• Proof.   Given instance  of vertex cover, construct an instance 
 of set cover problem such that  

•  has a vertex cover of size at most  if and only if  has a 
set cover of size at most .

≤p

⟨G, k⟩
⟨U, 𝒮, k′ ⟩

G k ⟨U, 𝒮, k′ ⟩
k′ 

Instance of  
VertexCover ⟨G, k⟩

Instance of  
SetCover 

⟨U, 𝒮, k′ ⟩

Algorithm for SetCover

Yes

No

Yes

No
Poly time

Algorithm for VertexCover



• Theorem.  VERTEX-COVER    SET-COVER 

• Proof.   Given instance  of vertex cover, construct an instance 
 of set cover problem that has a set cover of size  iff  has 

a vertex cover of size .  

• Reduction.   , for each node , let
 

≤p

⟨G, k⟩
⟨U, 𝒮, k⟩ k G

k

U = E v ∈ V
Sv = {e ∈ E | e incident to v}

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }

Sc = { }  Sd = {  } 

Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

Vertex Cover  Set Cover≤p



Correctness
• Claim.   If  has a vertex cover of size at most , then  can be 

covered using at most  subsets. 

• Proof. Let  be a vertex cover in  

• Then,  is a set cover of  of the same size  

( ⇒ ) G k U
k

X ⊆ V G

Y = {Sv | v ∈ X} U

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }

Sc = { }  Sd = {  } 

Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff



Correctness
• Claim.   If  can be covered using at most  subsets then  

has a vertex cover of size at most . 

• Proof. Let  be a set cover of size   

• Then,  is a vertex cover of size  

( ⇐ ) U k G
k

Y ⊆ 𝒮 k

X = {v | Sv ∈ Y} k

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }

Sc = { }  Sd = {  } 

Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff



Class Exercise 
IND-SET    Clique≤p

Independent set: 
no two vertices in 
the set share an 

edge



Clique

• A clique in an undirected graph is a subset of nodes such that every 
two nodes are connected by an edge. A -clique is a clique that 
contains  nodes. 

• CLIQUE.  Given a graph  and a number , does  contain a 
-clique?

k
k

G k G k

IND-SET    Clique≤p



Clique

• A clique in an undirected graph is a subset of nodes such that every 
two nodes are connected by an edge. A -clique is a clique that 
contains  nodes. 

• CLIQUE.  Given a graph  and a number , does  contain a 
-clique? 

• CLIQUE  

• Certificate: a subset of vertices  

• Poly-time verifier: check is each pair of vertices have an edge 
between them and if size of subset is 

k
k

G k G k

∈ 𝖭𝖯

k

IND-SET    Clique≤p



IND-SET to CLIQUE

• Theorem.  IND-SET  CLIQUE. 

• In class exercise.  Reduce IND-SET to Clique. Given instance  of 
independent set, construct an instance  of clique such that  

•  has independent set of size  iff  has clique of size .

≤p

⟨G, k⟩
⟨G′ , k′ ⟩

G k G′ k′ 

Instance of  
IND-SET ⟨G, k⟩

Instance of  
CLIQUE ⟨G′ , k′ ⟩

Algorithm for CLIQUE

Yes

No

Yes

No
Poly time

Algorithm for IND-SET



IND-SET to CLIQUE

Independent set: 
no two vertices in 
the set share an 

edge

Clique: All pairs of 
vertices in the set 

share an edge

Instance of  
IND-SET ⟨G, k⟩

Instance of  
CLIQUE ⟨G′ , k′ ⟩

Algorithm for CLIQUE

Yes

No

Yes

No
Poly time

Algorithm for IND-SET



• Theorem.  IND-SET  CLIQUE. 

• Proof. Given instance  of independent set, we construct 
an instance  of clique such that  has independent set 
of size  iff  has clique of size  

• Reduction.  

• Let , where  iff  and  

•   has an independent set  of size , then   is a 
clique in  

•   has a clique  of size , then  is an independent 
set in 

≤p

⟨G, k⟩
⟨G′ , k′ ⟩ G

k G′ k′ 

G′ = (V, E) e = (u, v) ∈ E e ∉ E k′ = k

( ⇒ ) G S k S
G′ 

( ⇐ ) G′ Q k Q
G

IND-SET to CLIQUE



Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary 

instance  of Problem  into a special instance  of Problem  

• Prove that: 

• If  is a “yes” instance of , then  is a “yes” instance of  

• If  is a “yes” instance of , then  is a “yes” instance of   
 if  is a "no" instance of , then  is a "no" instance of 

x X y Y

x X y Y

y Y x X
⟺ x X y Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X



IND-SET is NP Complete: 
3SAT    IND-SET≤p



Problem Definition: 3-SAT
• Literal.  A Boolean variable or its negation           or   

• Clause.  A disjunction of literals           

• Conjunctive normal form (CNF).  A boolean formula  that is a 
conjunction of clauses    

• SAT.  Given a CNF formula , does it have a satisfying truth assignment?  

• 3SAT.  A SAT formula where each clause contains exactly 3 literals 
(corresponding to different variables) 

•   

• SAT, 3SAT are both NP complete 

• We will use 3SAT to prove other problems are NP hard

xi xi

Cj = x1 ∨ x2 ∨ x3

ϕ
Φ = C1 ∧ C2 ∧ C3

Φ

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)



IND-SET
• Given a graph , an independent set is a subset of 

vertices  such that no two of them are adjacent, that is, for 
any ,   

• IND-SET Problem.   
Given a graph  and an integer , does  have an 
independent set of size at least ?

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E) k G
k



IND-SET: NP Complete
• To show Independent set is NP complete 

• Show it is in NP (already did in previous lectures) 

• Reduce a known NP complete problem to it 

• We will use 3-SAT 

• Looking ahead: once we have shown 3-SAT  IND-SET 

• Since IND-SET  Vertex Cover 

• And Vertex Cover  Set Cover 

• We can conclude they are also NP hard 

• As they are both in NP, they are also NP complete!

≤p

≤p

≤p



IND-SET: NP hard
• Theorem.  3-SAT  IND-SET 

• Given an instance  of 3-SAT, we construct an instance  
of IND-SET s.t.  has an independent set of size  iff  is 
satisfiable.

≤p

Φ ⟨G, k⟩
G k ϕ

ϕ ⟨G, k⟩

 AlgorithmInd-Set

 has a IS 
of size 

G
k

 is 
satisfiable

ϕ

Poly time 
Reduction

Algorithm for 3SAT

 does not 
have a IS of 

size 

G

k

 is 
satisfiable

ϕ

 is not 
satisfiable
ϕ



Map the Problems

What is a possible solution?

An assignment of  T/F  to variables A selection of vertices to be an IS S

What is the requirement?

3SAT Ind-Set

Each clause must contain at least 
one literal that is True  must contain at least  verticesS k

What are the restrictions?

 can be true iff  is assigned falsex x If , then both  and  
cannot be in 

(u, v) ∈ E u v
S



3SAT  IND-SET≤p

• Reduction.  Let  be the number of clauses in . 

•  has  vertices, one for each literal in  

• (Clause gadget) For each clause, connect the three literals in a 
triangle 

• (Variable gadget) Each variable is connected to its negation in 
any other clause

k Φ

G 3k Φ

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )



3SAT  IND-SET≤p

• Observations.

• Any independent set is  can contain at most 1 vertex from 
each clause triangle 

• Only one of  or  can be in an independent set 
(consistency)

G

xi xi

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )



3SAT  IND-SET≤p

• Claim.   is satisfiable iff  has an independent set of size  

•  Suppose  is satisfiable, consider a satisfying 
assignment 

• There is at least one true literal in each clause 

• Select one true literal from each clause/triangle  

• This is an independent set of size   

Φ G k

( ⇒ ) Φ

k

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )



• Claim.   is satisfiable iff  has an independent set of size  

•  Let  be in an independent set in  of size  

•  must contain exactly one node in each triangle 

• Set the corresponding literals to true  

• Set remaining literals arbitrarily  

• All clauses are satisfied —  is satisfiable 

Φ G k
( ⇐ ) S G k

S

Φ ∎

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )

3SAT  IND-SET≤p



• Our reduction is clearly polynomial time in the input 

•  has 3  nodes, where  is #clauses, and  edges 

• Thus, independent is NP hard 

• Since independent set is in NP (shown previously) 

• Independent set is NP complete

G k k < (3k)2

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )

3SAT  IND-SET≤p



Reduction Strategies
• Equivalence 

• VERTEX-COVER    IND-SET 

• Special case to general case 

• VERTEX-COVER    SET-COVER 

• Encoding with gadgets 

• 3-SAT  IND-SET 

• Transitivity 

•  3-SAT  IND-SET    VERTEX-COVER    SET-COVER 

• Thus, IND-SET, VERTEX-COVER and SET-COVER are NP hard 

• Since they are all in NP, also NP - complete

≡p

≤p

≤p

≤p ≤p ≤p



SUBSET-SUM is NP Complete: 
Vertex-Cover    SUBSET-SUM≤p

This reduction is 
noticeably harder 
than the previous 

ones and very clever



Subset Sum Problem
• SUBSET-SUM.  

Given  positive integers  and a target integer , is 
there a subset of numbers that adds up to exactly  

• SUBSET-SUM  

• Certificate: a subset of numbers 

• Poly-time verifier: checks if subset is from the given set 
and sums exactly to  

• Problem has a pseudo-polynomial -time dynamic 
programming algorithm similar to Knapsack 

• Will prove SUBSET-SUM is NP hard: reduction from vertex cover

n a1, …, an T
T

∈ 𝖭𝖯

T

O(nT )



Vertex Cover to Subset Sum
• Theorem.  VERTEX-COVER  SUBSET-SUM 

• Proof.  Given a graph  with  vertices and  edges and a 
number , we construct a set of numbers  and a target 
sum  such that  has a vertex cover of size  iff there is a 
subset of numbers that sum to 

≤p

G n m
k a1, …, at

T G k
T

⟨G, k⟩ ⟨a1, …an, T⟩

Subset-Sum Algorithm

 subset that 
sums to 

∃
T

 vertex cover 
of size 

∃
k

Poly time 
Reduction

Algorithm for Vertex Cover

 subset that 
sums to 

∄
T

 vertex cover 
of size 

∄
k



Map the Problems

What is a possible solution?

A selection of vertices to be in VC C A selection of numbers in subset S

What is the requirement?

Vertex Cover Subset Sum

 must contain at most  verticesC k numbers in  must sum to S T

What are the restrictions?

If , then either  or   
must be in 

(u, v) ∈ E u v
S  must be a subset of input integersS



Vertex Cover to Subset Sum
• Theorem.  VERTEX-COVER  SUBSET-SUM 

• Proof. Label the edges of  as . 

• Reduction.  

• We'll create one integer for every vertex, and one integer 
for every edge 

• Force selection of  vertex integers: so will make sure that 
we can't sum to  unless we have that 

• Force edge covering:  for every edge , we will force 
that number can't sum to  unless either  or  is picked

≤p

G 0,1,…, m − 1

k
T

(u, v)
T u v



Vertex Cover to Subset Sum
• Theorem.  VERTEX-COVER  SUBSET-SUM 

• Label the edges of  as . 

• Reduction. Create  integers and a target value  as follows 

• Each integer is a -bit number (in base ten) 

• Vertex integer  : th (most significant) bit is  and for , 
the th bit is 1 if th edge is incident to vertex  

• Edge integer  : th digit is  and for , the th bit is 1 if 
this integer represents an edge   

•
Target value   

≤p

G 0,1,…, m − 1

n + m T

m + 1

av m 1 i < m
i i v

buv m 0 i < m i
i = (u, v)

T = k ⋅ 10m +
m−1

∑
i=0

2 ⋅ 10i



Vertex Cover to Subset Sum
• Example: consider the graph   where  

and  
 
 
 
 
 
 
 
 
 

• If  then 

G = (V, E) V = {u, v, w, x}
E = {(u, v), (u, w), (v, w), (v, x), (w, x)}

k = 2 T = 222222

u v

w x

5th 4th  : (wx) 3rd  : (vx) 2nd : (vw) 1st : (uw) 0th: (uv)

1 0 0 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

au

av

aw

ax

buv

bvw

bvx

bwx

buw



Correctness
• Claim.   has a vertex cover of size  if and only there is a subset  of 

corresponding integers that sums to value  

•  Let  be a vertex cover of size  in , define  as  
 

G k X
T

( ⇒ ) C k G X
X := {av | v ∈ C} ∪ {bi | edge i has exactly one endpoint in C}

T = k ⋅ 10m +
m−1

∑
i=0

2 ⋅ 10i

C = {v, w}

T = 222222

u v

w x

5th 4th  : (wx) 3rd  : (vx) 2nd : (vw) 1st : (uw) 0th: (uv)
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

au

av

aw

ax

buv

bvw

bvx

bwx

buw



Correctness
• Claim.   has a vertex cover of size  if and only there is a subset  of 

corresponding integers that sums to value  

•  Let  be a vertex cover of size  in , define  as  
 

G k X
T

( ⇒ ) C k G X
X := {av | v ∈ C} ∪ {bi | edge i has exactly one endpoint in C}

T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

C = {v, w}

T = 222222

u v

w x

5th 4th  : (wx) 3rd  : (vx) 2nd : (vw) 1st : (uw) 0th: (uv)
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

au

av

aw

ax

buv

bvw

bvx

bwx

buw



Correctness
• Claim.   has a vertex cover of size  if and only there is a subset  of 

corresponding integers that sums to value  

•  Let  be a vertex cover of size  in , define  as  
  

• Sum of the most significant bits of  is   

• All other bit must sum to , why? 

• Consider column for edge : 

• Either both endpoints are in , then we get two 's from  and  
and none from  

• Exactly one endpoint is in :  get  bit from  and  bit from  or  

• Thus the elements of  sum to exactly 

G k X
T

( ⇒ ) C k G X
X := {av | v ∈ C} ∪ {bi | edge i has exactly one endpoint in C}

X k

2

(u, v)

C 1 av au
buv

C 1 buv 1 au av

X T



Vertex Cover to Subset Sum
• Claim.   has a vertex cover of size  if and only there is a subset  

of corresponding integers that sums to value  

•  Let  be the subset of numbers that sum to   

• That is, there is  s.t.

  

• These numbers are base 10 and there are no carries  

• Each  only contributes  to the th digit, which is 2 

• Thus, for each edge , at least one of its endpoints must be in  

•  is a vertex cover 

• Size of  is : only vertex-numbers have a  in the th position

G k X
T

( ⇐ ) X T

V′ ⊆ V, E′ ⊆ E

X := ∑
v∈V′ 

av + ∑
i∈E′ 

bi = T = k ⋅ 10m +
m−1

∑
i=0

2 ⋅ 10i

bi 1 i

i V′ 

V′ 

V′ k 1 m



Subset Sum:  Final Thoughts
• Polynomial time reduction? 

•  since we check vertex/edge incidence for each 
vertex/edge when creating  numbers 

• Does a  subset-sum algorithm mean vertex cover can be 
solved in polynomial time? 

• No!   

• NP hard problems that have pseudo-polynomial algorithms are 
called weakly NP hard

O(nm)
n + m

O(nT )

T ≈ 10m



Steps to Prove  is NP CompleteX
• Step 1.  Show  is in NP 

• Step 2.  Pick a known NP hard problem  from class 

• Step 3.  Show that  

• Show both sides of reduction are correct:  if and 
only if directions 

• State that reduction runs in polynomial time in input 
size of problem 

X

Y

Y ≤p X

Y



List of NPC Problems So Far
• SAT/ 3-SAT 

• INDEPENDENT SET 

• VERTEX COVER 

• SET COVER 

• CLIQUE 

• Subset-Sum 

• Knapsack 

• Next: 

• 3-COLOR  ( -coloring of graphs for  is also hard).

• Traveling salesman problem 

• Hamiltonian cycle / path

k k ≥ 3


