
Network Flows

Schedule
• Next Monday is midterm 2

• Next Thursday there is no class

• We’ll start back up in May

• Only one problem set in May

• Final will be cumulative

Preregistration
• Starts this week

• Talk to an advisor and get them to release your hold

• CS majors aren’t attached to a specific “advisor” any
faculty member is OK

• Schedule is linked under “advising and majors
information” on the website

• Jeannie sent an email with some more details (and a
copy of the schedule)

Next steps (courses)
• 361 (theory of computation): focuses more on “lower bound” side of

things; proof based

• 432 (operating systems): a systems/programming course. Things like how
your computer manages memory, schedules processes, stores files. Tons
of little algorithms (prereq: 237)

• 358 (applied algorithms): learn about how algorithms can make systems
run faster. Some proofs, more coding focused. (prereq: 237 or
experience coding in C)

• 270 (AI): Artificial intelligence. Will likely be a rereq for all other AI/ML
courses in the future. Offered both in the fall and spring!

• 379 (Computational neuroscience): use python to analyze problems from
neuroscience

Courses (next spring)
• 270 (AI)

• 335 (Databases)

• 331 (Security)

• 359 (Gray Codes): Algorithmic class, with a “puzzle”-
style focus

• 334 (Programming Languages): formal methods for
analyzing and comparing programming languages.
One of 361 or 334 required for majors

Midterm 2
• In class next Monday

• Come to your regular class time. Email me with accommodations

• 75 minutes

• Can bring a 2-sided “cheat sheet”; put whatever you want on it

• Do not need the “dynamic programming recipe” I will give it to
you

• Practice midterm; answers to practice midterm posted on Glow

• Q&A session in second half(?) of class on Thursday

Midterm 2 Proctoring
• I won’t be here :(

• I’ll be at a workshop

• The TAs will proctor the midterm

• I’m hoping there won’t be any questions/confusion.
But if there are, they will help the best they can

• I’ll also give them my phone and email so they can
ask me about any questions that come up

Midterm 2 contents
• Recurrences (some “easy”, some “hard”)

• network flow/reduction question

• divide and conquer question

• 2 dynamic programming questions: one PS5-ish,
one PS6-ish

• The practice midterm is quite similar to the actual
midterm

Studying for Midterm 2

• What should you study/how should you study?

• What to do if you are not confident in some of the
recent material?

• Probably the majority of the class is in this boat

Studying for Midterm 2
• Go over recurrences and the recursion tree method. Go over

divide and conquer: problems from class and on the problem sets

• Dynamic programming: I’d strongly recommend looking at the first
few problems again if you haven’t

• Python code/video of knapsack example

• Tips for DP handout

• You can use outside resources for dynamic programming if you
want

• In my experience: eventually it just kind of clicks. Use what you
can to get there

Actually Doing Midterm 2

• Show your knowledge!

• If you are stuck on a recurrence, write what you
thought of

• AND fill in the other parts based on what you wrote!

• Bear in mind: these will not be as difficult as the
most difficult ones we’ve seen

What’s a Flow Network?
• A flow network is a directed graph with a

• A source is a vertex with in degree

• A sink is a vertex with out degree

• Each edge has edge capacity

G = (V, E)
s 0

t 0
e ∈ E c(e) > 0

s t5

15

10 15

16

9

15

6

8 10

154

4 10

10

edge capacity

source

sink

Max-Flow Min-Cut Theorem

• Theorem. Given any flow network , there exists an
-flow and a -cut such that,

• Our algorithm will prove the theorem! (like with Gale-
Shapley)

G (s, t)
f (s, t) (S, T)

v(f) = c(S, T)

Ford Fulkerson: Idea
• Want to make “forward progress” while letting ourselves

undo previous decisions if they’re getting in our way

• Idea: keep track of where we can push flow

• Can push more flow along an edge with remaining
capacity

• Can also push flow “back” along an edge that already
has flow down it

• Need a way to systematically track these decisions

Residual Graph
• Given flow network and a feasible flow on , the

residual graph is defined as:

• Vertices in same as

• (Forward edge) For with residual capacity
, create with capacity

• (Backward edge) For with , create
 with capacity

G = (V, E, c) f G
Gf = (V, Ef , cf)

Gf G

e ∈ E
c(e) − f(e) > 0 e ∈ Ef c(e) − f(e)

e ∈ E f(e) > 0
ereverse ∈ Ef f(e)

u v

flow

6 / 17

capacity

original flow network G

u v

residual
capacity

residual network Gf

11

6

reverse edge

Flow Algorithm Idea
• Now we have a residual graph that lets us make forward

progress or push back existing flow

• We will look for paths in rather than

• Once we have a path, we will "augment" flow along it similar to
greedy

• find bottleneck capacity edge on the path and push that
much flow through it in

• When we translate this back to , this means:

• We increment existing flow on a forward edge

• Or we decrement flow on a backward edge

s ↝ t Gf G

Gf

G

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 16

6 / 10

flow capacity

8

8

10

 10

1

6

6

 6

4

4s

 4

t

2

fixes mistake from
second augmenting path

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

Why is Max Flow = Min Cut?

• We already saw: an -cut has
 if and only if:

• There is no flow into
• All outgoing edges from have flow =

capacity

(S, T)
c(S, T) = f(v)

S
S

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacitynetwork G and flow f

value of flow

Capacity of cut?

Analysis: Ford-Fulkerson

• Feasibility and value of flow:

• Show that each time we update the flow, we still get a flow (it
satisfies the constraints: no edge has more flow assigned than
capacity, and flow in = flow out).

• And that value of this flow increases each time by that amount

• Optimality:

• Final value of flow is the maximum possible

• Running time:

• How long does it take for the algorithm to terminate?

• Space:

• How much total space are we using

Analysis Outline

• Claim. Let be a flow in and let be an augmenting path in
 with bottleneck capacity . Let , then

 is a flow.

• Proof. Only need to verify constraints on the edges of
(since for other edges). Let

• If is a forward edge:

• If is a backward edge:

• Conservation constraint hold on any node in :

• , therefore for both cases

f G P
Gf b f′ ← AUGMENT(f, P)
f′

P
f′ = f e = (u, v) ∈ P

e f′ (e) = f(e) + b
≤ f(e) + (c(e) − f(e)) = c(e)

e f′ (e) = f(e) − b
≥ f(e) − f(e) = 0

u ∈ P
fin(u) = fout(u) f′ in(u) = f′ out(u)

Feasibility of Flow

• Claim. Let be a feasible flow in and let be an
augmenting path in with bottleneck capacity . Let

, then .

• Proof.

• First edge must be out of in

• (is simple so never visits again)

• must be a forward edge (is a path from to)

• Thus increases by , increasing by

• Note. Means the algorithm makes forward progress each time!

f G P
Gf b

f′ ← AUGMENT(f, P) v(f′) = v(f) + b

e ∈ P s Gf

P s

e P s t

f(e) b v(f) b ∎

Value of Flow: Making Progress

Optimality

Ford-Fulkerson Optimality
• Recall: If is any feasible - flow and is any - cut

then .

• We will show that the Ford-Fulkerson algorithm terminates in
a flow that achieves equality, that is,

• Ford-Fulkerson finds a flow and there exists a cut
such that,

• Proving this shows that it finds the maximum flow (and the
min cut)

• This also proves the max-flow min-cut theorem

f s t (S, T) s t
v(f) ≤ c(S, T)

f* (S*, T*)
v(f*) = c(S*, T*)

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof.

• Let ,

• Is this an cut?

• Yes: , and

• Consider an edge with , then what
can we say about ?

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S*, t ∈ T* S* ∪ T* = V S* ∩ T* = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

Recall: Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof.

• Let ,

• Is this an cut?

• Yes: , and

• Consider an edge with , then what
can we say about ?

•

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S*, t ∈ T* S* ∪ T* = V S* ∩ T* = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

f(e) = c(e)

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof. (Cont.)

• Let ,

• Is this an cut?

• Yes: , and

• Consider an edge with , then what
can we say about ?

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S*, t ∈ T* S* ∪ T* = V S* ∩ T* = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)

Recall: Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof. (Cont.)

• Let ,

• Is this an cut?

• , and

• Consider an edge with , then what
can we say about ?

•

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)

f(e) = 0

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof. (Cont.)

• Let ,

• Thus, all edges leaving are completely saturated and all
edges entering have zero flow

•

• Corollary. Ford-Fulkerson returns the maximum flow.

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

S*
S*

v(f) = fout(S*) − fin(S*) = fout(S*) = c(S*, T*) ∎

Ford-Fulkerson Algorithm
Running Time

Ford-Fulkerson Performance

• Does the algorithm terminate?

• Can we bound the number of iterations it does?

• Running time?

FORD–FULKERSON(G)
__
_

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

• Recall we proved that with each call to AUGMENT, we increase
value of flow by

• Assumption. Suppose all capacities are integers.

• Integrality invariant. Throughout Ford–Fulkerson, every edge flow
 and corresponding residual capacity is an integer. Thus .

• Let be the maximum capacity among edges

leaving the source .

• It must be that

• Since, increases by in each iteration, it follows that FF
algorithm terminates in at most iterations.

b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v(f) ≤ (n − 1)C

v(f) b ≥ 1
v(f) = O(nC)

Ford-Fulkerson Running Time

Ford-Fulkerson Performance

• Operations in each iteration?

• Find an augmenting path in

• Augment flow on path

• Update

Gf

Gf

FORD–FULKERSON(G)
__
_

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

• Claim. Ford-Fulkerson can be implemented to run in time
, where and .

• Proof. Time taken by each iteration:

• Finding an augmenting path in

• has at most edges, using BFS/DFS takes

 time

• Augmenting flow in takes time

• Given new flow, we can build new residual graph in time

• Overall, time per iteration

O(nmC) m = |E | ≥ n − 1 C = max
u

c(s → u)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m)

O(m) ∎

Ford-Fulkerson Running Time

[Digging Deeper] Polynomial time?
• Does the Ford-Fulkerson algorithm run in time polynomial in

the input size?

• Running time is , where

• What is the input size?

• vertices, edges, capacities

• represents the magnitude of the maximum capacity
leaving the source node

• How many bits to represent ?

O(nmC) C = max
u

c(s → u)

n m m
C

C

• Question. Does the Ford-Fulkerson algorithm run in polynomial-
time in the size of the input?

• Answer. No. if max capacity is , the algorithm can take
iterations. Consider the following example.

C ≥ C

1

C

C

C

C

t

s

v w

・s→v→w→t

・s→w→v→t

・s→v→w→t

・s→w→v→t

・…

・s→v→w→t

・s→w→v→t

each augmenting path
sends only 1 unit of flow

(# augmenting paths = 2C)

[Digging Deeper] Polynomial time?

~ m, n, and log C

[Digger Deeper] Pseudo-Polynomial
• Input graph has nodes and edges, each with

capacity

• = , then takes bits to represent

• Input size: bits

• Running time:

• Exponential in the size of

• Such algorithms are called pseudo-polynomial

• If the running time is polynomial in the magnitude but not
size of an input parameter.

• We saw this for knapsack as well!

n m = O(n2)
ce

C max
e∈E

c(e) c(e) O(log C)

Ω(n log n + m log n + m log C)

O(nmC) = O(nm2log C)

C

Non-Integral Capacities?
• If the capacities are rational, can just multiply to obtain a

large integer (massively increases running time)

• If capacities are irrational, Ford-Fulkerson can run
infinitely!

• Improvement at each step can be arbitrarily small

• Can create bad instances where it doesn't terminate
in finite steps

Network Flow:
Beyond Ford Fulkerson

Edmond and Karp’s Algorithms
• Ford and Fulkerson’s algorithm does not specify which path in the

residual graph to augment

• Poor worst-case behavior of the algorithm can be blamed on bad
choices on augmenting path

• Better choice of augmenting paths. In 1970s, Jack Edmonds and
Richard Karp published two natural rules for choosing augmenting
paths (you don’t need to remember this)

• Widest path first: paths with largest bottleneck capacity

• Running time

• Shortest (in terms of edges) augmenting paths first (Dinitz
independently discovered & analyzed this rule)

• Running time

O(m2 log n log C)

O(m2n)

Progress on Network Flows
1951 O(m n2 C) Dantzig

1955 O(m n C) Ford–Fulkerson

1970 O(m n2) Edmonds–Karp, Dinitz

1974 O(n3) Karzanov

1983 O(m n log n) Sleator–Tarjan

1985 O(m n log C) Gabow

1988 O(m n log (n2 / m)) Goldberg–Tarjan

1998 O(m3/2 log (n2 / m) log C) Goldberg–Rao

2013 O(m n) Orlin

Best among “combinatorial”
approaches that push flow

through the graph

Progress on Network Flows
• More recently: [Chen et al. 2022] achieve running time

better than for any constant

• Specifically:

• (don’t worry about this running time)
• Not combinatorial: uses “interior point methods”

• “Jumps” between solutions with drastically different,
non-integral flow values

• (Very intense math)

O(m1+ϵ) ϵ

O (m1+1/log1/168 m)

Progress on Network Flows
• Let’s say that the best known:

• For the purpose of this class, network flows can be
solved in time

• Some of these algorithms do REALLY well in “practice”;
basically

O(nm)

O(nm)

O(n + m)

Applications of
Network Flow:
Solving Problems by

Reduction to Network Flows

Max-Flow Min-Cut Applications
• Data mining
• Bipartite matching
• Network reliability
• Image segmentation
• Baseball elimination
• Network connectivity
• Markov random fields
• Distributed computing
• Network intrusion detection
• Many, many, more.

liver and hepatic vascularization segmentation

Liver and hepatic vascularization segmentation using a Min-cut/Max-flow algorithm (S. Esneault, T. Pham, K. Torres)

Max-Flow Min-Cut Applications
• Network flows model a variety of optimization problems

• These optimization problems look complicated with lots of
constraints; on the face of it seem to have nothing to do
with networks or flows

Clients to base stations. Consider a set of mobile computing clients who
each need to be connected to one of several possible base stations. We’ll suppose
there are clients and base stations; the position of each of these is specified by
their coordinates in the plane.

For each client, we wish to connect it to exactly one of the base stations,
constrained in the following ways: a client can only be connected to a base station
that is within distance , and no more than clients can be connected to any
single base station. Design a polynomial time algorithm for the problem.

n k
(x, y)

r L

Max-Flow Min-Cut Applications
• Network flows model a variety of optimization problems

• These optimization problems look complicated with lots of
constraints; on the face of it seem to have nothing to do
with networks or flows

Survey design: Design survey asking consumers about products.
・Can survey consumer about product only if they own it.

・Ask consumer between and questions.

・Ask between and consumers about product .

Goal. Design a survey that meets these specs, if possible.

n1 n2

i j
i ci c′ i

pj p′ j j

Max-Flow Min-Cut Applications
• Network flows model a variety of optimization problems

• These optimization problems look complicated with lots of
constraints; on the face of it seem to have nothing to do
with networks or flows

Airline scheduling: A very complicated scheduling problem but we can turn
it into a simplified one:

Every day we have k flights and flight i leaves origin oi at time si and arrives at
destination di at time fi.
Goal. Minimize number of flight crews.

Reductions

• We will solve all these problems by reducing them to a
network flow problem

• We'll focus on the concept of problem reductions

Problem Reductions

Reduction: Median Finding
• Here’s a correct algorithm to find the median of an

array

• We saw a faster algorithm earlier in the class.
But this one is reasonably fast, and does work

1. Sort A
2. If n is even:
 return A[n/2] + A[n/2 + 1]
3. else:
 return A[(n+1)/2]

Reduction: Median Finding
• With this algorithm I can make the following

statement for any :

• “If I can sort in time, then I can find the
median in time”

f(n)

O(f(n))
O(f(n) + 1)

1. Sort A
2. If n is even:
 return A[n/2] + A[n/2 + 1]
3. else:
 return A[(n+1)/2]

Reduction

• Idea: solve a problem using an algorithm for a
(slightly) different problem

• So: using sorting, we can do median-finding

Reduction 2: Negative Cycle
Finding

• We saw this algorithm last week

1. Construct G’:
1. Add a vertex s to G’
2. Add an edge of weight 0 from s to every

other vertex in G’
2. If exists neg. cycle in G’ reachable from s:
 return there is a neg. cycle in G

3. else:
 return there is no neg. cycle in G

Reduction 2: Negative Cycle
Finding

• We saw this algorithm last week

• Simplified:

1. Construct G’:
1. Add a vertex s to G’
2. Add an edge of weight 0 from s to every

other vertex in G’
2. Return if there exists a neg. cycle

reachable from s in G’

The answer for G’ is the same
as the answer for G

Reduction 2: Negative Cycle
Finding

If there exists an time algorithm to find a negative cycle
reachable from a specific vertex in a graph, then there is an

 time algorithm to find a negative cycle in any graph

O(nm)
s

O(nm)

1. Construct G’:
1. Add a vertex s to G’
2. Add an edge of weight 0 from s to every

other vertex in G’
2. Return if there exists a neg. cycle

reachable from s in G’

Reduction
• Idea: solve a problem using an algorithm for a (slightly)

different problem

• So: using sorting, we can do median-finding; using
negative cycle finding from a specific vertex, we can do
negative cycle finding anywhere in the graph

• From now on: our reductions will always have this
special property that we immediately return the answer

• From now on: we will only do reductions for “yes/no”
problems

Steps of Reduction

1. Construct G’:
1. Add a vertex s to G’
2. Add an edge of weight 0 from s to every

other vertex in G’
2. Return if there exists a neg. cycle

reachable from s in G’

First: transform the input to an
input for the new problem

Steps of Reduction

1. Construct G’:
1. Add a vertex s to G’
2. Add an edge of weight 0 from s to every

other vertex in G’
2. Return if there exists a neg. cycle

reachable from s in G’

Then: run the algorithm once,
and immediately return the

solution

Anatomy of Problem
Reductions

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

• At a high level, a problem reduces to a problem
if an algorithm for can be used to solve

• Reduction. Convert an arbitrary instance of to a
special instance of such that there is a 1-1
correspondence between them

X Y
Y X

x X
y Y

First: construct the input
to the new problem

Then: run the algorithm once,
and immediately return the

solution

Proving Reductions Correct
• Goal: we want to show that we give a correct

answer

• Usually we will do the following:

• Prove that if the answer to the original problem
input is “yes”, then the answer to our transformed
input is “yes”

• If the answer to the original problem input is “no”,
then the answer to our transformed input is “no”

Proving Reductions Correct
• Prove that if the answer to the original problem input is

“yes”, then the answer to our transformed input is “yes”

• If the answer to the original problem input is “no”, then
the answer to our transformed input is “no”

1. Construct G’:
1. Add a vertex s to G’
2. Add an edge of weight 0 from s to every

other vertex in G’
2. Return if there exists a neg. cycle

reachable from s in G’

Anatomy of Problem
Reductions

• Claim. satisfies a property iff satisfies a corresponding
property

• Proving a reduction is correct: prove both directions
• has a property (e.g. has matching of size has a

corresponding property (e.g. has a flow of value
• does not have a property (e.g. does not have matching of

size does not have a corresponding property
(e.g. does not have a flow of value

• Or equivalently (and this is often easier to prove):
• has a property (e.g. has flow of value has a

corresponding property (e.g. has a matching of value

x y

x k) ⟹ y
k)

x
k) ⟹ y

k)

y k) ⟹ x
k)

Remember: must
give the same

answer!

Bipartite Matching

Review: Matching in Graphs
• Definition. Given an undirected graph , a matching

 of is a subset of edges such that no two edges in
are incident on the same vertex.

• In other words, each node appears in at most one edge in

G = (V, E)
M ⊆ E G M

M

Review: Matching in Graphs
• Definition. Given an undirected graph , a matching

 of is a subset of edges such that no two edges in
are incident on the same vertex.

• In other words, each node appears in at most one edge in

• A perfect matching matches all nodes in

• Max matching problem. Find a matching of maximum
cardinality for a given graph, that is, a matching with maximum
number of edges

• A perfect matching if it exists is maximum!

G = (V, E)
M ⊆ E G M

M

G

Review: Bipartite Graphs
• A graph is bipartite if its vertices can be partitioned into two

subsets such that every edge connects
and

• Bipartite matching problem. Given a bipartite graph
 find a maximum matching.

X, Y e = (u, v) u ∈ X
v ∈ Y

G = (X ∪ Y, E)

1

2

3

4

5

1'

2'

3'

4'

5'

Bipartite Matching Examples
• Models many assignment problems

• is a set of jobs, as a set of machines

• Edge indicates where machine is able to process
job

• Perfect matching: way to assign each job to a machine that
can process it, such that, each machine is assigned exactly
one job

• Assigning customers to stores, students to dorms, etc

• Note. This is a different problem than the one we studied for
Gale-Shapely matching!

A B

(ai, bj) bj

ai

Maximum & Perfect Matchings
• One of the oldest problems in combinatorial algorithms:

• Determine the largest matching in a bipartite graph

• This doesn't seem like a network flow problem

• But we will turn it into one

Reduction to Max Flow

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

• Given arbitrary instance of bipartite matching problem
: and edges between and

• Goal. Create a special instance of a max-flow problem
: flow network: , source , sink s.t.

• 1-1 correspondence. There exists a matching of size iff
there is a flow of value

x
(X) A, B E A B

y
(Y) G(V, E, c) s t ∈ V

k
k

Reduction to Max Flow
• Create a new directed graph

• Add edge to for all nodes

• Add edge to for all nodes

• Direct edge in if

• Set capacity of all edges in to 1

G′ = (A ∪ B ∪ {s, t}, E′ , c)
s → a E′ a ∈ A
b → t E′ b ∈ B

a → b E′ (a, b) ∈ E
E′

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

G′

1

G

1

3

5

1'

3'

5'

2

4

2'

4'

Correctness of Reduction
• Claim .

If the bipartite graph has matching of size
then flow-network has an integral flow of value .

(⇒)
(A, B, E) M k

G′ k

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

G′

1

G

1

3

5

1'

3'

5'

2

4

2'

4'

Correctness of Reduction
• Claim .

If the bipartite graph has matching of size
then flow-network has an integral flow of value .

• Proof.

• For every edge , let be the flow resulting
from sending 1 unit of flow along the path

• is a feasible flow (satisfies capacity and conservation)
and integral

•

(⇒)
(A, B, E) M k

G′ k

e = (a, b) ∈ M f

s → a → b → t

f

v(f) = k

• Claim .
If flow-network has an integral flow of value , then the
bipartite graph has matching of size .

(⇐)
G′ k
(A, B, E) M k

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

G′

Correctness of Reduction

G

1

3

5

1'

3'

5'

2

4

2'

4'

• Claim .
If flow-network has an integral flow of value , then the
bipartite graph has matching of size .

• Proof.

• Let set of edges from to with .

• No two edges in share a vertex, why?

•

• for any cut

• Let

(⇐)
G′ k
(A, B, E) M k

M = A B f(e) = 1

M

|M | = k

v(f) = fout(S) − fin(S) (S, V − S)

S = A ∪ {s}

Correctness of Reduction

• Proved matching of size iff flow of value

• Thus, max-flow iff max matching

• Running time of algorithm overall:

• Running time of reduction + running time of
solving the flow problem (dominates)

• What is running time of Ford–Fulkerson algorithm for a
flow network with all unit capacities?

•

• Overall running time of finding max-cardinality bipartite
matching:

k k

O(nm)

O(nm)

Summary & Running Time

Can also use
Orlin’s algorithm

Disjoint Paths Problem

Disjoint Paths Problem
• Definition. Two paths are edge-disjoint if they do not have an

edge in common.

• Edge-disjoint paths problem.
Given a directed graph with two nodes and , find the max
number of edge-disjoint paths.

s t
s ↝ t

Directed graph G
2 edge-disjoint paths

s

2

3

4

5

6

7

ts

2

3

4

5

6

7

t

Towards Reduction
• Given: arbitrary instance of disjoint paths problem (): directed

graph , with source and sink

• Goal. create a special instance of a max-flow problem : flow
network with s.t.

• 1-1 correspondence. Input graph has edge-disjoint paths iff
flow network has a flow of value

x X
G s t

y (Y)
G′ (V′ , E′ , c) s′ , t′

k
k

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

Reduction to Max Flow
• Reduction. same as with unit capacity assigned to

every edge

• Claim [Correctness of reduction]. has edge disjoint
paths iff has an integral flow of value .

• Proof.

• Set if in some disjoint , otherwise.

• Consider cut , we get that

• Why is feasible? Capacity constraint? Conservation?

• We only ever send unit of flow, so capacity is never violated

• Say node is part of paths, then

G′ : G

G k s ↝ t
G′ k

(⇒)

f(e) = 1 e s ↝ t f(e) = 0

({s}, V − {s}) v(f) = k

f

1

u k′ ≤ k fin(u) = fout = k′

Reduction to Max Flow
• Reduction. same as with unit capacity assigned to

every edge

• Claim [Correctness of reduction]. has edge disjoint
paths iff has an integral flow of value .

• Proof.

• Set if in some disjoint , otherwise.

• Consider cut , we get that

• We argued that is a feasible flow with

• Need to show: If has a flow of value then there are
edge-disjoint paths in

G′ : G

G k s ↝ t
G′ k

(⇒)

f(e) = 1 e s ↝ t f(e) = 0

({s}, V − {s}) v(f) = k

f v(f) = k ∎

(⇐) G′ k k
s ↝ t G

Correction of Reduction
• Claim. If is a 0-1 flow of value in , then the set of

edges where contains a set of edge-disjoint
paths in .

• Proof [By induction on the # of edges with]

• If , no edges carry flow, nothing to prove

• IH: Assume claim holds for all flows that use edges

• Consider an edge with

• By flow conservation, there exists an edge with
, continue “tracing out the path" until

• Case (a) reach , Case (b) visit a vertex for a 2nd time

(⇐) f k G′

f(e) = 1 k s ↝ t
G

k′ f(e) = 1

k′ = 0

< k′

s → u f(s → u) = 1

u → v
f(u → v) = 1

t v

Correction of Reduction
• Case (a) We reach , then we found a path

• Decrease the flow on edges of by 1

•

• Number of edges that carry flow now : can apply IH and
find other disjoint paths

• Case (b) visit a vertex for a 2nd time: consider cycle of
edges visited btw 1st and 2nd visit to

• : decrease flow values on edges in to zero

• but # of edges in that carry flow , can
now apply IH to get edge disjoint paths

t s ↝ t P
f′ : P
v(f′) = v(f) − 1 = k − 1

< k′

k − 1 s ↝ t
v C

v
f′ C
v(f′) = v(f) f′ < k′

k

∎

• Proved edge-disjoint paths iff flow of value

• Thus, max-flow iff max # of edge-disjoint paths

• Running time of algorithm overall:

• Running time of reduction + running time of solving the
max-flow problem (dominates)

• What is running time of Ford–Fulkerson algorithm for a flow
network with all unit capacities?

•

• Overall running time of finding max # of edge-disjoint
paths:

k k

s ↝ t

O(nm)

s ↝ t
O(nm)

Summary & Running Time

