
Dynamic Programming 
and Network Flows



Admin
• Problem Set 4 back 

• Problem Set 5 back tomorrow 

• (thanks to our wonderful TAs for helping me and 
having a very quick turnaround) 

• I will post a handout on tips for Dynamic 
Programming consolidating some of what we’ve 
seen



Admin: TA items
• TA evaluation form!  https://forms.gle/sbqCGVLAFnhUQ4i39 

• Please fill out by next Friday 

• Please apply to be a TA next semester! 

• https://csci.williams.edu/tatutor-application/ 

• Don’t need to any kind of “algorithms person.” 

• Good to have different perspectives! 

• Class will be a little different in any case 

• Great way to learn algorithms better!

https://forms.gle/sbqCGVLAFnhUQ4i39
https://csci.williams.edu/tatutor-application/


Midterm
• In-person during class two weeks from today 

• Required to take it at that time 

• Very strong focus on topics since last midterm: 

• Divide and conquer/recurrences 

• Dynamic programming 

• Remember: I’ll give you the recipe 

• Network flows 

• Closed book, but you can bring a 1-page (2-sided) cheat sheet 

• I don’t think it will be too helpful 

• Practice exam posted soon



Planning for Final
• Sunday, May 25th at 1:30pm 

• I will hold an extra final during reading period May 17-20 

• Only one!  If you miss this one you need to take it on 
the 25th 

• Please let me know as soon as possible if you want to 
take the exam early 

• Especially: please let me know if you have any conflicts 
in May 17-20.



Partitioning Work
• Suppose we have to scan through a shelf of books, and each book 

has a different size 

• We want to divide the shelf into  region of books, and each region 
is assigned one of the workers 

• Order of books fixed by cataloging system:  cannot reorder/
rearrange the books 

• Goal:  divide the work is a fair way among the workers

k



Subproblem
• Subproblem  
 
 
 
 
 

• Final answer

 be the optimal cost of partitioning 
elements  using  partitions, 
where

M(i, j)
s1, s2, …, si j

1 ≤ i ≤ n, 1 ≤ j ≤ k

M(n, k)



Towards a Recurrence
• Want a recurrence for  

• Notice that the th partition starts after we place the  
st “divider” 

• Where can we place the st divider?

M(i, j)
j

( j − 1)
j − 1

  books using  partitions 1,…, i′￼ j − 1

 books 
in th partition

i′￼+ 1,…, i
j



Towards a Recurrence
• Where can we place the st divider? 

• Between books  and  for some 

j − 1
i′￼ i′￼+ 1 i′￼< i

  books using  partitions 1,…, i′￼ j − 1

 books 
in th partition

i′￼+ 1,…, i
j



Towards a Recurrence
• Finally:  for to choose the partition point  for starting the th 

partition 

• Let us consider all possibilities   

• Take min cost option among them

i′￼ j

1 ≤ i′￼< i

  books using  partitions 1,…, i′￼ j − 1

 books 
in th partition

i′￼+ 1,…, i
j



Final Recurrence
• For  and , we have: 

 
 
 
 
 
 

2 ≤ i ≤ n 2 ≤ j ≤ k

M(i, j) = min
1≤i′￼<i

cost of starting jth parition at book (i′￼+ 1)



Towards a Recurrence
• Cost of this way of partitioning?   

• (Remember cost is max sum across all partitions)

  books using  partitions 1,…, i′￼ j − 1

 books 
in th partition

i′￼+ 1,…, i
j



Towards a Recurrence

•
Cost of th partition itself:    

• Cost of remaining partitions?  

j
i

∑
t=i′￼+1

si

M[i′￼, j − 1]

  books using  partitions 1,…, i′￼ j − 1

 books 
in th partition

i′￼+ 1,…, i
j



Final Recurrence
• For  and , we have: 

 
 
 
 
 
 

• Memoization structure:  We store  values in a 2-D array 
or table using space  

• Evaluation order:  In what order should we fill in the table?

2 ≤ i ≤ n 2 ≤ j ≤ k

M[i, j]
O(nk)

M(i, j) = min
1≤i′￼<i

max{M(i′￼, j − 1),
i

∑
ℓ=i′￼+1

st}



• Evaluation order.   

• To fill out , I need the previous column filled in for rows 
less than , that is,   for all  

• Can compute using column major order: column by column  

• Running time? 

• Size of table (space):  

• How long to compute a single cell? 

• Depends on  other cells 

•  time to fill in one cell

M[i, j]
i M[i′￼, j − 1] 1 ≤ i′￼< i

O(k ⋅ n)

n

O(n)

Final Pieces



Running Time
• Running time 

•  

• Is this a polynomial running time?  

• Not as stated, not polynomial in the number of bits required to 
write  

• But lets think if we can upper bound  using  

• How big can  get? 

• At most  non-empty partitions of  elements 

•  algorithm in the worst case

O(n2 ⋅ k)

k
k n

k
n n

O(n3)



Last Topic in Dynamic Programming:  
Shortest Paths Revisited



Shortest Path Problem
• Single-Source Shortest Path Problem.  

Given a connected directed graph  with edge weights 
 on each  and a a source node , find the shortest path 

from  to to all nodes in . 

• Negative weights.  The edge-weights in  can be negative.  
(When we studied Dijkstra's, we assumed non-negative weights.) 

• Let  be a path from  to , denoted .   

• The length of  is the number of edges in  

•
The cost or weight of  is   

• Goal: cost of the shortest path from  to all nodes

G = (V, E)
we e ∈ E s

s G

we G

P s t s ↝ t

P P

P w(P) = ∑
e∈P

we

s



Negative Weights & Dijkstra's
• Dijkstra’s Algorithm.  Does the greedy approach work for graphs 

with negative edge weights? 

• Dijkstra's will explore 's neighbor and add , with 
 to the shortest path tree  

• Dijkstra assumes that there cannot be a "longer path" that has 
lower cost (relies on edge weights being non-negative)

s t
d[t] = wsv = 2

t

v

2

6

−8

3

Dijkstra's will find  as shortest path with cost 
But the shortest path is  with cost 

s → t 2
s → v → w → t 14

s

w



Negative Cycles
• Definition.  A negative cycle is a directed cycle  such that the 

sum of all the edge weights in  is less than zero 

• Question.  How do negative cycles affect shortest path?  

C
C

−3

5

−3

−44

a negative cycle W :  �(W ) =
�

e�W

�e < 0
<latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc="></latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc="></latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc="></latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc="></latexit>



Negative Cycles & Shortest Paths
• Claim.  If a path from  to some node  contains a negative cycle, 

then there does not exist a shortest path from  to . 

• Proof.  

• Suppose there exists a shortest  path with cost  that 
traverses the negative cycle  times for .   

• Can construct a shorter path by traversing the cycle  times 

  

• Assumption.  has no negative cycle. 

• Later in the lecture:  how can we detect whether the input graph  
contains a negative cycle?

s v
s v

s ↝ v d
t t ≥ 0

t + 1
⇒⇐ ∎

G
G



Dynamic Programming Approach
• First step to a dynamic program? Recursive formulation 

• What is the subproblem?  What is the recurrence? 

• Dijkstra’s algorithm: for each  the subproblem is the 
shortest path from  to  

• Why doesn’t this work? 

• There may be a shorter path out of the cut (but it must 
have more edges)

• Idea: subproblem  is the shortest path from  to  
consisting of at most  edges 

• How big can  get?

v
s v

(v, k) s v
k

k



No. of Edges in Shortest Path
• Claim.  If  has no negative cycles, then exists a shortest path 

from  to any node  that uses at most  edges. 

• Proof.  Suppose there exists a shortest path from  to  made 
up of  or more edges 

• A path of length at least  must visit at least  nodes   

• There exists a node  that is visited more than once 
(pigeonhole principle). Let  denote the portion of the path 
between the successive visits. 

• Can remove  without increasing cost of path. 

G
s u n − 1

s u
n

n n + 1
x

P

P ∎

P

w(P)  ≥  0

s u
x



Shortest Path Subproblem
• Subproblem.  : (optimal) cost of shortest path from  

to  using   edges, or  if no path with  edges  

• Base cases. 

•  for any  

•  for any  

• Final answer for shortest path cost to node   

•  

D[v, i] s
v ≤ i ∞ ≤ i

D[s, i] = 0 i

D[v,0] = ∞ v ≠ s

v

D[v, n − 1]



Recurrence
• Suppose we have found shortest paths to all nodes of 

length at most  

• We are now considering shortest paths of length  

• Cases to consider for the recurrence of  

• Case 1. Shortest path to  was already found (is same 
as ) 

• Case 2. Shortest path to  is "longer" than paths found 
so far:   

• Look at all nodes  that have incoming edges to  

• Take minimum over their distances and add 

i − 1

i

D[v, i]

v
D[v, i − 1]

v

u v

wuv v

u



Bellman-Ford-Moore Algorithm

• Recurrence.    For all nodes , and for all , v ≠ s 1 ≤ i ≤ n − 1

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}

• Called the Bellman-Ford-Moore algorithm v

u



Bellman-Ford-Moore Algorithm
• Subproblem.  : (optimal) cost of shortest path from  to  

using   edges  

• Recurrence.  
 

• Memoization structure. Two-dimensional array 

• Evaluation order. 

•  (column major order) 

• Starting from , the row of vertices can  
be in any order

D[v, i] s v
≤ i

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}

i : 1 → n − 1

s



Running Time
• Recurrence. 

 

• Naive analysis.  time  

• Each entry takes  to compute, there are  entries 

• Improved analysis.  For a given ,   looks at each incoming 
edge of  

• Takes  accesses to the table 

•
For a given  filling  takes  accesses 

• At most  accesses (remember that for 
connected graphs we have  ) 

• Overall running time is  

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}

O(n3)

O(n) O(n2)
i, v d[v, i]

v
indegree(v)

i, d[ − , i] ∑
v∈V

indegree(v)

O(n + m) = O(m)
m ≥ n − 1

O(nm)



• Shortest-Path Summary.  Assuming there are no negative 
cycles in , we can compute the shortest path from  to all nodes 
in  in  time using the Bellman-Ford-Moore algorithm

G s
G O(nm)



Dynamic Programming  
Shortest Path:   

Bellman-Ford-Moore Example



•  for any  

•  for any 

D[s, i] = 0 i
D[v,0] = ∞ v ≠ s

0 1 2 3
s 0 0 0 0
a inf
b inf
c inf

s a

b c

-3

1

1

2 -1

1



• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf
b inf
c inf

s a

b c

-3

1

1

2 -1

1



• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf
c inf

s a

b c

-3

12 -1

1



• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf

s a

b c

-3

12 -1

1



• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf inf

s a

b c

-3

12 -1

1



• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf inf

s a

b c

-3

12 -1

1



• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3
b inf 2
c inf inf

s a

b c

-3

12 -1

1



0 1 2 3
s 0 0 0 0
a inf -3 -3
b inf 2 2
c inf inf

s a

b c

-3

12 -1

1

• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}



0 1 2 3
s 0 0 0 0
a inf -3 -3
b inf 2 2
c inf inf -2

s a

b c

-3

12 -1

1

• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}



• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3 -3
b inf 2 2
c inf inf -2

s a

b c

-3

12 -1

1



• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3 -3
b inf 2 2 -1
c inf inf -2

s a

b c

-3

12 -1

1



0 1 2 3
s 0 0 0 0
a inf -3 -3 -3
b inf 2 2 -1
c inf inf -2 -2

s a

b c

-3

1

1

2 -1

• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}



Dynamic Programming  
Shortest Path:   

Detecting a Negative Cycle



Negative Cycle
• Definition.  A negative cycle is a directed cycle  such that the 

sum of all the edge weights in  is less than zero 

• Claim.  If a path from  to some node  contains a negative cycle, 
then there does not exist a shortest path from  to . 

C
C

s v
s v

−3

5

−3

−44

a negative cycle W :  �(W ) =
�

e�W

�e < 0
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Detecting a Negative Cycle
• Question.  Given a directed graph  with edge-

weights  (can be negative), determine if  contains a 
negative cycle. 

• Now, we don't have a specific source node given to us   

• Let's change this problem a little bit 

• Problem. Given  and source , find if there is negative cycle 
on a  path for any node .

G = (V, E)
we G

G s
s ↝ v v



• Problem. Given  and source , find if there is negative cycle on a 
 path for any node . 

•  is the cost of the shortest path from  to  of length at most  

• Suppose there is a negative cycle on a  path 

• Then   

• If  for every node  then  has no negative 
cycle!  

• Table values converge,  no further improvements possible 

• OK, so if  for all  we have no negative 
cycle.  Is this all we need to check?  (Can we prove if and only if?)

G s
s ↝ v v

D[v, i] s v i

s ↝ v

lim
i→∞

D[v, i] = − ∞

D[v, n] = D[v, n − 1] v G

D[v, n] = D[v, n − 1] v

Detecting a Negative Cycle



Detecting a Negative Cycle
• Lemma. If  then any shortest  

path contains a negative cycle. 

• Proof. [By contradiction]  Suppose  does not contain a 
negative cycle 

• Since , the shortest  path that 
caused this update has exactly  edges 

• By pigeonhole principle, path must contain a repeated node, 
let the cycle between two successive visits to the node be  

• If  has non-negative weight, removing it would give us a 
shortest path with less than  edges 

D[v, n] < D[v, n − 1] s ↝ v

G

D[v, n] < D[v, n − 1] s ↝ v
n

P
P

n ⇒⇐

P

w(P)  ≥  0

s v
x



Analysis: First Attempt
• Now we know how to detect negative cycles on a shortest path 

from  to some node .   

• How do we detect a negative cycle anywhere in ? 

• Do the above for each  

• Running time? 

•  

• Can we improve this? 

s v

G

s ∈ V

O(nm ⋅ n) = O(n2m)



Problem Reduction
• Now we know how to detect negative cycles on a shortest path 

from  to some node .   

• How do we detect a negative cycle anywhere in ? 

• Reduction. Given graph , add a source  and connect it to 
all vertices in  with edge weight .   Let the new graph be  

• Claim.   has a negative cycle iff  has a negative cycle from 
 to some node . 

• Proof.   If  has a negative cycle, then this cycle lies  
on the shortest path from  to a node on the cycle in  

•  If  has a negative cycle on a shortest path from   
to some node, then that node is on a negative cycle in 

s v

G

G s
G 0 G′￼

G G′￼

s v

⇒ G
s G′￼

⇐ G′￼ s
G



Problem Reduction
• Running time is now  rather than  

• Idea: our original algorithm was for a slightly different problem 
than what we wanted.  Rather than running it over and over, we 
changed the input and ran it once 

• Gave us the answer for the final problem 

• We’ll see many more reductions in part 3 of the course

O(nm) O(n2m)



Bellman-Ford Fun Facts
• Can we improve on  for single source shortest 

paths with negative edges? 
• Open problem since invention in 1956 
• [Fineman 2024]:  algorithm 

• Uses a very clever and complicated reduction to 
Dijkstra’s algorithm 

• [Huang Jin Quanrud 2025]:  algorithm

O(nm)

O(n8/9m)

O(n4/5m)



DP Coding Example



Coding up DP

• We have talked mostly about “filling out a recipe” 
and “what does the table look like” 

• These are real techniques to solve algorithmic 
problems using computers 

• Let’s look at how one might code these up 

• Using very basic python



Reminder: Recipe for LIS
• Subproblem.   stores longest subsequence ending at  

• Recurrence.   where 

 

• Base case.  

• Final answer.  

• Memoization data structure.    is an array of length  

• Evaluation order. Increasing order of  

• How to recover solution: the  we chose is the second-to-last 
element in the solution.  Store all  in an array , and walk 
backwards through  to recover solution

L[i] i
L[i] = 1 + max

m∈M
L[m]

M = {j | j < i and A[ j] < A[i]}
L[0] = 1

max
i

L[i]

L n
i

m
m B

B



Introduction to
Network Flows



Story So Far
• Algorithmic design paradigms: 

• Greedy:  simplest to design but works only for certain limited 
class of optimization problems 

• A good starting point for most problems but rarely optimal 

• Divide and Conquer  

• Solving a problem by breaking it down into smaller 
subproblems and recursing 

• Dynamic programming 

• Recursion with memoization:  avoiding repeated work 

• Trading off space for time



Network Flows
• Graph-based problem; looks like a lot of what we learned in part 1 

• Soon, we’ll use what we learn about network flows to solve much 
more general problems 

• Problems where you revisit* (and improve) past solutions 

• Solve problems that even dynamic programming can’t* solve! 

• Restricted case of Linear/Convex Programming; “algorithmic 
power tools”



What’s a Flow Network?
• A flow network is a directed graph  with a 

• A source is a vertex  with in degree  

• A sink is a vertex  with out degree  

• Each edge  has edge capacity 

G = (V, E)
s 0

t 0
e ∈ E c(e) > 0

s t5

15

10 15

16

9

15

6

8 10

154

4 10

10

edge capacity

source

sink



Visualize



Assumptions
• Assume that each node  is on some  path, that is, 

  exists, for any vertex  

• Implies  is connected and  

• Assume capacities are integers

• Will revisit this assumption and what happens if not 

• Directed edge  written as  

• For simplifying expositions, we will sometimes write 

 when 

v s-t
s ↝ v ↝ t v ∈ V

G m ≥ n − 1

(u, v) u → v

c(u → v) = 0 (u, v) ∉ E



What’s a Flow?
• Given a flow network, an -flow or just flow (if source  

and sink  are clear from context)  satisfies the 
following two constraints: 

• [Flow conservation]   , for  where 
 

             

           

• To simplify,  if there is no edge from  to 

(s, t) s
t f : E → ℤ+

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v)

fout(v) = ∑
w

f(v → w)

f(u → v) = 0 u v

0 / 15

10 / 10v5 / 8

5 / 15 0 / 15

flow capacity



Feasible Flow
• And second, a feasible flow must satisfy the capacity 

constraints of the network, that is, 

[Capacity constraint]  for each , e ∈ E 0 ≤ f(e) ≤ c(e)

0 / 4

0 / 4 0 / 15

10 / 1
0

10 / 105 / 5 vs t

0 / 6

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

10 / 16

flow capacity

0 / 15



Value of a Flow
• Definition. The value of a flow , written , is .f v( f ) fout(s)

  =  5 + 10 + 10  =  25v( f )

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

What is  here?v( f )



Value of a Flow
• Definition. The value of a flow , written , is . 

• Lemma. 

f v( f ) fout(s)

fout(s) = fin(t)

value  =  5 + 10 + 10  =  25

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

Intuitively, why do you think 
this is true?



Value of a Flow
• Lemma.  

•
Proof.   Let  

•
Then,  

• For every   flow conversation implies  

• Thus all terms cancel out on both sides except 
 

• But 

fout(s) = fin(t)

f(E) = ∑
e∈E

f(e)

∑
v∈V

fin(v) = f(E) = ∑
v∈V

fout(v)

v ≠ s, t fin(v) = fout(v)

fin(s) + fin(t) = fout(s) + fout(t)

fin(s) = fout(t) = 0 ∎

u v

f



Value of a Flow
• Lemma.  

• Corollary. .

fout(s) = fin(t)

v( f ) = fin(t)

value  =  5 + 10 + 10  =  25

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15



Max-Flow Problem
• Problem.  Given an  flow network, find a feasible  flow of 

maximum value.
s-t s-t

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15



Minimum Cut Problem



Cuts are Back!
• Cuts in graphs played a lead role when we were designing 

algorithms for MSTs 

• What is the definition of a cut?

ts



Cuts in Flow Networks
• Recall. A cut  in a graph is a partition of vertices such 

that  ,  and  are non-empty. 

• Definition. An -cut is a cut  s.t.  and .

(S, T )
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T ) s ∈ S t ∈ T

ts



Cut Capacity
• Recall. A cut  in a graph is a partition of vertices such 

that  ,  and  are non-empty. 

• Definition. An -cut is a cut  s.t.  and . 

• Capacity of a -cut  is the sum of the capacities of 
edges leaving : 

•

(S, T )
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T ) s ∈ S t ∈ T

(s, t) (S, T )
S

c(S, T ) = ∑
v∈S,w∈T

c(v → w)



Quick Quiz
Question.  What is the capacity of the  cut given by the grey and 
white nodes? 

A.  11  (20 + 25 − 8 − 11 − 9 − 6) 

B.  34  (8 + 11 + 9 + 6)  

C.  45  (20 + 25) 

D.  79  (20 + 25 + 8 + 11 + 9 + 6) 

s-t
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c(v → w)
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Min Cut Problem
• Problem.  Given an  flow network, find an  cut of 

minimum capacity.
s-t s-t

s t5

15

10 15

16

9

15

6

8 10

154

4 10

10



Relationship between  
Flows and Cuts



Flows and Cuts
• Cuts represent "bottlenecks" in a flow network 

• For any cut, our flow needs to “get out” of that cut on its 
route from  to  

• Let us formalize this intuition

s t

s t



• Claim.  Let  be any  flow and  be any  cut then 
  

• There are two  cuts for which this is easy to see, which ones?

f s-t (S, T ) s-t
v( f ) ≤ c(S, T )

s-t

Flows and Cuts
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10 / 1
0
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5 / 10
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5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4
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10 / 16

0 / 15



• Claim.  Let  be any  flow and  be any  cut then 
  

• There are two  cuts for which this is easy to see, which ones?

f s-t (S, T ) s-t
v( f ) ≤ c(S, T )

s-t
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10 / 16

0 / 15

Flows and Cuts



• To prove this for any cut, we first relate the flow value in a 
network to the net flow leaving a cut  

• Lemma.  For any feasible -flow  on  and 
any -cut , , where 

•
 (sum of flow ‘leaving’ ) 

•
 (sum of flow ‘entering’ ) 

• Note:     and 

(s, t) f G = (V, E)
(s, t) v( f ) = fout(S) − fin(S)

fout(S) = ∑
v∈S,w∈T

f(v → w) S

fin(S) = ∑
v∈S,w∈T

f(w → v) S

fout(S) = fin(T ) fin(S) = fout(T )

Flows and Cuts



Proof.    

=        [by definition] 

fout(S) − fin(S)

∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

ts

Flows and Cuts

These are the same sum: 
they sum the flow of all edges 

with both vertices in S

Adding zero terms



Proof.    

 

 

 

 

    

fout(S) − fin(S)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) + ∑
v∈S,w∈T

f(v → w) − ∑
v,u∈S

f(u → v) − ∑
v∈S,u∈T

f(u → v)

= ∑
v∈S

(∑
w

f(v → w) − ∑
u

f(u → v))

= ∑
v∈S

fout(v) − fin(v)

= fout(s) = v( f ) ∎

ts

Flows and Cuts
Rearranging terms

Cancels out for all except s



Flows and Cuts
• We use this result to prove that the value of a flow cannot exceed 

the capacity of any cut in the network  

• Claim.  Let  be any  flow and  be any  cut then 

 

• Proof.   

 

f s-t (S, T ) s-t
v( f ) ≤ c(S, T )

v( f ) = fout(S) − fin(S)

≤ fout(S) = ∑
v∈S,w∈T

f(v → w)

≤ ∑
v∈S,w∈T

c(v, w) = c(S, T )

When is v( f ) = c(S, T )?

fin(S) = 0, fout(S) = c(S, T )



• Suppose the  is the capacity of the minimum cut in a network 

• What can we say about the feasible flow we can send through it 

• cannot be more than  

• In fact, whenever we find any  flow  and any  cut  such 
that,  we can conclude that: 

•  is the maximum flow, and,  

•  is the minimum cut 

• The question now is, given any flow network with min cut , is it 
always possible to route a feasible  flow  with 

cmin

cmin

s-t f s-t (S, T )
v( f ) = c(S, T )

f

(S, T )

cmin
s-t f v( f ) = cmin

Max-Flow & Min-Cut



Max-Flow Min-Cut Theorem
• A beautiful, powerful relationship between these two 

problems in given by the following theorem 

• Theorem.  Given any flow network , there exists a feasible 
-flow   and a -cut   such that, 

 

• Informally, in a flow network, the max-flow = min-cut 

• This will guide our algorithm design for finding max flow 

• (Will prove this theorem by construction in a bit—our 
algorithm will prove the theorem! (like with Gale-Shapley))

G
(s, t) f (s, t) (S, T )

v( f ) = c(S, T )



Network Flow History
• In 1950s, US military researchers Harris and Ross wrote a 

classified report about the rail network linking Soviet Union 
and Eastern Europe 

• Vertices were the geographic regions 

• Edges were railway links between the regions 

• Edge weights were the rate at which material could be 
shipped from one region to next 

• Ross and Harris determined: 

• Maximum amount of stuff that could be  
moved from Russia to Europe (max flow) 

• Cheapest way to disrupt the network by  
removing rail links  (min cut) 



Network Flow History

Image Credits: — Jeff Erickson’s book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for 
evaluating rail net capacities. The RAND Corporation, Research Memorandum RM-1517, October 24, 1955. United States 

Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf



Towards a Max-Flow Algorithm
• Today:  we will prove the max-flow min-cut theorem 

constructively  

• We will design a max-flow algorithm and show that there is a  
cut s.t. value of flow computed by algorithm  capacity of cut 

• Let's start with a greedy approach 

• Push as much flow as possible down a  path 

• This won't actually work 

• But gives us a sense of what we need to keep track 
off to improve upon it

s-t
=

s-t



Towards a Max-Flow Algorithm
• Greedy strategy: 

• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck 

• Let’s take an example

f(e) = 0

s ↝ t P f(e) < c(e)

P



Towards a Max-Flow Algorithm
• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

value of flow

0 / 10

flow capacity



Towards a Max-Flow Algorithm
• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck
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s ↝ t P f(e) < c(e)
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Towards a Max-Flow Algorithm
• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P
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Towards a Max-Flow Algorithm
• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P
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Towards a Max-Flow Algorithm
• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 2 = 10

0 / 6

0 / 4

8 / 8

0 / 10 8

0 / 100 / 2
8 / 1
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Towards a Max-Flow Algorithm
• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 4

8 / 8

10
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Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Is this the best we can do?



Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm

max-flow value = 19
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• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  
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Towards a Max-Flow Algorithm
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• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck
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Why Greedy Fails
• Problem: greedy can never “undo” a bad flow decision 

• Consider the following flow network 
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Why Greedy Fails
• Problem: greedy can never “undo” a bad flow decision 

• Consider the following flow network 

• Unique max flow has  

• Greedy could choose  as first  
 
 
 
 
 

• Takeaway:  Need a mechanism to “undo” bad flow decisions 

f(v → w) = 0
s → v → w → t P

s

t

w

v

1

2

2

22



Ford-Fulkerson 
Algorithm



Ford Fulkerson: Idea
• Want to make “forward progress” while letting ourselves 

undo previous decisions if they’re getting in our way 

• Idea: keep track of where we can push flow  

• Can push more flow along an edge with remaining 
capacity  

• Can also push flow “back” along an edge that already 
has flow down it 

• Need a way to systematically track these decisions



Residual Graph
• Given flow network  and a feasible flow  on , the 

residual graph  is defined as: 

• Vertices in   same as  

• (Forward edge) For  with residual capacity
, create  with capacity  

• (Backward edge) For  with , create  
  with capacity 

G = (V, E, c) f G
Gf = (V, Ef , cf )

Gf G

e ∈ E
c(e) − f(e) > 0 e ∈ Ef c(e) − f(e)

e ∈ E f(e) > 0
ereverse ∈ Ef f(e)

u v

flow

6 / 17

capacity

original flow network G

u v

residual
capacity

residual network Gf

11

6

reverse edge



Flow Algorithm Idea
• Now we have a residual graph that lets us make forward 

progress or push back existing flow 

• We will look for  paths in   rather than  

• Once we have a path, we will "augment" flow along it similar to 
greedy 

• find bottleneck capacity edge on the path and push that 
much flow through it in  

• When we translate this back to , this means: 

• We increment existing flow on a forward edge 

• Or we decrement flow on a backward edge

s ↝ t Gf G

Gf

G



Augmenting Path & Flow
• An augmenting path  is a simple  path in the 

residual graph  

• The bottleneck capacity  of an augmenting path  is the 
minimum capacity of any edge in .

P s ↝ t
Gf

b P
P

AUGMENT( f, P)                          


  ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E, that is, e is forward edge )  

               Increase f(e) in G by 

ELSE          
              Decrease f(e) in G by 

RETURN  f.


b

b

b

The path  is in P Gf

Updating flow in G



Ford-Fulkerson Algorithm
• Start with  for each edge  

• Find a simple  path  in the residual network  

• Augment flow along path  by bottleneck capacity  

• Repeat until you get stuck

f(e) = 0 e ∈ E
s ↝ t P Gf

P b

FORD–FULKERSON(G)                          

_____

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10+6 = 16

6 / 10

flow capacitynetwork G and flow f

value of flow

8 

8

10

 10 

1

6

6

 6  

4

4s

 4  

t

2

residual network Gf



Ford-Fulkerson Example
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Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

2 / 4

8 / 8

8 / 98 / 10 18

8 / 10

flow capacitynetwork G and flow f

value of flow

8

10

 10 6

 8  

2

2

8

1

2

s

 2  

t2

8 

residual network Gf



Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9  

2

3

9

1

s

 1  

t9

1 
7 

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?



Analysis: Ford-Fulkerson



• Feasibility and value of flow: 

• Show that each time we update the flow, we are routing a 
feasible  flow through the network 

• And that value of this flow increases each time by that amount 

• Optimality: 

• Final value of flow is the maximum possible  

• Running time: 

• How long does it take for the algorithm to terminate? 

• Space: 

• How much total space are we using

s-t

Analysis Outline



• Claim.  Let  be a feasible flow in  and let  be an 
augmenting path in  with bottleneck capacity .  Let  

, then  is a feasible flow. 

• Proof. Only need to verify constraints on the edges of   
(since  for other edges).  Let  

• If  is a forward edge:    

 

• If  is a backward edge:   

  

• Conservation constraint hold on any node in : 

• , therefore  for both cases

f G P
Gf b

f′￼← AUGMENT( f, P) f′￼

P
f′￼= f e = (u, v) ∈ P

e f′￼(e) = f(e) + b
≤ f(e) + (c(e) − f(e)) = c(e)

e f′￼(e) = f(e) − b
≥ f(e) − f(e) = 0

u ∈ P
fin(u) = fout(u) f′￼in(u) = f′￼out(u)

Feasibility of Flow



• Claim.  Let  be a feasible flow in  and let  be an 
augmenting path in  with bottleneck capacity .  Let  

, then . 

• Proof.  

• First edge  must be out of  in  

• (  is simple so never visits  again) 

•  must be a forward edge (  is a path from  to ) 

• Thus  increases by , increasing  by   

• Note.  Means the algorithm makes forward progress each time!

f G P
Gf b

f′￼← AUGMENT( f, P) v( f′￼) = v( f ) + b

e ∈ P s Gf

P s

e P s t

f(e) b v( f ) b ∎

Value of Flow:  Making Progress



Optimality



Ford-Fulkerson Optimality
• Recall: If  is any feasible -  flow and  is any -  cut 

then . 

• We will show that the Ford-Fulkerson algorithm terminates in 
a flow that achieves equality, that is, 

• Ford-Fulkerson finds a flow  and there exists a cut  
such that,    

• Proving this shows that it finds the maximum flow (and the 
min cut) 

• This also proves the max-flow min-cut theorem

f s t (S, T ) s t
v( f ) ≤ c(S, T )

f* (S*, T*)
v( f*) = c(S*, T*)



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. 

• Let ,    

• Is this an  cut?   

• ,  and  

• Consider an edge  with , then what 
can we say about ? 

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)



Recall: Ford-Fulkerson Example
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. 

• Let ,    

• Is this an  cut?   

• ,  and  

• Consider an edge  with , then what 
can we say about ?  

•  

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

f(e) = c(e)



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. (Cont.)  

• Let ,    

• Is this an  cut?   

• ,  and  

• Consider an edge  with , then what 
can we say about ? 

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)



Recall: Ford-Fulkerson Example
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. (Cont.)  

• Let ,    

• Is this an  cut?   

• ,  and  

• Consider an edge  with , then what 
can we say about ?  

•

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)

f(e) = 0



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. (Cont.) 

• Let ,    

• Thus, all edges leaving  are completely saturated and all 
edges entering  have zero flow 

•   

• Corollary. Ford-Fulkerson returns the maximum flow.

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

S*
S*

v( f ) = fout(S*) − fin(S*) = fout(S*) = c(S*, T*) ∎



Ford-Fulkerson Algorithm
Running Time



Ford-Fulkerson Performance

• Does the algorithm terminate?   

• Can we bound the number of iterations it does? 

• Running time?

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



• Recall we proved that with each call to AUGMENT, we increase 
value of flow by  

• Assumption.  Suppose all capacities  are integers. 

• Integrality invariant.  Throughout Ford–Fulkerson, every edge flow 
 and corresponding residual capacity is an integer.  Thus . 

• Let  be the maximum capacity among edges 

leaving the source .   

• It must be that  

• Since,  increases by  in each iteration, it follows that FF 
algorithm terminates in at most  iterations.

b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v( f ) ≤ (n − 1)C

v( f ) b ≥ 1
v( f ) = O(nC)

Ford-Fulkerson Running Time



Ford-Fulkerson Performance

• Operations in each iteration? 

• Find an augmenting path in  

• Augment flow on path 

• Update 

Gf

Gf

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



• Claim.  Ford-Fulkerson can be implemented to run in time 
, where  and . 

• Proof.  Time taken by each iteration: 

• Finding an augmenting path in  

•  has at most  edges, using BFS/DFS takes 

 time 

• Augmenting flow in  takes  time 

• Given new flow, we can build new residual graph in  time 

• Overall,  time per iteration 

O(nmC) m = |E | ≥ n − 1 C = max
u

c(s → u)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m)

O(m) ∎

Ford-Fulkerson Running Time


