
Network Flows

Admin
• TA evaluation form!

• Sign up to be a TA! (links in email)

• due Friday!

• Problem set 7 released tonight

• We’ll talk in detail about the midterm on Monday

• Questions?

Problem set 4 discussion
• One problem caused a lot of issues

• Let’s quickly talk about it

• Takeaway: off-by-one issues can be very important for
recursive algorithms!

• This is real and makes recursive algorithms very
difficult to debug

• The techniques we talk about in this class can help!

Story So Far
• Algorithmic design paradigms:

• Greedy: simplest to design but works only for certain limited
class of optimization problems

• A good starting point for most problems but rarely optimal

• Divide and Conquer

• Solving a problem by breaking it down into smaller
subproblems and recursing

• Dynamic programming

• Recursion with memoization: avoiding repeated work

• Trading off space for time

Network Flows
• Graph-based problem; looks like a lot of what we learned in part 1

• Soon, we’ll use what we learn about network flows to solve much
more general problems

• Problems where you revisit* (and improve) past solutions

• Solve problems that even dynamic programming can’t* solve!

• Restricted case of Linear/Convex Programming; “algorithmic
power tools”

What’s a Flow Network?
• A flow network is a directed graph with a

• A source is a vertex with in degree

• A sink is a vertex with out degree

• Each edge has edge capacity

G = (V, E)
s 0

t 0
e ∈ E c(e) > 0

s t5

15

10 15

16

9

15

6

8 10

154

4 10

10

edge capacity

source

sink

Visualize

What’s a Flow Network?
• A flow network is a directed graph with a

• A source is a vertex with in degree

• A sink is a vertex with out degree

• Each edge has edge capacity

G = (V, E)
s 0

t 0
e ∈ E c(e) > 0

s t5

15

10 15

16

9

15

6

8 10

154

4 10

10

edge capacity

source

sink

Assumptions
• Assume that each node is on some path, that is,

 exists, for any vertex

• Implies is connected and

• Assume capacities are integers

• Will revisit this assumption and what happens if not

• Directed edge written as

• For simplifying expositions, we will sometimes write

 when

v s-t
s ↝ v ↝ t v ∈ V

G m ≥ n − 1

(u, v) u → v

c(u → v) = 0 (u, v) ∉ E

What’s a Flow?
• Given a flow network, an -flow or just flow (if source

and sink are clear from context) satisfies the
following two constraints:

• [Flow conservation] , for where

• To simplify, if there is no edge from to

(s, t) s
t f : E → ℤ+

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v)

fout(v) = ∑
w

f(v → w)

f(u → v) = 0 u v

0 / 15

10 / 10v5 / 8

5 / 15 0 / 15

flow capacity

Feasible Flow
• And second, a feasible flow must satisfy the capacity

constraints of the network, that is,

[Capacity constraint] for each , e ∈ E 0 ≤ f(e) ≤ c(e)

0 / 4

0 / 4 0 / 15

10 / 1
0

10 / 105 / 5 vs t

0 / 6

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

10 / 16

flow capacity

0 / 15

Value of a Flow
• Definition. The value of a flow , written , is .f v(f) fout(s)

 = 5 + 10 + 10 = 25v(f)

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

What is here?v(f)

Value of a Flow
• Definition. The value of a flow , written , is .

• Lemma.

f v(f) fout(s)

fout(s) = fin(t)

value = 5 + 10 + 10 = 25

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

Intuitively, why do you think
this is true?

Value of a Flow
• Lemma.

•
Proof. Let

•
Then,

• For every flow conversation implies

• Thus all terms cancel out on both sides except

• But

fout(s) = fin(t)

f(E) = ∑
e∈E

f(e)

∑
v∈V

fin(v) = f(E) = ∑
v∈V

fout(v)

v ≠ s, t fin(v) = fout(v)

fin(s) + fin(t) = fout(s) + fout(t)

fin(s) = fout(t) = 0 ∎

u v

f

Value of a Flow
• Lemma.

• Corollary. .

fout(s) = fin(t)

v(f) = fin(t)

value = 5 + 10 + 10 = 25

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

Max-Flow Problem
• Problem. Given an flow network, find a feasible flow of

maximum value.
s-t s-t

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

Minimum Cut Problem

Cuts are Back!
• Cuts in graphs played a lead role when we were designing

algorithms for MSTs

• What is the definition of a cut?

ts

Cuts in Flow Networks
• Recall. A cut in a graph is a partition of vertices such

that , and are non-empty.

• Definition. An -cut is a cut s.t. and .

(S, T)
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T) s ∈ S t ∈ T

ts

Cut Capacity
• Recall. A cut in a graph is a partition of vertices such

that , and are non-empty.

• Definition. An -cut is a cut s.t. and .

• Capacity of a -cut is the sum of the capacities of
edges leaving :

•

(S, T)
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T) s ∈ S t ∈ T

(s, t) (S, T)
S

c(S, T) = ∑
v∈S,w∈T

c(v → w)

Quick Quiz
Question. What is the capacity of the cut given by grey and white
nodes?

A. 11 (20 + 25 − 8 − 11 − 9 − 6)

B. 34 (8 + 11 + 9 + 6)

C. 45 (20 + 25)

D. 79 (20 + 25 + 8 + 11 + 9 + 6)

s-t

812 9

8

161

s

86

25 t

1020

6 11

c(S, T) = ∑
v∈S,w∈T

c(v → w)

Min Cut Problem
• Problem. Given an flow network, find an cut of

minimum capacity.
s-t s-t

s t5

15

10 15

16

9

15

6

8 10

154

4 10

10

Relationship between
Flows and Cuts

Flows and Cuts
• Cuts represent "bottlenecks" in a flow network

• For any cut, our flow needs to “get out” of that cut on its
route from to

• Let us formalize this intuition

s t

s t

• Claim. Let be any flow and be any cut then

• There are two cuts for which this is easy to see, which ones?

f s-t (S, T) s-t
v(f) ≤ c(S, T)

s-t

Flows and Cuts

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

• Claim. Let be any flow and be any cut then

• There are two cuts for which this is easy to see, which ones?

f s-t (S, T) s-t
v(f) ≤ c(S, T)

s-t

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

Flows and Cuts

• To prove this for any cut, we first relate the flow value in a
network to the net flow leaving a cut

• Lemma. For any feasible -flow on and
any -cut , , where

•
 (sum of flow ‘leaving’)

•
 (sum of flow ‘entering’)

• Note: and

(s, t) f G = (V, E)
(s, t) v(f) = fout(S) − fin(S)

fout(S) = ∑
v∈S,w∈T

f(v → w) S

fin(S) = ∑
v∈S,w∈T

f(w → v) S

fout(S) = fin(T) fin(S) = fout(T)

Flows and Cuts

Proof.

= [by definition]

fout(S) − fin(S)

∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

ts

Flows and Cuts

These are the same sum:
they sum the flow of all edges

with both vertices in S

Adding zero terms

Proof.

fout(S) − fin(S)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) + ∑
v∈S,w∈T

f(v → w) − ∑
v,u∈S

f(u → v) − ∑
v∈S,u∈T

f(u → v)

= ∑
v∈S

(∑
w

f(v → w) − ∑
u

f(u → v))

= ∑
v∈S

fout(v) − fin(v)

= fout(s) = v(f) ∎

ts

Flows and Cuts
Rearranging terms

Cancels out for all except s

Flows and Cuts
• We use this result to prove that the value of a flow cannot exceed

the capacity of any cut in the network

• Claim. Let be any flow and be any cut then

• Proof.

f s-t (S, T) s-t
v(f) ≤ c(S, T)

v(f) = fout(S) − fin(S)

≤ fout(S) = ∑
v∈S,w∈T

f(v → w)

≤ ∑
v∈S,w∈T

c(v, w) = c(S, T)

When is v(f) = c(S, T)?

fin(S) = 0, fout(S) = c(S, T)

• Suppose the is the capacity of the minimum cut in a network

• What can we say about the feasible flow we can send through it

• cannot be more than

• In fact, whenever we find any flow and any cut such
that, we can conclude that:

• is the maximum flow, and,

• is the minimum cut

• The question now is, given any flow network with min cut , is it
always possible to route a feasible flow with

cmin

cmin

s-t f s-t (S, T)
v(f) = c(S, T)

f

(S, T)

cmin
s-t f v(f) = cmin

Max-Flow & Min-Cut

Max-Flow Min-Cut Theorem
• A beautiful, powerful relationship between these two

problems in given by the following theorem

• Theorem. Given any flow network , there exists a feasible
-flow and a -cut such that,

• Informally, in a flow network, the max-flow = min-cut

• This will guide our algorithm design for finding max flow

• (Will prove this theorem by construction in a bit—our
algorithm will prove the theorem! (like with Gale-Shapley))

G
(s, t) f (s, t) (S, T)

v(f) = c(S, T)

Network Flow History
• In 1950s, US military researchers Harris and Ross wrote a

classified report about the rail network linking Soviet Union
and Eastern Europe

• Vertices were the geographic regions

• Edges were railway links between the regions

• Edge weights were the rate at which material could be
shipped from one region to next

• Ross and Harris determined:

• Maximum amount of stuff that could be
moved from Russia to Europe (max flow)

• Cheapest way to disrupt the network by
removing rail links (min cut)

Network Flow History

Image Credits: — Jeff Erickson’s book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for
evaluating rail net capacities. The RAND Corporation, Research Memorandum RM-1517, October 24, 1955. United States

Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

Towards a Max-Flow Algorithm
• Today: we will prove the max-flow min-cut theorem

constructively

• We will design a max-flow algorithm and show that there is a
cut s.t. value of flow computed by algorithm capacity of cut

• Let's start with a greedy approach

• Push as much flow as possible down a path

• This won't actually work

• But gives us a sense of what we need to keep track
off to improve upon it

s-t
=

s-t

Towards a Max-Flow Algorithm
• Greedy strategy:

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

• Let’s take an example

f(e) = 0

s ↝ t P f(e) < c(e)

P

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

value of flow

0 / 10

flow capacity

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

+ 8 = 8—

8
—

—
8

8
s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 6

0 / 4

8 / 8

0 / 10 8

0 / 100 / 2
8 / 1

0

8 / 100 / 9s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 2 = 10

0 / 6

0 / 4

8 / 8

0 / 10 8

0 / 100 / 2
8 / 1

0

8 / 100 / 9

—
10 2 —

2
—

10
—s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 4

8 / 8

10

2 / 2
10 / 1

0

10 / 10

0 / 6

0 / 10

0 / 10

2 / 9s t

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Is this the best we can do?

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

max-flow value = 19

3 / 4

7 / 8

19

0 / 2
10 / 1

0

10 / 10

6 / 6

9 / 10

9 / 10

9 / 9s t

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

Towards a Max-Flow Algorithm

max-flow value = 19

3 / 4

7 / 8

19

0 / 2
10 / 1

0

10 / 10

6 / 6

9 / 10

9 / 10

9 / 9s t

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

Why Greedy Fails
• Problem: greedy can never “undo” a bad flow decision

• Consider the following flow network

s

t

w

v

1

2

2

22

Why Greedy Fails
• Problem: greedy can never “undo” a bad flow decision

• Consider the following flow network

• Unique max flow has

• Greedy could choose as first

• Takeaway: Need a mechanism to “undo” bad flow decisions

f(v → w) = 0
s → v → w → t P

s

t

w

v

1

2

2

22

Ford-Fulkerson
Algorithm

Ford Fulkerson: Idea
• Want to make “forward progress” while letting ourselves

undo previous decisions if they’re getting in our way

• Idea: keep track of where we can push flow

• Can push more flow along an edge with remaining
capacity

• Can also push flow “back” along an edge that already
has flow down it

• Need a way to systematically track these decisions

Residual Graph
• Given flow network and a feasible flow on , the

residual graph is defined as:

• Vertices in same as

• (Forward edge) For with residual capacity
, create with capacity

• (Backward edge) For with , create
 with capacity

G = (V, E, c) f G
Gf = (V, Ef , cf)

Gf G

e ∈ E
c(e) − f(e) > 0 e ∈ Ef c(e) − f(e)

e ∈ E f(e) > 0
ereverse ∈ Ef f(e)

u v

flow

6 / 17

capacity

original flow network G

u v

residual
capacity

residual network Gf

11

6

reverse edge

Residual Graph
• Idea: we are capturing how the flow can change in each

direction

• Forward edge: how much more flow can be pushed?

• Backward edge: how much can we decrease the flow?

u v

flow

6 / 17

capacity

original flow network G

u v

residual
capacity

residual network Gf

11

6

reverse edge

Flow Algorithm Idea
• Now we have a residual graph that lets us make forward

progress or push back existing flow

• We will look for paths in rather than

• Once we have a path, we will "augment" flow along it similar to
greedy

• find bottleneck capacity edge on the path and push that
much flow through it in

• When we translate this back to , this means:

• We increment existing flow on a forward edge

• Or we decrement flow on a backward edge

s ↝ t Gf G

Gf

G

Augmenting Path & Flow
• An augmenting path is a simple path in the

residual graph

• The bottleneck capacity of an augmenting path is the
minimum capacity of any edge in .

P s ↝ t
Gf

b P
P

AUGMENT(f, P)
__

 ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E, that is, e is forward edge)

 Increase f(e) in G by

ELSE
 Decrease f(e) in G by

RETURN f.
__

b

b

b

The path is in P Gf

Updating flow in G

Ford-Fulkerson Algorithm
• Start with for each edge

• Find a simple path in the residual network

• Augment flow along path by bottleneck capacity

• Repeat until you get stuck

f(e) = 0 e ∈ E
s ↝ t P Gf

P b

FORD–FULKERSON(G)
__

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

Ford-Fulkerson Example

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

network G and flow f

0 / 10 0

value of flow
0 / 10

flow capacity

residual network Gf

s t

2 6

10

4

910

residual capacity

 10
 10 8

Ford-Fulkerson Example

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

flow capacity

P in residual network Gf

2 6

4

910

 10

s t

 10

10

8

network G and flow f

value of flow

Ford-Fulkerson Example

s t

0 / 2
8 / 1

0 0 / 6

8 / 10

0 / 4

8 / 8

0 / 90 / 10 8

0 / 10

flow capacitynetwork G and flow f

value of flow

4

10

8

8

8

9s

2
2

 10 6

2 t

residual network Gf

Ford-Fulkerson Example

s t

0 / 2
8 / 1

0 0 / 6

8 / 10

0 / 4

8 / 8

0 / 90 / 10 8

0 / 10

flow capacity

4

10

8

8

8

9s

2
2

 10 6

2 t

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 0 / 6

10 / 10

0 / 4

8 / 8

2 / 90 / 10 8+2 = 10

0 / 10

flow capacitynetwork G and flow f

value of flow

4

8

2

2

10

 10

10 7s

 10 6

t

residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 0 / 6

10 / 10

0 / 4

8 / 8

2 / 90 / 10 10

0 / 10

flow capacity

4

8

2

2

10

 10

10 7s

 10 6

t

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10+6 = 16

6 / 10

flow capacitynetwork G and flow f

value of flow

8

8

10

 10

1

6

6

 6

4

4s

 4

t

2

residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 16

6 / 10

flow capacity

8

8

10

 10

1

6

6

 6

4

4s

 4

t

2

fixes mistake from
second augmenting path

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

2 / 4

8 / 8

8 / 98 / 10 18

8 / 10

flow capacitynetwork G and flow f

value of flow

8

10

 10 6

 8

2

2

8

1

2

s

 2

t2

8

residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

2 / 4

8 / 8

8 / 98 / 10 18

8 / 10

flow capacity

8

10

 10 6

 8

2

2

8

1

2

s

 2

t2

8

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

Analysis: Ford-Fulkerson

• Feasibility and value of flow:

• Show that each time we update the flow, we are routing a
feasible flow through the network

• And that value of this flow increases each time by that amount

• Optimality:

• Final value of flow is the maximum possible

• Running time:

• How long does it take for the algorithm to terminate?

• Space:

• How much total space are we using

s-t

Analysis Outline

• Claim. Let be a feasible flow in and let be an
augmenting path in with bottleneck capacity . Let

, then is a feasible flow.

• Proof. Only need to verify constraints on the edges of
(since for other edges). Let

• If is a forward edge:

• If is a backward edge:

• Conservation constraint hold on any node in :

• , therefore for both cases

f G P
Gf b

f′ ← AUGMENT(f, P) f′

P
f′ = f e = (u, v) ∈ P

e f′ (e) = f(e) + b
≤ f(e) + (c(e) − f(e)) = c(e)

e f′ (e) = f(e) − b
≥ f(e) − f(e) = 0

u ∈ P
fin(u) = fout(u) f′ in(u) = f′ out(u)

Feasibility of Flow

• Claim. Let be a feasible flow in and let be an
augmenting path in with bottleneck capacity . Let

, then .

• Proof.

• First edge must be out of in

• (is simple so never visits again)

• must be a forward edge (is a path from to)

• Thus increases by , increasing by

• Note. Means the algorithm makes forward progress each time!

f G P
Gf b

f′ ← AUGMENT(f, P) v(f′) = v(f) + b

e ∈ P s Gf

P s

e P s t

f(e) b v(f) b ∎

Value of Flow: Making Progress

Optimality

Ford-Fulkerson Optimality
• Recall: If is any feasible - flow and is any - cut

then .

• We will show that the Ford-Fulkerson algorithm terminates in
a flow that achieves equality, that is,

• Ford-Fulkerson finds a flow and there exists a cut
such that,

• Proving this shows that it finds the maximum flow (and the
min cut)

• This also proves the max-flow min-cut theorem

f s t (S, T) s t
v(f) ≤ c(S, T)

f* (S*, T*)
v(f*) = c(S*, T*)

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof.

• Let ,

• Is this an cut?

• , and

• Consider an edge with , then what
can we say about ?

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

Recall: Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof.

• Let ,

• Is this an cut?

• , and

• Consider an edge with , then what
can we say about ?

•

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

f(e) = c(e)

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof. (Cont.)

• Let ,

• Is this an cut?

• , and

• Consider an edge with , then what
can we say about ?

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)

Recall: Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof. (Cont.)

• Let ,

• Is this an cut?

• , and

• Consider an edge with , then what
can we say about ?

•

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)

f(e) = 0

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof. (Cont.)

• Let ,

• Thus, all edges leaving are completely saturated and all
edges entering have zero flow

•

• Corollary. Ford-Fulkerson returns the maximum flow.

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

S*
S*

v(f) = fout(S*) − fin(S*) = fout(S*) = c(S*, T*) ∎

Ford-Fulkerson Algorithm
Running Time

Ford-Fulkerson Performance

• Does the algorithm terminate?

• Can we bound the number of iterations it does?

• Running time?

FORD–FULKERSON(G)
__
_

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

• Recall we proved that with each call to AUGMENT, we increase
value of flow by

• Assumption. Suppose all capacities are integers.

• Integrality invariant. Throughout Ford–Fulkerson, every edge flow
 and corresponding residual capacity is an integer. Thus .

• Let be the maximum capacity among edges

leaving the source .

• It must be that

• Since, increases by in each iteration, it follows that FF
algorithm terminates in at most iterations.

b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v(f) ≤ (n − 1)C

v(f) b ≥ 1
v(f) = O(nC)

Ford-Fulkerson Running Time

Ford-Fulkerson Performance

• Operations in each iteration?

• Find an augmenting path in

• Augment flow on path

• Update

Gf

Gf

FORD–FULKERSON(G)
__
_

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

• Claim. Ford-Fulkerson can be implemented to run in time
, where and .

• Proof. Time taken by each iteration:

• Finding an augmenting path in

• has at most edges, using BFS/DFS takes

 time

• Augmenting flow in takes time

• Given new flow, we can build new residual graph in time

• Overall, time per iteration

O(nmC) m = |E | ≥ n − 1 C = max
u

c(s → u)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m)

O(m) ∎

Ford-Fulkerson Running Time

[Digging Deeper] Polynomial time?
• Does the Ford-Fulkerson algorithm run in time polynomial in

the input size?

• Running time is , where

• What is the input size?

• vertices, edges, capacities

• represents the magnitude of the maximum capacity
leaving the source node

• How many bits to represent ?

• Let us take an example

O(nmC) C = max
u

c(s → u)

n m m
C

C

• Question. Does the Ford-Fulkerson algorithm run in polynomial-
time in the size of the input?

• Answer. No. if max capacity is , the algorithm can take
iterations. Consider the following example.

C ≥ C

1

C

C

C

C

t

s

v w

・s→v→w→t

・s→w→v→t

・s→v→w→t

・s→w→v→t

・…

・s→v→w→t

・s→w→v→t

each augmenting path
sends only 1 unit of flow

(# augmenting paths = 2C)

[Digging Deeper] Polynomial time?

~ m, n, and log C

[Digger Deeper] Pseudo-Polynomial
• Input graph has nodes and edges, each with

capacity

• = , then takes bits to represent

• Input size: bits

• Running time:

• Exponential in the size of

• Such algorithms are called pseudo-polynomial

• If the running time is polynomial in the magnitude but not
size of an input parameter.

• We saw this for knapsack as well!

n m = O(n2)
ce

C max
e∈E

c(e) c(e) O(log C)

Ω(n log n + m log n + m log C)

O(nmC) = O(nm2log C)

C

Non-Integral Capacities?
• If the capacities are rational, can just multiply to obtain a

large integer (massively increases running time)

• If capacities are irrational, Ford-Fulkerson can run
infinitely!

• Improvement at each step can be arbitrarily small

• Can create bad instances where it doesn't terminate
in finite steps

Network Flow:
Beyond Ford Fulkerson

Edmond and Karp’s Algorithms
• Ford and Fulkerson’s algorithm does not specify which path in

the residual graph to augment

• Poor worst-case behavior of the algorithm can be blamed on
bad choices on augmenting path

• Better choice of augmenting paths. In 1970s, Jack Edmonds
and Richard Karp published two natural rules for choosing
augmenting paths

• Widest path first: paths with largest bottleneck capacity

• Shortest (in terms of edges) augmenting paths first (Dinitz
independently discovered & analyzed this rule)

Widest Augmenting Paths First
• Ford Fulkerson can be improved with a greedy algorithm way

of choosing augmenting paths:

• Choose the augmenting path with largest bottleneck
capacity

• Largest bottleneck path can be computed in time
in a directed graph

• Similar to Dijkstra’s analysis

• How many iterations if we use this rule?

• Won’t prove this: but takes iterations

• Overall running time is (polynomial time!)

• Still depends on though

O(m log n)

O(m log C)

O(m2 log n log C)
C

Shortest Augmenting Paths First
• Choose the augmenting path with the smallest # of edges

• Can be found using BFS on in time

• Surprisingly, this resulting a polynomial-time algorithm
independent of the actual edge capacities !

• Analysis looks at “level” of vertices in the BFS tree of
rooted at —levels only grow over time

• Analyzes # of times an edge disappears from

• Takes iterations overall

• Thus overall running time is

Gf O(m + n) = O(m)

Gf

s

u → v Gf

O(mn)

O(m2n)

Progress on Network Flows
1951 O(m n2 C) Dantzig

1955 O(m n C) Ford–Fulkerson

1970 O(m n2) Edmonds–Karp, Dinitz

1974 O(n3) Karzanov

1983 O(m n log n) Sleator–Tarjan

1985 O(m n log C) Gabow

1988 O(m n log (n2 / m)) Goldberg–Tarjan

1998 O(m3/2 log (n2 / m) log C) Goldberg–Rao

2013 O(m n) Orlin

Best among “combinatorial”
approaches that push flow

through the graph

Progress on Network Flows
• More recently: [Chen et al. 2022] achieve running time

better than for any constant

• Specifically:

• (don’t worry about this running time)
• Not combinatorial: uses “interior point methods”

• “Jumps” between solutions with drastically different,
non-integral flow values

• (Very intense math)

O(m1+ϵ) ϵ

O (m1+1/log1/168 m)

Progress on Network Flows
• Let’s say that the best known:

• For the purpose of this class, network flows can be
solved in time

• Some of these algorithms do REALLY well in “practice”
basically

O(nm)

O(nm)

O(n + m)

