
Flow Conclusion

Admin
• Problem sets back (?)

• Will probably post PS7 solutions

• Midterm on Monday!

• Review session today

• No class next Thursday

• No daily homework until we come back

Disjoint Paths Problem

Disjoint Paths Problem
• Definition. Two paths are edge-disjoint if they do not have an

edge in common.

• Edge-disjoint paths problem.
Given a directed graph with two nodes and , find the max
number of edge-disjoint paths.

s t
s ↝ t

Directed graph G
2 edge-disjoint paths

s

2

3

4

5

6

7

ts

2

3

4

5

6

7

t

Towards Reduction
• Given: arbitrary instance of disjoint paths problem (): directed

graph , with source and sink

• Goal. create a special instance of a max-flow problem : flow
network with s.t.

• 1-1 correspondence. Input graph has edge-disjoint paths iff
flow network has a flow of value

x X
G s t

y (Y)
G′￼(V′￼, E′￼, c) s′￼, t′￼

k
k

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

Reduction to Max Flow
• Reduction. same as with unit capacity assigned to

every edge

• Claim [Correctness of reduction]. has edge disjoint
paths iff has an integral flow of value .

• Proof.

• Set if in some disjoint , otherwise.

• Consider cut , we get that

• Why is feasible? Capacity constraint? Conservation?

• We only ever send unit of flow, so capacity is never violated

• Say node is part of paths, then

G′￼: G

G k s ↝ t
G′￼ k

(⇒)

f(e) = 1 e s ↝ t f(e) = 0

({s}, V − {s}) v(f) = k

f

1

u k′￼≤ k fin(u) = fout = k′￼

Reduction to Max Flow
• Reduction. same as with unit capacity assigned to

every edge

• Claim [Correctness of reduction]. has edge disjoint
paths iff has an integral flow of value .

• Proof.

• Set if in some disjoint , otherwise.

• Consider cut , we get that

• We argued that is a feasible flow with

• Need to show: If has a flow of value then there are
edge-disjoint paths in

G′￼: G

G k s ↝ t
G′￼ k

(⇒)

f(e) = 1 e s ↝ t f(e) = 0

({s}, V − {s}) v(f) = k

f v(f) = k ∎

(⇐) G′￼ k k
s ↝ t G

Correction of Reduction
• Claim. If is a 0-1 flow of value in , then the set of

edges where contains a set of edge-disjoint
paths in .

• Proof [By induction on the # of edges with]

• If , no edges carry flow, nothing to prove

• IH: Assume claim holds for all flows that use edges

• Consider an edge with

• By flow conservation, there exists an edge with
, continue “tracing out the path" until

• Case (a) reach , Case (b) visit a vertex for a 2nd time

(⇐) f k G′￼

f(e) = 1 k s ↝ t
G

k′￼ f(e) = 1

k′￼= 0

< k′￼

s → u f(s → u) = 1

u → v
f(u → v) = 1

t v

Correction of Reduction
• Case (a) We reach , then we found a path

• Decrease the flow on edges of by 1

•

• Number of edges that carry flow now : can apply IH and
find other disjoint paths

• Case (b) visit a vertex for a 2nd time: consider cycle of
edges visited btw 1st and 2nd visit to

• : decrease flow values on edges in to zero

• but # of edges in that carry flow , can
now apply IH to get edge disjoint paths

t s ↝ t P
f′￼: P
v(f′￼) = v(f) − 1 = k − 1

< k′￼

k − 1 s ↝ t
v C

v
f′￼ C
v(f′￼) = v(f) f′￼ < k′￼

k

∎

• Proved edge-disjoint paths iff flow of value

• Thus, max-flow iff max # of edge-disjoint paths

• Running time of algorithm overall:

• Running time of reduction + running time of solving the
max-flow problem (dominates)

• What is running time of Ford–Fulkerson algorithm for a flow
network with all unit capacities?

•

• Overall running time of finding max # of edge-disjoint
paths:

k k

s ↝ t

O(nm)

s ↝ t
O(nm)

Summary & Running Time

Midterm 2

• No network flow reductions on the midterm

• There may be a question about what a flow is/Ford
Fulkerson/max flow-min cut

• (See the practice midterm)

