
Flow Conclusion



Admin
• Problem sets back (?) 

• Will probably post PS7 solutions 

• Midterm on Monday! 

• Review session today 

• No class next Thursday 

• No daily homework until we come back



Disjoint Paths Problem



Disjoint Paths Problem
• Definition.  Two paths are edge-disjoint if they do not have an 

edge in common. 

• Edge-disjoint paths problem.   
Given a directed graph with two nodes  and , find the max 
number of edge-disjoint  paths. 
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Towards Reduction
• Given: arbitrary instance  of disjoint paths problem ( ): directed 

graph , with source  and sink  

• Goal. create a special instance  of a max-flow problem :  flow 
network  with  s.t. 

• 1-1 correspondence.  Input graph has  edge-disjoint paths iff 
flow network has a flow of value 
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Reduction to Max Flow
• Reduction.    same as  with unit capacity assigned to 

every edge 

• Claim [Correctness of reduction].  has  edge disjoint  
paths iff  has an integral flow of value . 

• Proof.   

• Set  if  in some disjoint ,  otherwise.   

• Consider cut , we get that  

• Why is  feasible?  Capacity constraint?  Conservation?  

• We only ever send  unit of flow, so capacity is never violated 

• Say node  is part of  paths, then 
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Reduction to Max Flow
• Reduction.    same as  with unit capacity assigned to 

every edge 

• Claim [Correctness of reduction].  has  edge disjoint  
paths iff  has an integral flow of value . 

• Proof.   

• Set  if  in some disjoint ,  otherwise.   

• Consider cut , we get that  

• We argued that  is a feasible flow with  

•  Need to show: If  has a flow of value  then there are  
edge-disjoint  paths in 

G′￼: G

G k s ↝ t
G′￼ k

( ⇒ )

f(e) = 1 e s ↝ t f(e) = 0

({s}, V − {s}) v( f ) = k

f v( f ) = k ∎
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Correction of Reduction
• Claim.  If  is a 0-1 flow of value  in , then the set of 

edges where  contains a set of  edge-disjoint  
paths in . 

• Proof [By induction on the # of edges  with ] 

• If , no edges carry flow, nothing to prove 

• IH: Assume claim holds for all flows that use  edges  

• Consider an edge  with  

• By flow conservation, there exists an edge  with 
, continue “tracing out the path" until  

• Case (a) reach , Case (b) visit a vertex  for a 2nd time
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Correction of Reduction
• Case (a) We reach , then we found a  path  

•  Decrease the flow on edges of  by 1 

•  

• Number of edges that carry flow now : can apply IH and 
find  other  disjoint paths 

• Case (b) visit a vertex  for a 2nd time: consider cycle  of 
edges visited btw 1st and 2nd visit to  

•  : decrease flow values on edges in  to zero 

•  but # of edges in  that carry flow , can 
now apply IH to get  edge disjoint paths 
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• Proved  edge-disjoint paths iff flow of value  

• Thus, max-flow iff max # of edge-disjoint  paths 

• Running time of algorithm overall: 

• Running time of reduction + running time of solving the 
max-flow problem (dominates) 

• What is running time of Ford–Fulkerson algorithm for a flow 
network with all unit capacities? 

•  

• Overall running time of finding max # of edge-disjoint  
paths: 
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Summary & Running Time



Midterm 2

• No network flow reductions on the midterm 

• There may be a question about what a flow is/Ford 
Fulkerson/max flow-min cut 

• (See the practice midterm)


