
Network Flows



Admin
• TA evaluation form! 

• Sign up to be a TA!  (links in email) 

• due Friday! 

• Problem set 7 released tonight 

• We’ll talk in detail about the midterm on Monday 

• Questions?



Problem set 4 discussion
• One problem caused a lot of issues 

• Let’s quickly talk about it 

• Takeaway: off-by-one issues can be very important for 
recursive algorithms! 

• This is real and makes recursive algorithms very 
difficult to debug 

• The techniques we talk about in this class can help!



Story So Far
• Algorithmic design paradigms: 

• Greedy:  simplest to design but works only for certain limited 
class of optimization problems 

• A good starting point for most problems but rarely optimal 

• Divide and Conquer  

• Solving a problem by breaking it down into smaller 
subproblems and recursing 

• Dynamic programming 

• Recursion with memoization:  avoiding repeated work 

• Trading off space for time



Network Flows
• Graph-based problem; looks like a lot of what we learned in part 1 

• Soon, we’ll use what we learn about network flows to solve much 
more general problems 

• Problems where you revisit* (and improve) past solutions 

• Solve problems that even dynamic programming can’t* solve! 

• Restricted case of Linear/Convex Programming; “algorithmic 
power tools”



What’s a Flow Network?
• A flow network is a directed graph  with a 

• A source is a vertex  with in degree  

• A sink is a vertex  with out degree  

• Each edge  has edge capacity 
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Visualize
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Assumptions
• Assume that each node  is on some  path, that is, 

  exists, for any vertex  

• Implies  is connected and  

• Assume capacities are integers

• Will revisit this assumption and what happens if not 

• Directed edge  written as  

• For simplifying expositions, we will sometimes write 

 when 

v s-t
s ↝ v ↝ t v ∈ V

G m ≥ n − 1

(u, v) u → v

c(u → v) = 0 (u, v) ∉ E



What’s a Flow?
• Given a flow network, an -flow or just flow (if source  

and sink  are clear from context)  satisfies the 
following two constraints: 

• [Flow conservation]   , for  where 
 

             

           

• To simplify,  if there is no edge from  to 

(s, t) s
t f : E → ℤ+

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v)

fout(v) = ∑
w

f(v → w)

f(u → v) = 0 u v

0 / 15

10 / 10v5 / 8

5 / 15 0 / 15

flow capacity



Feasible Flow
• And second, a feasible flow must satisfy the capacity 

constraints of the network, that is, 

[Capacity constraint]  for each , e ∈ E 0 ≤ f(e) ≤ c(e)
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Value of a Flow
• Definition. The value of a flow , written , is .f v( f ) fout(s)

  =  5 + 10 + 10  =  25v( f )
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Value of a Flow
• Definition. The value of a flow , written , is . 

• Lemma. 

f v( f ) fout(s)

fout(s) = fin(t)

value  =  5 + 10 + 10  =  25
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Intuitively, why do you think 
this is true?



Value of a Flow
• Lemma.  

•
Proof.   Let  

•
Then,  

• For every   flow conversation implies  

• Thus all terms cancel out on both sides except 
 

• But 

fout(s) = fin(t)

f(E) = ∑
e∈E

f(e)

∑
v∈V

fin(v) = f(E) = ∑
v∈V

fout(v)

v ≠ s, t fin(v) = fout(v)

fin(s) + fin(t) = fout(s) + fout(t)

fin(s) = fout(t) = 0 ∎

u v

f



Value of a Flow
• Lemma.  

• Corollary. .

fout(s) = fin(t)

v( f ) = fin(t)

value  =  5 + 10 + 10  =  25
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Max-Flow Problem
• Problem.  Given an  flow network, find a feasible  flow of 

maximum value.
s-t s-t
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Minimum Cut Problem



Cuts are Back!
• Cuts in graphs played a lead role when we were designing 

algorithms for MSTs 

• What is the definition of a cut?

ts



Cuts in Flow Networks
• Recall. A cut  in a graph is a partition of vertices such 

that  ,  and  are non-empty. 

• Definition. An -cut is a cut  s.t.  and .

(S, T )
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T ) s ∈ S t ∈ T

ts



Cut Capacity
• Recall. A cut  in a graph is a partition of vertices such 

that  ,  and  are non-empty. 

• Definition. An -cut is a cut  s.t.  and . 

• Capacity of a -cut  is the sum of the capacities of 
edges leaving : 

•

(S, T )
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T ) s ∈ S t ∈ T

(s, t) (S, T )
S

c(S, T ) = ∑
v∈S,w∈T

c(v → w)



Quick Quiz
Question.  What is the capacity of the  cut given by grey and white 
nodes? 

A.  11  (20 + 25 − 8 − 11 − 9 − 6) 

B.  34  (8 + 11 + 9 + 6)  

C.  45  (20 + 25) 

D.  79  (20 + 25 + 8 + 11 + 9 + 6) 

s-t

812 9

8

161

s

86

25 t

1020

6 11

c(S, T ) = ∑
v∈S,w∈T

c(v → w)



Min Cut Problem
• Problem.  Given an  flow network, find an  cut of 

minimum capacity.
s-t s-t
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Relationship between  
Flows and Cuts



Flows and Cuts
• Cuts represent "bottlenecks" in a flow network 

• For any cut, our flow needs to “get out” of that cut on its 
route from  to  

• Let us formalize this intuition

s t

s t



• Claim.  Let  be any  flow and  be any  cut then 
  

• There are two  cuts for which this is easy to see, which ones?

f s-t (S, T ) s-t
v( f ) ≤ c(S, T )

s-t

Flows and Cuts
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• To prove this for any cut, we first relate the flow value in a 
network to the net flow leaving a cut  

• Lemma.  For any feasible -flow  on  and 
any -cut , , where 

•
 (sum of flow ‘leaving’ ) 

•
 (sum of flow ‘entering’ ) 

• Note:     and 

(s, t) f G = (V, E)
(s, t) v( f ) = fout(S) − fin(S)

fout(S) = ∑
v∈S,w∈T

f(v → w) S

fin(S) = ∑
v∈S,w∈T

f(w → v) S

fout(S) = fin(T ) fin(S) = fout(T )

Flows and Cuts



Proof.    

=        [by definition] 

fout(S) − fin(S)

∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

ts

Flows and Cuts

These are the same sum: 
they sum the flow of all edges 

with both vertices in S

Adding zero terms



Proof.    

 

 

 

 

    

fout(S) − fin(S)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) + ∑
v∈S,w∈T

f(v → w) − ∑
v,u∈S

f(u → v) − ∑
v∈S,u∈T

f(u → v)

= ∑
v∈S

(∑
w

f(v → w) − ∑
u

f(u → v))

= ∑
v∈S

fout(v) − fin(v)

= fout(s) = v( f ) ∎

ts

Flows and Cuts
Rearranging terms

Cancels out for all except s



Flows and Cuts
• We use this result to prove that the value of a flow cannot exceed 

the capacity of any cut in the network  

• Claim.  Let  be any  flow and  be any  cut then 

 

• Proof.   

 

f s-t (S, T ) s-t
v( f ) ≤ c(S, T )

v( f ) = fout(S) − fin(S)

≤ fout(S) = ∑
v∈S,w∈T

f(v → w)

≤ ∑
v∈S,w∈T

c(v, w) = c(S, T )

When is v( f ) = c(S, T )?

fin(S) = 0, fout(S) = c(S, T )



• Suppose the  is the capacity of the minimum cut in a network 

• What can we say about the feasible flow we can send through it 

• cannot be more than  

• In fact, whenever we find any  flow  and any  cut  such 
that,  we can conclude that: 

•  is the maximum flow, and,  

•  is the minimum cut 

• The question now is, given any flow network with min cut , is it 
always possible to route a feasible  flow  with 

cmin

cmin

s-t f s-t (S, T )
v( f ) = c(S, T )

f

(S, T )

cmin
s-t f v( f ) = cmin

Max-Flow & Min-Cut



Max-Flow Min-Cut Theorem
• A beautiful, powerful relationship between these two 

problems in given by the following theorem 

• Theorem.  Given any flow network , there exists a feasible 
-flow   and a -cut   such that, 

 

• Informally, in a flow network, the max-flow = min-cut 

• This will guide our algorithm design for finding max flow 

• (Will prove this theorem by construction in a bit—our 
algorithm will prove the theorem! (like with Gale-Shapley))

G
(s, t) f (s, t) (S, T )

v( f ) = c(S, T )



Network Flow History
• In 1950s, US military researchers Harris and Ross wrote a 

classified report about the rail network linking Soviet Union 
and Eastern Europe 

• Vertices were the geographic regions 

• Edges were railway links between the regions 

• Edge weights were the rate at which material could be 
shipped from one region to next 

• Ross and Harris determined: 

• Maximum amount of stuff that could be  
moved from Russia to Europe (max flow) 

• Cheapest way to disrupt the network by  
removing rail links  (min cut) 



Network Flow History

Image Credits: — Jeff Erickson’s book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for 
evaluating rail net capacities. The RAND Corporation, Research Memorandum RM-1517, October 24, 1955. United States 

Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf



Towards a Max-Flow Algorithm
• Today:  we will prove the max-flow min-cut theorem 

constructively  

• We will design a max-flow algorithm and show that there is a  
cut s.t. value of flow computed by algorithm  capacity of cut 

• Let's start with a greedy approach 

• Push as much flow as possible down a  path 

• This won't actually work 

• But gives us a sense of what we need to keep track 
off to improve upon it

s-t
=

s-t



Towards a Max-Flow Algorithm
• Greedy strategy: 

• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck 

• Let’s take an example

f(e) = 0

s ↝ t P f(e) < c(e)

P
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm
• Start with  for each edge 
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm

max-flow value = 19
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Towards a Max-Flow Algorithm
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Why Greedy Fails
• Problem: greedy can never “undo” a bad flow decision 

• Consider the following flow network 
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Why Greedy Fails
• Problem: greedy can never “undo” a bad flow decision 

• Consider the following flow network 

• Unique max flow has  

• Greedy could choose  as first  
 
 
 
 
 

• Takeaway:  Need a mechanism to “undo” bad flow decisions 

f(v → w) = 0
s → v → w → t P
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Ford-Fulkerson 
Algorithm



Ford Fulkerson: Idea
• Want to make “forward progress” while letting ourselves 

undo previous decisions if they’re getting in our way 

• Idea: keep track of where we can push flow  

• Can push more flow along an edge with remaining 
capacity  

• Can also push flow “back” along an edge that already 
has flow down it 

• Need a way to systematically track these decisions



Residual Graph
• Given flow network  and a feasible flow  on , the 

residual graph  is defined as: 

• Vertices in  same as  

• (Forward edge) For  with residual capacity
, create  with capacity  

• (Backward edge) For  with , create  
  with capacity 

G = (V, E, c) f G
Gf = (V, Ef , cf )

Gf G

e ∈ E
c(e) − f(e) > 0 e ∈ Ef c(e) − f(e)

e ∈ E f(e) > 0
ereverse ∈ Ef f(e)

u v

flow

6 / 17

capacity

original flow network G

u v

residual
capacity

residual network Gf

11
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reverse edge



Residual Graph
• Idea: we are capturing how the flow can change in each 

direction 

• Forward edge: how much more flow can be pushed? 

• Backward edge: how much can we decrease the flow?

u v

flow

6 / 17

capacity

original flow network G

u v

residual
capacity

residual network Gf

11

6

reverse edge



Flow Algorithm Idea
• Now we have a residual graph that lets us make forward 

progress or push back existing flow 

• We will look for  paths in   rather than  

• Once we have a path, we will "augment" flow along it similar to 
greedy 

• find bottleneck capacity edge on the path and push that 
much flow through it in  

• When we translate this back to , this means: 

• We increment existing flow on a forward edge 

• Or we decrement flow on a backward edge

s ↝ t Gf G

Gf

G



Augmenting Path & Flow
• An augmenting path  is a simple  path in the 

residual graph  

• The bottleneck capacity  of an augmenting path  is the 
minimum capacity of any edge in .

P s ↝ t
Gf

b P
P

AUGMENT( f, P)                          


  ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E, that is, e is forward edge )  

               Increase f(e) in G by 

ELSE          
              Decrease f(e) in G by 

RETURN  f.


b

b

b

The path  is in P Gf

Updating flow in G



Ford-Fulkerson Algorithm
• Start with  for each edge  

• Find a simple  path  in the residual network  

• Augment flow along path  by bottleneck capacity  

• Repeat until you get stuck

f(e) = 0 e ∈ E
s ↝ t P Gf

P b

FORD–FULKERSON(G)                          

_____

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Analysis: Ford-Fulkerson



• Feasibility and value of flow: 

• Show that each time we update the flow, we are routing a 
feasible  flow through the network 

• And that value of this flow increases each time by that amount 

• Optimality: 

• Final value of flow is the maximum possible  

• Running time: 

• How long does it take for the algorithm to terminate? 

• Space: 

• How much total space are we using

s-t

Analysis Outline



• Claim.  Let  be a feasible flow in  and let  be an 
augmenting path in  with bottleneck capacity .  Let  

, then  is a feasible flow. 

• Proof. Only need to verify constraints on the edges of   
(since  for other edges).  Let  

• If  is a forward edge:    

 

• If  is a backward edge:   

  

• Conservation constraint hold on any node in : 

• , therefore  for both cases

f G P
Gf b

f′￼← AUGMENT( f, P) f′￼

P
f′￼= f e = (u, v) ∈ P

e f′￼(e) = f(e) + b
≤ f(e) + (c(e) − f(e)) = c(e)

e f′￼(e) = f(e) − b
≥ f(e) − f(e) = 0

u ∈ P
fin(u) = fout(u) f′￼in(u) = f′￼out(u)

Feasibility of Flow



• Claim.  Let  be a feasible flow in  and let  be an 
augmenting path in  with bottleneck capacity .  Let  

, then . 

• Proof.  

• First edge  must be out of  in  

• (  is simple so never visits  again) 

•  must be a forward edge (  is a path from  to ) 

• Thus  increases by , increasing  by   

• Note.  Means the algorithm makes forward progress each time!

f G P
Gf b

f′￼← AUGMENT( f, P) v( f′￼) = v( f ) + b

e ∈ P s Gf

P s

e P s t

f(e) b v( f ) b ∎

Value of Flow:  Making Progress



Optimality



Ford-Fulkerson Optimality
• Recall: If  is any feasible -  flow and  is any -  cut 

then . 

• We will show that the Ford-Fulkerson algorithm terminates in 
a flow that achieves equality, that is, 

• Ford-Fulkerson finds a flow  and there exists a cut  
such that,    

• Proving this shows that it finds the maximum flow (and the 
min cut) 

• This also proves the max-flow min-cut theorem

f s t (S, T ) s t
v( f ) ≤ c(S, T )

f* (S*, T*)
v( f*) = c(S*, T*)



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. 

• Let ,    

• Is this an  cut?   

• ,  and  

• Consider an edge  with , then what 
can we say about ? 

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. 

• Let ,    

• Is this an  cut?   

• ,  and  

• Consider an edge  with , then what 
can we say about ?  

•  

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

f(e) = c(e)



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. (Cont.)  

• Let ,    

• Is this an  cut?   

• ,  and  

• Consider an edge  with , then what 
can we say about ? 

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. (Cont.)  

• Let ,    

• Is this an  cut?   

• ,  and  

• Consider an edge  with , then what 
can we say about ?  

•

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)

f(e) = 0



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. (Cont.) 

• Let ,    

• Thus, all edges leaving  are completely saturated and all 
edges entering  have zero flow 

•   

• Corollary. Ford-Fulkerson returns the maximum flow.

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

S*
S*

v( f ) = fout(S*) − fin(S*) = fout(S*) = c(S*, T*) ∎



Ford-Fulkerson Algorithm
Running Time



Ford-Fulkerson Performance

• Does the algorithm terminate?   

• Can we bound the number of iterations it does? 

• Running time?

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



• Recall we proved that with each call to AUGMENT, we increase 
value of flow by  

• Assumption.  Suppose all capacities  are integers. 

• Integrality invariant.  Throughout Ford–Fulkerson, every edge flow 
 and corresponding residual capacity is an integer.  Thus . 

• Let  be the maximum capacity among edges 

leaving the source .   

• It must be that  

• Since,  increases by  in each iteration, it follows that FF 
algorithm terminates in at most  iterations.

b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v( f ) ≤ (n − 1)C

v( f ) b ≥ 1
v( f ) = O(nC)

Ford-Fulkerson Running Time



Ford-Fulkerson Performance

• Operations in each iteration? 

• Find an augmenting path in  

• Augment flow on path 

• Update 

Gf

Gf

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



• Claim.  Ford-Fulkerson can be implemented to run in time 
, where  and . 

• Proof.  Time taken by each iteration: 

• Finding an augmenting path in  

•  has at most  edges, using BFS/DFS takes 

 time 

• Augmenting flow in  takes  time 

• Given new flow, we can build new residual graph in  time 

• Overall,  time per iteration 

O(nmC) m = |E | ≥ n − 1 C = max
u

c(s → u)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m)

O(m) ∎

Ford-Fulkerson Running Time



[Digging Deeper] Polynomial time?
• Does the Ford-Fulkerson algorithm run in time polynomial in 

the input size?  

• Running time is , where  

• What is the input size? 

•  vertices,  edges,  capacities 

•  represents the magnitude of the maximum capacity 
leaving the source node 

• How many bits to represent ? 

• Let us take an example

O(nmC) C = max
u

c(s → u)

n m m
C

C



• Question.  Does the Ford-Fulkerson algorithm run in polynomial-
time in the size of the input? 

• Answer.  No. if max capacity is , the algorithm can take  
iterations.  Consider the following example.

C ≥ C

1

C

C

C

C

t

s

v w

・s→v→w→t

・s→w→v→t

・s→v→w→t

・s→w→v→t

・…

・s→v→w→t

・s→w→v→t

each augmenting path
sends only 1 unit of flow

(# augmenting paths = 2C)

[Digging Deeper] Polynomial time?

~ m, n, and log C



[Digger Deeper] Pseudo-Polynomial
• Input graph has  nodes and  edges, each with 

capacity  

•  = , then  takes  bits to represent 

• Input size:  bits 

• Running time:  

• Exponential in the size of   

• Such algorithms are called pseudo-polynomial

• If the running time is polynomial in the magnitude but not 
size of an input parameter. 

• We saw this for knapsack as well!

n m = O(n2)
ce

C max
e∈E

c(e) c(e) O(log C)

Ω(n log n + m log n + m log C)

O(nmC) = O(nm2log C)

C



Non-Integral Capacities?
• If the capacities are rational, can just multiply to obtain a 

large integer (massively increases running time) 

• If capacities are irrational, Ford-Fulkerson can run 
infinitely! 

• Improvement at each step can be arbitrarily small 

• Can create bad instances where it doesn't terminate 
in finite steps



Network Flow:  
Beyond Ford Fulkerson



Edmond and Karp’s Algorithms
• Ford and Fulkerson’s algorithm does not specify which path in 

the residual graph to augment 

• Poor worst-case behavior of the algorithm can be blamed on 
bad choices on augmenting path 

• Better choice of augmenting paths.  In 1970s, Jack Edmonds 
and Richard Karp published two natural rules for choosing 
augmenting paths 

• Widest path first: paths with largest bottleneck capacity 

• Shortest (in terms of edges) augmenting paths first (Dinitz 
independently discovered & analyzed this rule)



Widest Augmenting Paths First
• Ford Fulkerson can be improved with a greedy algorithm way 

of choosing augmenting paths: 

• Choose the augmenting path with largest bottleneck 
capacity 

• Largest bottleneck path can be computed in  time 
in a directed graph 

• Similar to Dijkstra’s analysis 

• How many iterations if we use this rule? 

• Won’t prove this: but takes  iterations 

• Overall running time is  (polynomial time!) 

• Still depends on  though

O(m log n)

O(m log C)

O(m2 log n log C)
C



Shortest Augmenting Paths First
• Choose the augmenting path with the smallest # of edges 

• Can be found using BFS on  in  time 

• Surprisingly, this resulting a polynomial-time algorithm 
independent of the actual edge capacities ! 

• Analysis looks at “level” of vertices in the BFS tree of  
rooted at  —levels only grow over time 

• Analyzes # of times an edge  disappears from  

• Takes  iterations overall 

• Thus overall running time is 

Gf O(m + n) = O(m)

Gf

s

u → v Gf

O(mn)

O(m2n)



Progress on Network Flows
1951 O(m n2 C) Dantzig

1955 O(m n C) Ford–Fulkerson

1970 O(m n2) Edmonds–Karp, Dinitz

1974 O(n3) Karzanov

1983 O(m n log n) Sleator–Tarjan

1985 O(m n log C) Gabow

1988 O(m n log (n2 / m)) Goldberg–Tarjan

1998 O(m3/2 log (n2 / m) log C) Goldberg–Rao

2013 O(m n) Orlin

Best among “combinatorial” 
approaches that push flow 

through the graph 



Progress on Network Flows
• More recently: [Chen et al. 2022] achieve running time 

better than  for any constant  

• Specifically:  

• (don’t worry about this running time) 
• Not combinatorial: uses “interior point methods” 

• “Jumps” between solutions with drastically different, 
non-integral flow values 

• (Very intense math)

O(m1+ϵ) ϵ

O (m1+1/log1/168 m)



Progress on Network Flows
• Let’s say that the best known:  

• For the purpose of this class, network flows can be 
solved in  time 

• Some of these algorithms do REALLY well in “practice” 
basically 

O(nm)

O(nm)

O(n + m)


