Network Flows
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TA evaluation form!

Sign up to be a TA! (links in email)

* due Friday!

Problem set 7 released tonight

We'll talk in detail about the midterm on Monday

Questions?



Problem set 4 discussion

* One problem caused a lot of issues
e |Let's quickly talk about it

* Takeaway: off-by-one issues can be very important for
recursive algorithms!

* This is real and makes recursive algorithms very
difficult to debug

* The technigues we talk about in this class can help!



Story So Far

e Algorithmic design paradigms:

 Greedy: simplest to design but works only for certain limited
class of optimization problems

e A good starting point for most problems but rarely optimal
* Divide and Conquer

e Solving a problem by breaking it down into smaller
subproblems and recursing

 Dynamic programming
* Recursion with memoization: avoiding repeated work

e Trading off space for time



Network Flows

Graph-based problem; looks like a lot of what we learned in part 1

Soon, we'll use what we learn about network flows to solve much
more general problems

Problems where you revisit* (and improve) past solutions
Solve problems that even dynamic programming can’t* solve!

Restricted case of Linear/Convex Programming; “algorithmic
power tools”




What's a Flow Network?

« A flow network is a directed graph G = (V, E) with a
« A source is a vertex s with in degree O
« A sink is a vertex t with out degree O

« Each edge e € E has edge capacity c(e) > 0O
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Visualize
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Assumptions

Assume that each node v is on some s-f path, that is,

§ ~1y ~ t exists, for any vertexv € V

« Implies G is connectedandm >n — 1
Assume capacities are integers

e Will revisit this assumption and what happens if not
Directed edge (u, v) writtenas u — v

For simplitying expositions, we will sometimes write
c(u —>v)=0when(u,v) € E



What’s a Flow?

« Given a flow network, an (s, f)-flow or just flow (if source s
and sink ¢ are clear from context) f : E — Z7 satisfies the

following two constraints:

o [Flow conservation] f, (v) =f, (V) forv # s, where

flow capacity

ﬁn(v) — Zf(u — V) \6/ 0!15

Foud¥) = Y f0 = W) S G

w 0/15

« To simplify, f(u — v) = 0 if there is no edge from u to v



Feasible Flow

 And second, a feasible flow must satisty the capacity
constraints of the network, that is,

[Capacity constraint] foreache € E, 0 < f(e) < c(e)

flow capacity

10/16



Value of a Flow

« Definition. The value of a flow f, written v(f), is f_,,.(S).

What is v(f) here!?
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v(f) =5+10+10 = 25



Value of a Flow

« Definition. The value of a flow f, written v(f), is f_,,.(S).

« Lemma.f t(S) = f. () Intuitively, why do you think
ou n this is true?
5/9
\Q\»& 5/75 0/15 6‘/,0 \
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value = 5+ 10+ 10 = 25 10/16



Value of a Flow

« Lemma.f .(s)=/F (1)

. Proof. Letf(E)= ) fle)

eckE

u %
———

L Then, Y /) = E) = Y fouw) /

veV veV

. Foreveryv # s,t flow conversation implies f, (v) = f, (V)

* Thus all terms cancel out on both sides except

Sin(8) + fin® = Foull$) + fou(D)
. Butf, () =f,0H=0 ®



Value of a Flow

« Lemma.f .(s)=/F (1)

« Corollary. v(f) =1, (7).
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Max-Flow Problem

« Problem. Given an s-f flow network, find a feasible s-f flow of

maximum value.
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Minimum Cut Problem



Cuts are Back!

* Cuts in graphs played a lead role when we were designing

algorithms for MSTs

 \What is the definition of a cut?




Cuts in Flow Networks

« Recall. Acut (S, T)in a graph is a partition of vertices such
thatSuUT =V, SNT =g andSs, T are non-empty.

« Definition. An (s, f)-cutisacut(S,7)st.s€ Sandt e T




Cut Capacity

Recall. A cut (5, T) in a graph is a partition of vertices such
thatSUT =V, SNT =g and S, T are non-empty.

Definition. An (s, f)-cutisacut(S,7)st.s € Sandre T.

Capacity of a (s, 1)-cut (S, T') is the sum of the capacities of

edges leaving 3:

. c(S,T) = Z c(v - w)

veS.weT



Quick Quiz

Question. What is the capacity of the s-f cut given by grey and white
nodes?

20+25-8—11-9 - 6) c($.T)= ) cv—w)

veS.weT

A. 11
B. 34 8+ 11 +9 + 06)

(
(

45 (20 + 25)
(

D. 79 (20+25+8+ 11 +9+ 0)

|
®o—.



Min Cut Problem

e Problem. Given an s-f flow network, find an s-f cut of

minimum capacity.




Relationship between
Flows and Cuts



Flows and Cuts

e Cuts represent "bottlenecks’ in a flow network

* For any cut, our flow needs to “get out” of that cut on its

route from s to ¢

e | et us formalize this intuition




Flows and Cuts

« Claim. Let fbe any s-f flow and (S, T') be any s-f cut then
v(f) < c(S,T)

e There are two s-f cuts for which this is easy to see, which ones?

AN
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Flows and Cuts

To prove this for any cut, we first relate the flow value in a

network to the net flow leaving a cut

Lemma. For any feasible (s, #)-flow fon G = (V, E) and
any (s, t)-cut, v(f) =71,,.(S) —1..(S), where

. £,.AS) = Z f(v = w) (sum of flow ‘leaving’ §)

veS.weT

) Jin(S) = 2 f(w — v) (sum of flow ‘entering’ S)

veSweT

« Note: f,(S)=/f (T)andf (S)=f,A(T)



Flows and Cuts

Proof. £, (S)— £, (S)

— Z fv->w) — Z f(u — v) [by definition]

veS.weT veS,ueT
Adding zero terms

D fov-w= D flu-w|+ D fo->w— D fu—v)

i VWES V,UES ] veS,weTl veS,ueT
These are the same sum: o O

they sum the flow of all edges
with both vertices in §




Flows and Cuts

Proof. [, (S)—/. (S) Rearranging terms

DY foosw= Y fu—-n|+ D fo-ow— ) fu—v)

V,WES V,UES veS,weT veS,ueT

=Zf(v_>w)+ Z f(v—>w)—2f(u—>v)— Z flu - v)

V,2WES veS.weT V,UeS veS,.ueTl
=Y (Y fv—>w) =Y flu—v))

veS w u
= D fout) = fu¥) © ®

veS

= fouls) = v(f) Cancels out for all excepts @



Flows and Cuts

We use this result to prove that the value of a flow cannot exceed

the capacity of any cut in the network

Claim. Let f be any s-f flow and (S, T') be any s-f cut then
v(f) < c(S,T)

Proof. v(f) = foulS) = fin(S)

< £ (S) = Z v = w) Whenis v(f) = ¢(S,T)?

veSweT /

< Z clv,w)=1c(S,T)

veSweT £.(8) =0, f, (S) = c(S,T)




Max-Flow & Min-Cut

Suppose the ¢,,;,, IS the capacity of the minimum cut in a network
What can we say about the feasible flow we can send through it
e cannot be more than ¢;,

In fact, whenever we find any s-f flow f and any s-f cut (S, T') such
that, v(f) = ¢(S, T') we can conclude that:

« fisthe maximum flow, and,
e (S,7)isthe minimum cut
IS It

The question now is, given any flow network with min cut ¢,

always possible to route a feasible s-f flow f with v(f) = ¢,



Max-Flow Min-Cut Theorem

* A beautiful, powertul relationship between these two
problems in given by the following theorem

« Theorem. Given any flow network G, there exists a feasible
(s, t)-flow f and a (s, 1)-cut (S, T) such that,

v(f) =¢S5, T)
* Informally, in a flow network, the max-flow = min-cut
* This will guide our algorithm design for finding max flow

* (WIll prove this theorem by construction in a bit—our
algorithm will prove the theorem! (like with Gale-Shapley))



Network Flow History

* [n 1950s, US military researchers Harris and Ross wrote a
classitied report about the rail network linking Soviet Union
and Eastern Europe

* \ertices were the geographic regions
 Edges were railway links between the regions

* Edge weights were the rate at which material could be
shipped from one region to next

e Ross and Harris determined:

 Maximum amount of stuff that could be
moved from Russia to Europe (max flow)

 Cheapest way to disrupt the network by
removing rail links (min cut)



Network Flow History
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Towards a Max-Flow Algorithm

* Today: we will prove the max-flow min-cut theorem

constructively

« We will design a max-flow algorithm and show that there is a s-f

cut s.t. value of flow computed by algorithm = capacity of cut

* Let's start with a greedy approach
« Push as much flow as possible down a s-f path
* This won't actually work

* But gives us a sense of what we need to keep track
off to Improve upon it



Towards a Max-Flow Algorithm

* (Greedy strategy:
« Start with f(e) = 0 for each edge
« Findans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P
* Repeat until you get stuck

* [et's take an example



Towards a Max-Flow Algorithm

« Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

flow }apacity
Qo0
Q 0/2 0, 0/6 o
. 8 ‘0

@ 0/10 Q 0/9 Q 0/10 @/O

value of flow



Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ ¢ path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

s
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

N



Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

Is this the best we can do!?

ending flow value = 16

T
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

max-flow value = 19
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

max-flow value = 19

OO

2 3
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Why Greedy Fails

* Problem: greedy can never “undo” a bad flow decision

e (Consider the following flow network



Why Greedy Fails

* Problem: greedy can never “undo” a bad flow decision

e (Consider the following flow network
« Unigue max flow has f(v - w) =0

« Greedy could choose s - v > w — tas first P

0. 2 O

() 2 ()

 Takeaway: Need a mechanism to “undo” bad tflow decisions



Ford-Fulkerson
Algorithm



Ford Fulkerson: Idea

 Want to make “forward progress” while letting ourselves
undo previous decisions if they're getting in our way

* |ldea: keep track of where we can push flow

* (Can push more flow along an edge with remaining
capacity

e (Can also push flow “back” along an edge that already
has flow down it

 Need a way to systematically track these decisions



Residual Graph

« Given flow network G = (V, E, ¢) and a feasible flow f on G, the
residual graph G, = (V, E, ¢) is defined as:

« \ertices in Gf same as G

« (Forward edge) For e € E with residual capacity
c(e) — f(e) > 0, create e € E¢with capacity c(e) — f(e)

« (Backward edge) For e € E with f(e) > 0O, create
ereverse € E; with capacity f(e)

_ residual network G residual
original flow network G f

y 6/ 17 7 114 o
TN

reverse edge




Residual Graph

* |dea: we are capturing how the flow can change in each
direction

* Forward edge: how much more flow can be pushed?

 Backward edge: how much can we decrease the flow?

. . resi | network residual
original flow network G esidual network Gr

y 6/ 17 7 114 v
TN

reverse edge




Flow Algorithm Idea

Now we have a residual graph that lets us make forward
progress or push back existing flow

We will look for § ~ ¢ paths in Gf rather than G

Once we have a path, we will "augment’ flow along it similar to
greedy

e find bottleneck capacity edge on the path and push that
much flow through it in Gy

When we translate this back to G, this means:
* We increment existing flow on a forward edge

 Or we decrement flow on a backward edge



Augmenting Path & Flow

« An augmenting path P is a simple s ~ ¢ path in the
residual graph Gf

« The bottleneck capacity b of an augmenting path P is the
minimum capacity of any edge in P.

The path Pis in G,
AUGMENT(f, P)

b < bottleneck capacity of augmenting path P.
FOREACH edge e € P :
IF (e € E, that is, e is forward edge )
Updating flow in G Increase f(e) in G by b

ELSE
Decrease f{e) in G by b

RETURN f.



Ford-Fulkerson Algorithm

Start with f(e) = O for each edge e € E

Find a simple s ~ £ path P in the residual network Gf

Augment flow along path P by bottleneck capacity b

Repeat until you get stuck

FORD—-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gy.

RETURN f.



Fora-Fulkerson Example

network G and flow f
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Fora-Fulkerson Example

network G and flow f flow capacity

S S T
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f flow / capacity
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1 No s-t path left!



Fora-Fulkerson Example

network G and flow f
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Analysis: Ford-Fulkerson



Analysis Outline

Feasibility and value of flow:

* Show that each time we update the flow, we are routing a
feasible s-f tlow through the network

* And that value of this flow increases each time by that amount
Optimality:

* Final value of flow is the maximum possible
Running time:

 How long does it take for the algorithm to terminate”
Space:

* How much total space are we using



Feasibility of Flow

« Claim. Let f be a feasible flow in G and let P be an
augmenting path in waith bottleneck capacity b. Let

f' < AUGMENT(f, P), then f'is a feasible flow.

« Proof. Only need to verify constraints on the edges of P
(since f = ffor other edges). Lete = (u,v) € P

 Ifeisaforward edge: f'(e) =f(e)+ b
< fle) + (c(e) —f(e)) = c(e)
 If eis abackward edge: f'(e) =f(e) — b
> fle) — fle) =0
« Conservation constraint hold on any node in u € P:

o fi(u) =71, (u), therefore f; (u) = f (u) for both cases



Value of Flow: Making Progress

« Claim. Let f be a feasible flow in G and let P be an
augmenting path in waith bottleneck capacity b. Let

< AUGMENT(f, P), then v(f") = v(f) + b.
* Proof.

. First edge e € P must be out of § in Gf

« (P is simple so never visits s again)
« ¢ must be a forward edge (P is a path from § to 1)
« Thus f(e) increases by b, increasing v(f) by b I

 Note. Means the algorithm makes forward progress each time!



Optimality



Ford-Fulkerson Optimality

Recall: If fis any feasible s-f flow and (S, T') is any s-f cut
thenv(f) < c(S,T).

We will show that the Ford-Fulkerson algorithm terminates in

a flow that achieves equality, that is,

Ford-Fulkerson finds a flow f* and there exists a cut (8, T%)
such that, v(f*) = c(8*, T*)

Proving this shows that it finds the maximum flow (and the

min cut)

This also proves the max-flow min-cut theorem



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof.
Let §* = {v | visreachable from sin G¢}, T* = V — §*

|s this an s-f cut?
e sES,tEeT, SUT=VandSNT =g

Consideranedge e = u — vwithu € S*,v € T*, then what
can we say about f(e)?



Recall: Ford-Fulkerson Example

network G and flow f flow\ / capacity
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1 No s-t path left!



Ford-Fulkerson Optimality

Lemma. Let f be a s- flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(8*, T™).

Proof.

Let % = {v | visreachable from sin G¢}, T* = V — §*
s this an s-f cut?

e sESteT SUT=VandSNT =g

Consideranedge e = u — vwithu € S*,v € T*, then what
can we say about f(e)?

» fle) = c(e)



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)
Let §* = {v | visreachable from sin G¢}, T* = V — §*

|s this an s-f cut?
e sES,tEeT, SUT=VandSNT =g

Consideranedge e = w — vwithv € S*, w € T%, then what
can we say about f(e)?



Recall: Ford-Fulkerson Example

network G and flow f flow\ / capacity
O w0
Q R
N 0/2 z 6/6 -
. \0\ & ‘0 value of flow
Capacity of cut? l
@ 9/10 Q 9/9 Q 10/10 @ 19
residual network Gs 3
| O
nodes reachable from s ©
> 7
2 6
O 7

Ge—+—-0 9 O A1)

1 No s-t path left!



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)
Let §* = {v | visreachable from sin G¢}, T* = V — §*

|s this an s-f cut?
e sES,tEeT, SUT=VandSNT =g

Consideranedge e = w — v withv € §*,w € T™, then what
can we say about f(e)?

» fle)=0



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)

Let §* = {v | visreachable from sin G¢}, T* = V — §*

Thus, all edges leaving $* are completely saturated and all
edges entering $* have zero flow

V() = JoulS™) = Jin(S*) = Joud $*) = (5%, T%) B

Corollary. Ford-Fulkerson returns the maximum flow.



Ford-Fulkerson Algorithm
Running Time



Ford-Fulkerson Performance

FORD-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gv.

RETURN f.

* Does the algorithm terminate”
e (Can we bound the number of iterations it does?

* Running time?



Ford-Fulkerson Running Time

Recall we proved that with each call to AUGMENT, we increase
value of flow by b = bottleneck(Gf, P)

Assumption. Suppose all capacities c(e) are integers.

Integrality invariant. Throughout Ford—Fulkerson, every edge flow
f(e) and corresponding residual capacity is an integer. Thus b > 1.

Let C = max c(s — u) be the maximum capacity among edges
u

leaving the source s.
it must be thatv(f) < (n— 1)C

Since, v(f) increases by b > 1 in each iteration, it follows that FF
algorithm terminates in at most v(f) = O(nC) iterations.



Ford-Fulkerson Performance

FORD-FULKERSON(G)

FOREACHedgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gv.

RETURN f.

« (QOperations in each iteration”

. Find an augmenting path in G,

 Augment flow on path

. Update Gf



Ford-Fulkerson Running Time

Claim. Ford-Fulkerson can be implemented to run in time

O(nmC), wherem = |E| > n—1and C = maxc(s = u).

Proof. Time taken by each iteration:

Finding an augmenting path in Gf

. Gf has at most 2m edges, using BFS/DFS takes
O(m + n) = O(m) time

Augmenting flow in P takes O(n) time
Given new flow, we can build new residual graph in O(m) time

Overall, O(m) time per iteration B



[Digging Deeper] Polynomial time*?

* Does the Ford-Fulkerson algorithm run in time polynomial in
the input size?

Running time is O(nmC), where C = max c(s — u)
u

 What is the input size?
e 1 vertices, m edges, m capacities

« ( represents the magnitude of the maximum capacity
eaving the source node

« How many bits to represent C?

* Let us take an example



[Digging Deeper] Polynomial time*?

* Question. Does the Ford-Fulkerson algorithm run in polynomial-
time in the size of the input? < ~mnandlogC

« Answer. No. if max capacity is C, the algorithm can take > C
iterations. Consider the following example.

* §S—SVv—=w—>f
¢ (—p—p—>t each augmenting path
<«<——  sendsonly 1 unit of flow

¢ (s * (—>pP—W—>t (# augmenting paths = 2C)

/ \ ¢ s—W—Y—>f
% 1 >

* s—=V—w—t

* S—SW—V—>t




[Digger Deeper] Pseudo-Polynomial

. Input graph has n nodes and m = O(n?) edges, each with
capacity c,

C = max c(e), then c(e) takes O(log C) bits to represent
eek

« Inputsize: Q(nlogn + mlogn + mlog C) bits
. Running time: O(nmC) = O(nm?2'°8¢)
« Exponential in the size of C

e Such algorithms are called pseudo-polynomial

* |f the running time is polynomial in the magnitude but not
size of an input parameter.

 We saw this for knapsack as well!



Non-Integral Capacities?

* |f the capacities are rational, can just multiply to obtain a
large integer (massively increases running time)

e |f capacities are irrational, Ford-Fulkerson can run
Infinitely!

* Improvement at each step can be arbitrarily small

« (Can create bad instances where it doesn't terminate
in finite steps



Network Flow:
Beyond Ford Fulkerson



Edmond and Karp’s Algorithms

 Ford and Fulkerson’s algorithm does not specity which path in
the residual graph to augment

e Poor worst-case behavior of the algorithm can be blamed on
bad choices on augmenting path

* Better choice of augmenting paths. In 1970s, Jack Edmonds
and Richard Karp published two natural rules for choosing
augmenting paths

* Widest path first: paths with largest bottleneck capacity

e Shortest (in terms of edges) augmenting paths first (Dinitz
independently discovered & analyzed this rule)



Widest Augmenting Paths First

Ford Fulkerson can be improved with a greedy algorithm way
of choosing augmenting paths:

 (Choose the augmenting path with largest bottleneck
capacity

Largest bottleneck path can be computed in O(m log n) time
In a directed graph

e Similar to Dijkstra’s analysis
How many iterations if we use this rule”?

« Won't prove this: but takes O(m log C) iterations
Overall running time is O(m?log nlog C) (polynomial time!)

o Still depends on C though



Shortest Augmenting Paths First

* Choose the augmenting path with the smallest # of edges

» Can be found using BFS on G¢in O(m + n) = O(m) time

e Surprisingly, this resulting a polynomial-time algorithm
independent of the actual edge capacities !

« Analysis looks at “level” of vertices in the BFS tree of Gf

rooted at s —levels only grow over time

« Analyzes # of times an edge u — v disappears from Gf

« Takes O(mn) iterations overall

. Thus overall running time is O(m?n)



Progress on Network Flows

1951 O(m n* C) Dantzig

1955 O(mn C) Ford—Fulkerson
1970 O(m n?) Edmonds—Karp, Dinitz
1974 o) Karzanov

1983 O(m n log n) Sleator—Tarjan
1985 O(m n log C) Gabow

1988 O(m n log (n* / m)) Goldberg—Tarjan
1998 O(m>? log (n* / m) log C) Goldberg—Rao
2013 O(m n) Orlin

Best among “combinatorial”
approaches that push flow
through the graph




Progress on Network Flows

 More recently: [Chen et al. 2022] achieve running time
better than O(m ' €) for any constant €

. Specifically: O <m1+1/10gm68m>

e (don't worry about this running time)
 Not combinatorial: uses “interior point methods™

e “Jumps” between solutions with drastically different,
non-integral flow values

* (Very intense math)




Progress on Network Flows

Let’s say that the best known: O(nm)

For the purpose of this class, network flows can be

solved in O(nm) time

Some of these algorithms do REALLY well in “practice”

basically O(n + m)



