
P and NP

Sam McCauley

May 5, 2025



Welcome Back!

• PS7 and Midterm 2 back by Thursday

• Last problem set is this week

• Last call: please email me if you want to take the final early

• If you are not sure (e.g. you’re on a sports team and don’t know if you’ll qualify for
a tournament) please let me know

• Questions?



Shifting Focus



Algorithmic Design Paradigms

• Greedy Algorithms

• Divide and Conquer

• Dynamic Programming

• Network Flow

• ⇐ we are here!



Where we are

• We saw increasingly powerful techniques to solve computational problems

• Are there limits? Can we keep coming up with increasingly powerful

techniques to eventually solve any problem?

• Answer: We don’t know.



We don’t know

• Most other sciences have been around for hundreds

of years

• Many of their fundamental questions have been

either fully addressed, or are at least well-understood

• Not really the case in computer science. I don’t know
if:

• Network flows can be solved on a flow network with m
edges in O(m) time (best we used: O(nm))

• Edit distance can be solved for two length-n strings
in O(n) time (we saw O(n2))

• Knapsack with n items can be solved in O(n) time, no
matter how large C is



Shifting Focus

• Rest of the class: lower bounds: what problems are impossible to solve

efficiently?

• Most of these lower bounds are conditional: I can only say that they are

probably impossible to solve efficiently



Polynomial Time

• What problems can a computer solve in polynomial time?

• As we saw earlier: I mean polynomial in the size of the input

• What problems can a computer (probably) not solve in polynomial time?

• (Pseudopolynomial does not count: we will see that Knapsack probably cannot

be solved in polynomial time)



Technical Setup

• Focus on decision problems—problems with a “yes” or “no” ansewr

• Does this directed graph have a topological order?

• Is this graph bipartite?

• Do these two strings have edit distance at most 10?

• Does this flow network have a maximum flow of at least 20?

• Most computational problems have a decision analog like this

• If you want the exact solution, can binary search for the optimal value



P and NP



Class P

• Definition: P is the class of decision problems that can be solved in

polynomial time in the size of the input

• Some problems in P:

• Edit distance

• Max flow

• Bipartite matching

• Knapsack?

• We have not seen a polynomial-time algorithm! (And we won’t.)

• We can’t say that Knapsack is in P. And soon we will say: it is probably not in P.



Class NP

• Definition: Class of problems that can be verified in polynomial time

• (Does not stand for “not polynomial” or anything like that.)

• More formally: if I give you helpful information, say a proposed solution, you

can check that it is correct in polynomial time



Class NP Example

• Sudoku may be hard to solve(?)

• But if I give you the solution, it’s easy to verify

• Sudoku is in NP!



Class NP Example 2

• The dynamic program for knapsack is pseudopolynomial

• But if I give you the solution, it’s easy to verify

• Knapsack is in NP!



Class NP

• Class of problems that can be verified in polynomial time

• More formal definition (you do not need to know): there exists a

polynomial-time “certificate” for every input such that there exists a

polynomial-time algorithm that can solve the problem correctly given both the

input and the certificate



Examples of New Problems in NP



Graph 3-Coloring

• Graph Coloring: Given a graph G , is it possible to color the vertices of G

using only three colors, such that no edge has both end points colored with

the same color
• Graph coloring is in NP:

• Given a solution, we can check that only 3 colors are used in O(n) time, and
verify that each edge has differently-colored endpoints in O(m) time



Graph 3-Coloring

• Graph Coloring: Given a graph G , is it possible to color the vertices of G

using only three colors, such that no edge has both end points colored with

the same color

• What problem does this remind you of?

• Answer: coloring the vertices with 2 colors is the same as the graph being

bipartite. Remember: can solve that in O(n+m) time using BFS! Does not

work for 3-coloring however



Independent Set

• For a graph G and an integer k, is there a set S ⊆ V of k vertices such that no

two are adjacent? (In other words, for any (u, v) ∈ E, either u /∈ S or v /∈ S.)

• In pairs: why is this problem in NP?



Testing your Intuition

• Not all problems can be easily verified! (Not all problems are in NP)

• Classic example: I give you some code I wrote and I asked you “does this

program loop infinitely”?

• You can give an input where it seems to keep looping. But I can’t verify it in

polynomial time.

This is not

a “probably”

statement; it is

mathmatically

impossible to

verify. You’ll

explore this

in CSCI 361.



Quick Question

• If a problem is in P, does that mean it is also in NP?

• In P: can solve in polynomial time

• In NP: can verify in polynomial time

• Answer: yes! If a problem can be solved in polynomial time, we can verify it in
polynomial time

• Intuitively: to check the solution, we just solve the problem and double-check
that the solution matches

• More formally: can just use an empty certificate



P vs NP



P vs NP

• We know that every problem in P is also in NP

• Is the reverse true? If a problem can be verified efficiently, does that mean it

can be efficiently solved in the first place?

• Or: do there exist problems that can be verified quickly, but are impossible to

solve quickly?

• This is what it means to ask if P = NP



The answer to P = NP has extensive real-world
implications, both good and bad, either way.



What happens if P = NP

Some good things:

• We can solve most real-world problems quickly

• Can lay out chips optimally, pack trucks optimally, schedule shipping

optimally, with minimal computational cost

Some bad things:

• (Public key) cryptography does not exist



What happens if P ̸= NP

Some good things:

• Can encrypt messages; hide information

• No longer need to look for polynomial-time solutions to some problems

Some bad things:

• Some problems we cannot solve efficiently without massive computational

cost



Million Dollar Question



P vs NP

• Possibly the second biggest open problem in computer science

• One of the biggest open problems in math as well

• We are not even close to solving it!



Proving that Problems are Hard to
Solve



Goal

• We want to show that some problems are probably not in P

• (We won’t know for sure: after all it’s possible that P = NP)

• We can show that a problem is efficient to solve using an algorithm

• Plan: we will show that a problem is probably not efficient to solve using a

reduction

• Let’s review reductions



Recall: median finding

• With this algorithm I can make the following claim:

• “If I can sort in O(f(n)) time, then I can find the median in O(f(n) + 1) time”

1 Sort A
2 if n is even:
3 return A[n/2] + A[n/2 + 1]
4 else:
5 return A[(n+ 1)/2]



Recall: Bipartite Matching

a1

a2

a3

b1

b2

b3

s

a1

a2

a3

b1

b2

b3

t

1

1

1

1

1

1

1

1

1

1

1

1

• Recall: given a bipartite graph G, find the largest subset of edges M such that

no two edges in M share an endpoint



Recall: Bipartite Matching

a1

a2

a3

b1

b2

b3

s

a1

a2

a3

b1

b2

b3

t

1

1

1

1

1

1

1

1

1

1

1

1

1 Create a flow network G′ as follows:
2 add vertices s, t to G′

3 add edges from s to all vertices in A
4 add edges from all vertices in B to t
5 all edges directed to the right
6 all edges have capacity 1
7 Value of best flow in G′ is size of best matching in G



Recall: Bipartite Matching

• Recall: given a bipartite graph G, find the largest subset of edges M such that

no two edges in M share an endpoint

• With the algorithm below I can make the following claim:

• “If I can solve network flow in O(f(m)) time, then I can solve bipartite

matching in O(m+ f(m)) time”

1 Create a flow network G′ as follows:
2 add vertices s, t to G′

3 add edges from s to all vertices in A
4 add edges from all vertices in B to t
5 all edges directed to the right
6 all edges have capacity 1
7 Value of best flow in G′ is size of best matching in G



Recall: Bipartite Matching

• We have: “If I can solve network flow in O(f(m)) time, then I can solve

bipartite matching in O(m+ f(m)) time”

• How can I rephrase this as a lower bound?

• If it is impossible to solve bipartite matching in f(m) time, for some f(m) > m,
then it is impossible to solve network flow in O(f(m)) time

• If I could, it would contradict our statement above!



Lower Bounds via Reductions

• Reductions: create an algorithm for a problem using a different problem

• Strategy: let’s say we can solve problem X using an algorithm for problem Y .

Then it’s impossible for Y to be faster to solve than X

• Conclusion: Y takes at least as long to solve as X .



NP-hard Problems



Plan for Lower Bounds

• We will define a set of problems that are “NP-hard”

• Idea: NP-hard problems are (probably) not in P: are probably not possible to

solve in polynomial time

• Plan: we will use reductions! If we can use X to solve Y , and problem Y is not

in P, then problem X is also not in P



Starting Point

• Reductions only show that one problem is as hard as another

• For this to work: we need to start with a problem that is (probably) hard to

solve efficiently



Satisfiability



Satisfiability

ϕ =

clause︷ ︸︸ ︷
(x1 ∨ x2 ∨ x3)∧(x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

• The classic problem in NP

• Many variations of this problem; we’ll look at one called 3-SAT

• 3-SAT: given a formula ϕ, where ϕ consists of:

• m “clauses;” each clause is the “or” of exactly 3 literals

• Each clause has an “and” between it (so every clause must evaluate to true)



3-SAT rephrased

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

• n variables, m clauses

• Each clause has 3 literals (a variable, or the “not” of the variable)

• Clause is true if at least one literal in the clause is true

• Every clause must evaluate to true



3-SAT rephrased

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

• One solution:

• x1 = false
• x2 = false
• x3 = true
• x4 = true



NP-Hard Problems



Cook-Levin Theorem

• If 3-SAT can be solved in polynomial time, then any problem in NP can be

solved in polynomial time

• In other words:

• If 3-SAT can be solved in polynomial time, then P = NP

• If 3-SAT cannot be solved in polynomial time, then P ̸= NP

• How could one possibly prove such a general statement???



Cook-Levin Theorem: Very Brief Intuition

Rule 1:
"If in state q1 and read 0,go to q2, write 1"

Rule 2:
"Exactly one symbol per cell"

Rule 3:
"Head moves one cell per step"

Clause 1:
(x1 ∨ x2 ∨ x3)

Clause 2:
(x4 ∨ x5 ∨ x6)

Clause 3:
(x7 ∨ x8 ∨ x9)

encoding

encoding

encoding

Each rule becomes a Boolean constraint Each clause represents one rule’s logic

(You do not need to know this for the final.)

• Any computer program can be written down as a 3-SAT formula

• Long story short: given any instance of a problem in NP, we can create a

3-SAT formula that is satisfiable if and only if there is a solution to the original

problem

• In other words: it’s an explicit reduction from any problem in NP to 3-sat



NP-hard definition

A problem is NP-hard if:

• For any problem Y ∈ NP, we can reduce Y to X in polynomial time

• Therefore: if X can be solved in polynomial time, then any problem in NP can

be solved in polynomial time

• In other words: X can be solved in polynomial time if and only if P = NP

• Cook-Levin theorem: 3-SAT is NP-hard



What Does This Mean

• When I said “probably” before, what I really meant was “if P ̸= NP”

• So I would have said: it is “probably” not possible to solve 3-SAT in polynomial

time

• From now on we’ll be more formal: we will say “3-SAT is NP-hard”

• If you want to intuitively think of “NP-hard” as meaning “cannot be solved in

polynomial time” I think that’s fine.

• But: please know the real definition, and bear in mind that the true meaning is

more subtle than that



NP-Complete

• A problem is NP-Complete if it is both NP-hard, and in NP

• So: 3SAT is NP-Complete

• We’ll see next week: Knapsack is NP-Complete

• NP-Complete problems are the hardest problems in NP: if any of them can be

solved in polynomial time, then all problems in NP can be solved in polynomial

time



Proving that Problems are NP-Hard



Proving a Problem is NP-Hard

We use the notation X ≤P Y to denote that we can reduce X to Y in polynomial

time.

• In other words: given an instance a of X , in polynomial time we can define an

instance a′ of Y such that the answer to a is “yes” if and only if the answer to a′

is “yes”

We will use the following fact:

• If X ≤P Y , and X is NP-hard, then Y is NP-hard

• Let’s explain why intuitively on the board



More Formal Proof

Theorem
If X ≤P Y, and X is NP-hard, then Y is NP-hard

Proof Summary. Since X is NP-hard, for any problem Z in NP, Z ≤P X : we can

reduce Z to X in polynomial time.

We can also reduce X to Y in polynomial time.

By applying both reductions one after the other, we reduce Z to Y in polynomial

time. Therefore, Y is NP-hard.



Plan from Here on Out

Theorem
If X ≤P Y, and X is NP-hard, then Y is NP-hard

• We will be showing that a bunch of problems are NP-hard

• Plan: if we can reduce 3-SAT to a problem X , then X is NP-hard. Then if we

can reduce X to Y , we must have that Y is NP-hard and so on

• First we will reduce problems to each other; we’ll reduce 3-SAT to one of them

later

• We’ll eventually prove all of them are NP-hard

• But the 3-SAT reduction is a more difficult reduction, so I want to get some

reduction practice first


	Shifting Focus
	P and NP
	Examples of New Problems in NP
	P vs NP
	Proving that Problems are Hard to Solve
	NP-hard Problems
	Satisfiability
	NP-Hard Problems
	Proving that Problems are NP-Hard

