
Dynamic Programming
and Network Flows

Admin
• Problem Set 4 back

• Problem Set 5 back tomorrow

• (thanks to our wonderful TAs for helping me and
having a very quick turnaround)

• I will post a handout on tips for Dynamic
Programming consolidating some of what we’ve
seen

Admin: TA items
• TA evaluation form! https://forms.gle/sbqCGVLAFnhUQ4i39

• Please fill out by next Friday

• Please apply to be a TA next semester!

• https://csci.williams.edu/tatutor-application/

• Don’t need to any kind of “algorithms person.”

• Good to have different perspectives!

• Class will be a little different in any case

• Great way to learn algorithms better!

https://forms.gle/sbqCGVLAFnhUQ4i39
https://csci.williams.edu/tatutor-application/

Midterm
• In-person during class two weeks from today

• Required to take it at that time

• Very strong focus on topics since last midterm:

• Divide and conquer/recurrences

• Dynamic programming

• Remember: I’ll give you the recipe

• Network flows

• Closed book, but you can bring a 1-page (2-sided) cheat sheet

• I don’t think it will be too helpful

• Practice exam posted soon

Planning for Final
• Sunday, May 25th at 1:30pm

• I will hold an extra final during reading period May 17-20

• Only one! If you miss this one you need to take it on
the 25th

• Please let me know as soon as possible if you want to
take the exam early

• Especially: please let me know if you have any conflicts
in May 17-20.

Partitioning Work
• Suppose we have to scan through a shelf of books, and each book

has a different size

• We want to divide the shelf into region of books, and each region
is assigned one of the workers

• Order of books fixed by cataloging system: cannot reorder/
rearrange the books

• Goal: divide the work is a fair way among the workers

k

Subproblem
• Subproblem  
 
 
 
 
 

• Final answer

 be the optimal cost of partitioning
elements using partitions,
where

M(i, j)
s1, s2, …, si j

1 ≤ i ≤ n, 1 ≤ j ≤ k

M(n, k)

Towards a Recurrence
• Want a recurrence for

• Notice that the th partition starts after we place the
st “divider”

• Where can we place the st divider?

M(i, j)
j

(j − 1)
j − 1

 books using partitions 1,…, i′￼ j − 1

 books
in th partition

i′￼+ 1,…, i
j

Towards a Recurrence
• Where can we place the st divider?

• Between books and for some

j − 1
i′￼ i′￼+ 1 i′￼< i

 books using partitions 1,…, i′￼ j − 1

 books
in th partition

i′￼+ 1,…, i
j

Towards a Recurrence
• Finally: for to choose the partition point for starting the th

partition

• Let us consider all possibilities

• Take min cost option among them

i′￼ j

1 ≤ i′￼< i

 books using partitions 1,…, i′￼ j − 1

 books
in th partition

i′￼+ 1,…, i
j

Final Recurrence
• For and , we have:

2 ≤ i ≤ n 2 ≤ j ≤ k

M(i, j) = min
1≤i′￼<i

cost of starting jth parition at book (i′￼+ 1)

Towards a Recurrence
• Cost of this way of partitioning?

• (Remember cost is max sum across all partitions)

 books using partitions 1,…, i′￼ j − 1

 books
in th partition

i′￼+ 1,…, i
j

Towards a Recurrence

•
Cost of th partition itself:

• Cost of remaining partitions?

j
i

∑
t=i′￼+1

si

M[i′￼, j − 1]

 books using partitions 1,…, i′￼ j − 1

 books
in th partition

i′￼+ 1,…, i
j

Final Recurrence
• For and , we have:

• Memoization structure: We store values in a 2-D array
or table using space

• Evaluation order: In what order should we fill in the table?

2 ≤ i ≤ n 2 ≤ j ≤ k

M[i, j]
O(nk)

M(i, j) = min
1≤i′￼<i

max{M(i′￼, j − 1),
i

∑
ℓ=i′￼+1

st}

• Evaluation order.

• To fill out , I need the previous column filled in for rows
less than , that is, for all

• Can compute using column major order: column by column

• Running time?

• Size of table (space):

• How long to compute a single cell?

• Depends on other cells

• time to fill in one cell

M[i, j]
i M[i′￼, j − 1] 1 ≤ i′￼< i

O(k ⋅ n)

n

O(n)

Final Pieces

Running Time
• Running time

•

• Is this a polynomial running time?

• Not as stated, not polynomial in the number of bits required to
write

• But lets think if we can upper bound using

• How big can get?

• At most non-empty partitions of elements

• algorithm in the worst case

O(n2 ⋅ k)

k
k n

k
n n

O(n3)

Last Topic in Dynamic Programming:
Shortest Paths Revisited

Shortest Path Problem
• Single-Source Shortest Path Problem.

Given a connected directed graph with edge weights
 on each and a a source node , find the shortest path

from to to all nodes in .

• Negative weights. The edge-weights in can be negative.
(When we studied Dijkstra's, we assumed non-negative weights.)

• Let be a path from to , denoted .

• The length of is the number of edges in

•
The cost or weight of is

• Goal: cost of the shortest path from to all nodes

G = (V, E)
we e ∈ E s

s G

we G

P s t s ↝ t

P P

P w(P) = ∑
e∈P

we

s

Negative Weights & Dijkstra's
• Dijkstra’s Algorithm. Does the greedy approach work for graphs

with negative edge weights?

• Dijkstra's will explore 's neighbor and add , with
 to the shortest path tree

• Dijkstra assumes that there cannot be a "longer path" that has
lower cost (relies on edge weights being non-negative)

s t
d[t] = wsv = 2

t

v

2

6

−8

3

Dijkstra's will find as shortest path with cost
But the shortest path is with cost

s → t 2
s → v → w → t 14

s

w

Negative Cycles
• Definition. A negative cycle is a directed cycle such that the

sum of all the edge weights in is less than zero

• Question. How do negative cycles affect shortest path?

C
C

−3

5

−3

−44

a negative cycle W : �(W) =
�

e�W

�e < 0
<latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit>

Negative Cycles & Shortest Paths
• Claim. If a path from to some node contains a negative cycle,

then there does not exist a shortest path from to .

• Proof.

• Suppose there exists a shortest path with cost that
traverses the negative cycle times for .

• Can construct a shorter path by traversing the cycle times

• Assumption. has no negative cycle.

• Later in the lecture: how can we detect whether the input graph
contains a negative cycle?

s v
s v

s ↝ v d
t t ≥ 0

t + 1
⇒⇐ ∎

G
G

Dynamic Programming Approach
• First step to a dynamic program? Recursive formulation

• What is the subproblem? What is the recurrence?

• Dijkstra’s algorithm: for each the subproblem is the
shortest path from to

• Why doesn’t this work?

• There may be a shorter path out of the cut (but it must
have more edges)

• Idea: subproblem is the shortest path from to
consisting of at most edges

• How big can get?

v
s v

(v, k) s v
k

k

No. of Edges in Shortest Path
• Claim. If has no negative cycles, then exists a shortest path

from to any node that uses at most edges.

• Proof. Suppose there exists a shortest path from to made
up of or more edges

• A path of length at least must visit at least nodes

• There exists a node that is visited more than once
(pigeonhole principle). Let denote the portion of the path
between the successive visits.

• Can remove without increasing cost of path.

G
s u n − 1

s u
n

n n + 1
x

P

P ∎

P

w(P) ≥ 0

s u
x

Shortest Path Subproblem
• Subproblem. : (optimal) cost of shortest path from

to using edges, or if no path with edges

• Base cases.

• for any

• for any

• Final answer for shortest path cost to node

•

D[v, i] s
v ≤ i ∞ ≤ i

D[s, i] = 0 i

D[v,0] = ∞ v ≠ s

v

D[v, n − 1]

Recurrence
• Suppose we have found shortest paths to all nodes of

length at most

• We are now considering shortest paths of length

• Cases to consider for the recurrence of

• Case 1. Shortest path to was already found (is same
as)

• Case 2. Shortest path to is "longer" than paths found
so far:

• Look at all nodes that have incoming edges to

• Take minimum over their distances and add

i − 1

i

D[v, i]

v
D[v, i − 1]

v

u v

wuv v

u

Bellman-Ford-Moore Algorithm

• Recurrence. For all nodes , and for all , v ≠ s 1 ≤ i ≤ n − 1

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}

• Called the Bellman-Ford-Moore algorithm v

u

Bellman-Ford-Moore Algorithm
• Subproblem. : (optimal) cost of shortest path from to

using edges

• Recurrence.

• Memoization structure. Two-dimensional array

• Evaluation order.

• (column major order)

• Starting from , the row of vertices can
be in any order

D[v, i] s v
≤ i

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}

i : 1 → n − 1

s

Running Time
• Recurrence.

• Naive analysis. time

• Each entry takes to compute, there are entries

• Improved analysis. For a given , looks at each incoming
edge of

• Takes accesses to the table

•
For a given filling takes accesses

• At most accesses (remember that for
connected graphs we have)

• Overall running time is

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}

O(n3)

O(n) O(n2)
i, v d[v, i]

v
indegree(v)

i, d[− , i] ∑
v∈V

indegree(v)

O(n + m) = O(m)
m ≥ n − 1

O(nm)

• Shortest-Path Summary. Assuming there are no negative
cycles in , we can compute the shortest path from to all nodes
in in time using the Bellman-Ford-Moore algorithm

G s
G O(nm)

Dynamic Programming
Shortest Path:

Bellman-Ford-Moore Example

• for any

• for any

D[s, i] = 0 i
D[v,0] = ∞ v ≠ s

0 1 2 3
s 0 0 0 0
a inf
b inf
c inf

s a

b c

-3

1

1

2 -1

1

• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf
b inf
c inf

s a

b c

-3

1

1

2 -1

1

• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf
c inf

s a

b c

-3

12 -1

1

• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf

s a

b c

-3

12 -1

1

• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf inf

s a

b c

-3

12 -1

1

• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf inf

s a

b c

-3

12 -1

1

• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3
b inf 2
c inf inf

s a

b c

-3

12 -1

1

0 1 2 3
s 0 0 0 0
a inf -3 -3
b inf 2 2
c inf inf

s a

b c

-3

12 -1

1

• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3
b inf 2 2
c inf inf -2

s a

b c

-3

12 -1

1

• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3 -3
b inf 2 2
c inf inf -2

s a

b c

-3

12 -1

1

• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3 -3
b inf 2 2 -1
c inf inf -2

s a

b c

-3

12 -1

1

0 1 2 3
s 0 0 0 0
a inf -3 -3 -3
b inf 2 2 -1
c inf inf -2 -2

s a

b c

-3

1

1

2 -1

• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}

Dynamic Programming
Shortest Path:

Detecting a Negative Cycle

Negative Cycle
• Definition. A negative cycle is a directed cycle such that the

sum of all the edge weights in is less than zero

• Claim. If a path from to some node contains a negative cycle,
then there does not exist a shortest path from to .

C
C

s v
s v

−3

5

−3

−44

a negative cycle W : �(W) =
�

e�W

�e < 0
<latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit>

Detecting a Negative Cycle
• Question. Given a directed graph with edge-

weights (can be negative), determine if contains a
negative cycle.

• Now, we don't have a specific source node given to us

• Let's change this problem a little bit

• Problem. Given and source , find if there is negative cycle
on a path for any node .

G = (V, E)
we G

G s
s ↝ v v

• Problem. Given and source , find if there is negative cycle on a
 path for any node .

• is the cost of the shortest path from to of length at most

• Suppose there is a negative cycle on a path

• Then

• If for every node then has no negative
cycle!

• Table values converge, no further improvements possible

• OK, so if for all we have no negative
cycle. Is this all we need to check? (Can we prove if and only if?)

G s
s ↝ v v

D[v, i] s v i

s ↝ v

lim
i→∞

D[v, i] = − ∞

D[v, n] = D[v, n − 1] v G

D[v, n] = D[v, n − 1] v

Detecting a Negative Cycle

Detecting a Negative Cycle
• Lemma. If then any shortest

path contains a negative cycle.

• Proof. [By contradiction] Suppose does not contain a
negative cycle

• Since , the shortest path that
caused this update has exactly edges

• By pigeonhole principle, path must contain a repeated node,
let the cycle between two successive visits to the node be

• If has non-negative weight, removing it would give us a
shortest path with less than edges

D[v, n] < D[v, n − 1] s ↝ v

G

D[v, n] < D[v, n − 1] s ↝ v
n

P
P

n ⇒⇐

P

w(P) ≥ 0

s v
x

Analysis: First Attempt
• Now we know how to detect negative cycles on a shortest path

from to some node .

• How do we detect a negative cycle anywhere in ?

• Do the above for each

• Running time?

•

• Can we improve this?

s v

G

s ∈ V

O(nm ⋅ n) = O(n2m)

Problem Reduction
• Now we know how to detect negative cycles on a shortest path

from to some node .

• How do we detect a negative cycle anywhere in ?

• Reduction. Given graph , add a source and connect it to
all vertices in with edge weight . Let the new graph be

• Claim. has a negative cycle iff has a negative cycle from
 to some node .

• Proof. If has a negative cycle, then this cycle lies
on the shortest path from to a node on the cycle in

• If has a negative cycle on a shortest path from
to some node, then that node is on a negative cycle in

s v

G

G s
G 0 G′￼

G G′￼

s v

⇒ G
s G′￼

⇐ G′￼ s
G

Problem Reduction
• Running time is now rather than

• Idea: our original algorithm was for a slightly different problem
than what we wanted. Rather than running it over and over, we
changed the input and ran it once

• Gave us the answer for the final problem

• We’ll see many more reductions in part 3 of the course

O(nm) O(n2m)

Bellman-Ford Fun Facts
• Can we improve on for single source shortest

paths with negative edges?
• Open problem since invention in 1956
• [Fineman 2024]: algorithm

• Uses a very clever and complicated reduction to
Dijkstra’s algorithm

• [Huang Jin Quanrud 2025]: algorithm

O(nm)

O(n8/9m)

O(n4/5m)

DP Coding Example

Coding up DP

• We have talked mostly about “filling out a recipe”
and “what does the table look like”

• These are real techniques to solve algorithmic
problems using computers

• Let’s look at how one might code these up

• Using very basic python

Reminder: Recipe for LIS
• Subproblem. stores longest subsequence ending at

• Recurrence. where

• Base case.

• Final answer.

• Memoization data structure. is an array of length

• Evaluation order. Increasing order of

• How to recover solution: the we chose is the second-to-last
element in the solution. Store all in an array , and walk
backwards through to recover solution

L[i] i
L[i] = 1 + max

m∈M
L[m]

M = {j | j < i and A[j] < A[i]}
L[0] = 1

max
i

L[i]

L n
i

m
m B

B

Introduction to
Network Flows

Story So Far
• Algorithmic design paradigms:

• Greedy: simplest to design but works only for certain limited
class of optimization problems

• A good starting point for most problems but rarely optimal

• Divide and Conquer

• Solving a problem by breaking it down into smaller
subproblems and recursing

• Dynamic programming

• Recursion with memoization: avoiding repeated work

• Trading off space for time

Network Flows
• Graph-based problem; looks like a lot of what we learned in part 1

• Soon, we’ll use what we learn about network flows to solve much
more general problems

• Problems where you revisit* (and improve) past solutions

• Solve problems that even dynamic programming can’t* solve!

• Restricted case of Linear/Convex Programming; “algorithmic
power tools”

What’s a Flow Network?
• A flow network is a directed graph with a

• A source is a vertex with in degree

• A sink is a vertex with out degree

• Each edge has edge capacity

G = (V, E)
s 0

t 0
e ∈ E c(e) > 0

s t5

15

10 15

16

9

15

6

8 10

154

4 10

10

edge capacity

source

sink

Visualize

Assumptions
• Assume that each node is on some path, that is,

 exists, for any vertex

• Implies is connected and

• Assume capacities are integers

• Will revisit this assumption and what happens if not

• Directed edge written as

• For simplifying expositions, we will sometimes write

 when

v s-t
s ↝ v ↝ t v ∈ V

G m ≥ n − 1

(u, v) u → v

c(u → v) = 0 (u, v) ∉ E

What’s a Flow?
• Given a flow network, an -flow or just flow (if source

and sink are clear from context) satisfies the
following two constraints:

• [Flow conservation] , for where

• To simplify, if there is no edge from to

(s, t) s
t f : E → ℤ+

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v)

fout(v) = ∑
w

f(v → w)

f(u → v) = 0 u v

0 / 15

10 / 10v5 / 8

5 / 15 0 / 15

flow capacity

Feasible Flow
• And second, a feasible flow must satisfy the capacity

constraints of the network, that is,

[Capacity constraint] for each , e ∈ E 0 ≤ f(e) ≤ c(e)

0 / 4

0 / 4 0 / 15

10 / 1
0

10 / 105 / 5 vs t

0 / 6

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

10 / 16

flow capacity

0 / 15

Value of a Flow
• Definition. The value of a flow , written , is .f v(f) fout(s)

 = 5 + 10 + 10 = 25v(f)

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

What is here?v(f)

Value of a Flow
• Definition. The value of a flow , written , is .

• Lemma.

f v(f) fout(s)

fout(s) = fin(t)

value = 5 + 10 + 10 = 25

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

Intuitively, why do you think
this is true?

Value of a Flow
• Lemma.

•
Proof. Let

•
Then,

• For every flow conversation implies

• Thus all terms cancel out on both sides except

• But

fout(s) = fin(t)

f(E) = ∑
e∈E

f(e)

∑
v∈V

fin(v) = f(E) = ∑
v∈V

fout(v)

v ≠ s, t fin(v) = fout(v)

fin(s) + fin(t) = fout(s) + fout(t)

fin(s) = fout(t) = 0 ∎

u v

f

Value of a Flow
• Lemma.

• Corollary. .

fout(s) = fin(t)

v(f) = fin(t)

value = 5 + 10 + 10 = 25

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

Max-Flow Problem
• Problem. Given an flow network, find a feasible flow of

maximum value.
s-t s-t

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

Minimum Cut Problem

Cuts are Back!
• Cuts in graphs played a lead role when we were designing

algorithms for MSTs

• What is the definition of a cut?

ts

Cuts in Flow Networks
• Recall. A cut in a graph is a partition of vertices such

that , and are non-empty.

• Definition. An -cut is a cut s.t. and .

(S, T)
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T) s ∈ S t ∈ T

ts

Cut Capacity
• Recall. A cut in a graph is a partition of vertices such

that , and are non-empty.

• Definition. An -cut is a cut s.t. and .

• Capacity of a -cut is the sum of the capacities of
edges leaving :

•

(S, T)
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T) s ∈ S t ∈ T

(s, t) (S, T)
S

c(S, T) = ∑
v∈S,w∈T

c(v → w)

Quick Quiz
Question. What is the capacity of the cut given by the grey and
white nodes?

A. 11 (20 + 25 − 8 − 11 − 9 − 6)

B. 34 (8 + 11 + 9 + 6)

C. 45 (20 + 25)

D. 79 (20 + 25 + 8 + 11 + 9 + 6)

s-t

812 9

8

161

s

86

25 t

1020

6 11

c(S, T) = ∑
v∈S,w∈T

c(v → w)

Quick Quiz
Question. What is the capacity of the cut given by the grey and
white nodes?

A. 11 (20 + 25 − 8 − 11 − 9 − 6)

B. 34 (8 + 11 + 9 + 6)

C. 45 (20 + 25)

D. 79 (20 + 25 + 8 + 11 + 9 + 6)

s-t

812 9

8

161

s

86

25 t

1020

6 11

c(S, T) = ∑
v∈S,w∈T

c(v → w)

Min Cut Problem
• Problem. Given an flow network, find an cut of

minimum capacity.
s-t s-t

s t5

15

10 15

16

9

15

6

8 10

154

4 10

10

Relationship between
Flows and Cuts

Flows and Cuts
• Cuts represent "bottlenecks" in a flow network

• For any cut, our flow needs to “get out” of that cut on its
route from to

• Let us formalize this intuition

s t

s t

• Claim. Let be any flow and be any cut then

• There are two cuts for which this is easy to see, which ones?

f s-t (S, T) s-t
v(f) ≤ c(S, T)

s-t

Flows and Cuts

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

• Claim. Let be any flow and be any cut then

• There are two cuts for which this is easy to see, which ones?

f s-t (S, T) s-t
v(f) ≤ c(S, T)

s-t

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

Flows and Cuts

• To prove this for any cut, we first relate the flow value in a
network to the net flow leaving a cut

• Lemma. For any feasible -flow on and
any -cut , , where

•
 (sum of flow ‘leaving’)

•
 (sum of flow ‘entering’)

• Note: and

(s, t) f G = (V, E)
(s, t) v(f) = fout(S) − fin(S)

fout(S) = ∑
v∈S,w∈T

f(v → w) S

fin(S) = ∑
v∈S,w∈T

f(w → v) S

fout(S) = fin(T) fin(S) = fout(T)

Flows and Cuts

Proof.

= [by definition]

fout(S) − fin(S)

∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

ts

Flows and Cuts

These are the same sum:
they sum the flow of all edges

with both vertices in S

Adding zero terms

Proof.

fout(S) − fin(S)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) + ∑
v∈S,w∈T

f(v → w) − ∑
v,u∈S

f(u → v) − ∑
v∈S,u∈T

f(u → v)

= ∑
v∈S

(∑
w

f(v → w) − ∑
u

f(u → v))

= ∑
v∈S

fout(v) − fin(v)

= fout(s) = v(f) ∎

ts

Flows and Cuts
Rearranging terms

Cancels out for all except s

Flows and Cuts
• We use this result to prove that the value of a flow cannot exceed

the capacity of any cut in the network

• Claim. Let be any flow and be any cut then

• Proof.

f s-t (S, T) s-t
v(f) ≤ c(S, T)

v(f) = fout(S) − fin(S)

≤ fout(S) = ∑
v∈S,w∈T

f(v → w)

≤ ∑
v∈S,w∈T

c(v, w) = c(S, T)

When is v(f) = c(S, T)?

fin(S) = 0, fout(S) = c(S, T)

• Suppose the is the capacity of the minimum cut in a network

• What can we say about the feasible flow we can send through it

• cannot be more than

• In fact, whenever we find any flow and any cut such
that, we can conclude that:

• is the maximum flow, and,

• is the minimum cut

• The question now is, given any flow network with min cut , is it
always possible to route a feasible flow with

cmin

cmin

s-t f s-t (S, T)
v(f) = c(S, T)

f

(S, T)

cmin
s-t f v(f) = cmin

Max-Flow & Min-Cut

Max-Flow Min-Cut Theorem
• A beautiful, powerful relationship between these two

problems in given by the following theorem

• Theorem. Given any flow network , there exists a feasible
-flow and a -cut such that,

• Informally, in a flow network, the max-flow = min-cut

• This will guide our algorithm design for finding max flow

• (Will prove this theorem by construction in a bit—our
algorithm will prove the theorem! (like with Gale-Shapley))

G
(s, t) f (s, t) (S, T)

v(f) = c(S, T)

Network Flow History
• In 1950s, US military researchers Harris and Ross wrote a

classified report about the rail network linking Soviet Union
and Eastern Europe

• Vertices were the geographic regions

• Edges were railway links between the regions

• Edge weights were the rate at which material could be
shipped from one region to next

• Ross and Harris determined:

• Maximum amount of stuff that could be
moved from Russia to Europe (max flow)

• Cheapest way to disrupt the network by
removing rail links (min cut)

Network Flow History

Image Credits: — Jeff Erickson’s book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for
evaluating rail net capacities. The RAND Corporation, Research Memorandum RM-1517, October 24, 1955. United States

Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

Towards a Max-Flow Algorithm
• Today: we will prove the max-flow min-cut theorem

constructively

• We will design a max-flow algorithm and show that there is a
cut s.t. value of flow computed by algorithm capacity of cut

• Let's start with a greedy approach

• Push as much flow as possible down a path

• This won't actually work

• But gives us a sense of what we need to keep track
off to improve upon it

s-t
=

s-t

Towards a Max-Flow Algorithm
• Greedy strategy:

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

• Let’s take an example

f(e) = 0

s ↝ t P f(e) < c(e)

P

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

value of flow

0 / 10

flow capacity

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

+ 8 = 8—

8
—

—
8

8
s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 6

0 / 4

8 / 8

0 / 10 8

0 / 100 / 2
8 / 1

0

8 / 100 / 9s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 2 = 10

0 / 6

0 / 4

8 / 8

0 / 10 8

0 / 100 / 2
8 / 1

0

8 / 100 / 9

—
10 2 —

2
—

10
—s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 4

8 / 8

10

2 / 2
10 / 1

0

10 / 10

0 / 6

0 / 10

0 / 10

2 / 9s t

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Is this the best we can do?

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

max-flow value = 19

3 / 4

7 / 8

19

0 / 2
10 / 1

0

10 / 10

6 / 6

9 / 10

9 / 10

9 / 9s t

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

Towards a Max-Flow Algorithm

max-flow value = 19

3 / 4

7 / 8

19

0 / 2
10 / 1

0

10 / 10

6 / 6

9 / 10

9 / 10

9 / 9s t

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

Why Greedy Fails
• Problem: greedy can never “undo” a bad flow decision

• Consider the following flow network

s

t

w

v

1

2

2

22

Why Greedy Fails
• Problem: greedy can never “undo” a bad flow decision

• Consider the following flow network

• Unique max flow has

• Greedy could choose as first

• Takeaway: Need a mechanism to “undo” bad flow decisions

f(v → w) = 0
s → v → w → t P

s

t

w

v

1

2

2

22

Ford-Fulkerson
Algorithm

Ford Fulkerson: Idea
• Want to make “forward progress” while letting ourselves

undo previous decisions if they’re getting in our way

• Idea: keep track of where we can push flow

• Can push more flow along an edge with remaining
capacity

• Can also push flow “back” along an edge that already
has flow down it

• Need a way to systematically track these decisions

Residual Graph
• Given flow network and a feasible flow on , the

residual graph is defined as:

• Vertices in same as

• (Forward edge) For with residual capacity
, create with capacity

• (Backward edge) For with , create
 with capacity

G = (V, E, c) f G
Gf = (V, Ef , cf)

Gf G

e ∈ E
c(e) − f(e) > 0 e ∈ Ef c(e) − f(e)

e ∈ E f(e) > 0
ereverse ∈ Ef f(e)

u v

flow

6 / 17

capacity

original flow network G

u v

residual
capacity

residual network Gf

11

6

reverse edge

Flow Algorithm Idea
• Now we have a residual graph that lets us make forward

progress or push back existing flow

• We will look for paths in rather than

• Once we have a path, we will "augment" flow along it similar to
greedy

• find bottleneck capacity edge on the path and push that
much flow through it in

• When we translate this back to , this means:

• We increment existing flow on a forward edge

• Or we decrement flow on a backward edge

s ↝ t Gf G

Gf

G

Augmenting Path & Flow
• An augmenting path is a simple path in the

residual graph

• The bottleneck capacity of an augmenting path is the
minimum capacity of any edge in .

P s ↝ t
Gf

b P
P

AUGMENT(f, P)
__

 ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E, that is, e is forward edge)

 Increase f(e) in G by

ELSE
 Decrease f(e) in G by

RETURN f.
__

b

b

b

The path is in P Gf

Updating flow in G

Ford-Fulkerson Algorithm
• Start with for each edge

• Find a simple path in the residual network

• Augment flow along path by bottleneck capacity

• Repeat until you get stuck

f(e) = 0 e ∈ E
s ↝ t P Gf

P b

FORD–FULKERSON(G)
__

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

Ford-Fulkerson Example

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

network G and flow f

0 / 10 0

value of flow
0 / 10

flow capacity

residual network Gf

s t

2 6

10

4

910

residual capacity

 10
 10 8

Ford-Fulkerson Example

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

flow capacity

P in residual network Gf

2 6

4

910

 10

s t

 10

10

8

network G and flow f

value of flow

Ford-Fulkerson Example

s t

0 / 2
8 / 1

0 0 / 6

8 / 10

0 / 4

8 / 8

0 / 90 / 10 8

0 / 10

flow capacitynetwork G and flow f

value of flow

4

10

8

8

8

9s

2
2

 10 6

2 t

residual network Gf

Ford-Fulkerson Example

s t

0 / 2
8 / 1

0 0 / 6

8 / 10

0 / 4

8 / 8

0 / 90 / 10 8

0 / 10

flow capacity

4

10

8

8

8

9s

2
2

 10 6

2 t

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 0 / 6

10 / 10

0 / 4

8 / 8

2 / 90 / 10 8+2 = 10

0 / 10

flow capacitynetwork G and flow f

value of flow

4

8

2

2

10

 10

10 7s

 10 6

t

residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 0 / 6

10 / 10

0 / 4

8 / 8

2 / 90 / 10 10

0 / 10

flow capacity

4

8

2

2

10

 10

10 7s

 10 6

t

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10+6 = 16

6 / 10

flow capacitynetwork G and flow f

value of flow

8

8

10

 10

1

6

6

 6

4

4s

 4

t

2

residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 16

6 / 10

flow capacity

8

8

10

 10

1

6

6

 6

4

4s

 4

t

2

fixes mistake from
second augmenting path

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

2 / 4

8 / 8

8 / 98 / 10 18

8 / 10

flow capacitynetwork G and flow f

value of flow

8

10

 10 6

 8

2

2

8

1

2

s

 2

t2

8

residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

2 / 4

8 / 8

8 / 98 / 10 18

8 / 10

flow capacity

8

10

 10 6

 8

2

2

8

1

2

s

 2

t2

8

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

Analysis: Ford-Fulkerson

• Feasibility and value of flow:

• Show that each time we update the flow, we are routing a
feasible flow through the network

• And that value of this flow increases each time by that amount

• Optimality:

• Final value of flow is the maximum possible

• Running time:

• How long does it take for the algorithm to terminate?

• Space:

• How much total space are we using

s-t

Analysis Outline

• Claim. Let be a feasible flow in and let be an
augmenting path in with bottleneck capacity . Let

, then is a feasible flow.

• Proof. Only need to verify constraints on the edges of
(since for other edges). Let

• If is a forward edge:

• If is a backward edge:

• Conservation constraint hold on any node in :

• , therefore for both cases

f G P
Gf b

f′￼← AUGMENT(f, P) f′￼

P
f′￼= f e = (u, v) ∈ P

e f′￼(e) = f(e) + b
≤ f(e) + (c(e) − f(e)) = c(e)

e f′￼(e) = f(e) − b
≥ f(e) − f(e) = 0

u ∈ P
fin(u) = fout(u) f′￼in(u) = f′￼out(u)

Feasibility of Flow

• Claim. Let be a feasible flow in and let be an
augmenting path in with bottleneck capacity . Let

, then .

• Proof.

• First edge must be out of in

• (is simple so never visits again)

• must be a forward edge (is a path from to)

• Thus increases by , increasing by

• Note. Means the algorithm makes forward progress each time!

f G P
Gf b

f′￼← AUGMENT(f, P) v(f′￼) = v(f) + b

e ∈ P s Gf

P s

e P s t

f(e) b v(f) b ∎

Value of Flow: Making Progress

Optimality

Ford-Fulkerson Optimality
• Recall: If is any feasible - flow and is any - cut

then .

• We will show that the Ford-Fulkerson algorithm terminates in
a flow that achieves equality, that is,

• Ford-Fulkerson finds a flow and there exists a cut
such that,

• Proving this shows that it finds the maximum flow (and the
min cut)

• This also proves the max-flow min-cut theorem

f s t (S, T) s t
v(f) ≤ c(S, T)

f* (S*, T*)
v(f*) = c(S*, T*)

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof.

• Let ,

• Is this an cut?

• , and

• Consider an edge with , then what
can we say about ?

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

Recall: Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof.

• Let ,

• Is this an cut?

• , and

• Consider an edge with , then what
can we say about ?

•

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

f(e) = c(e)

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof. (Cont.)

• Let ,

• Is this an cut?

• , and

• Consider an edge with , then what
can we say about ?

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)

Recall: Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof. (Cont.)

• Let ,

• Is this an cut?

• , and

• Consider an edge with , then what
can we say about ?

•

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)

f(e) = 0

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof. (Cont.)

• Let ,

• Thus, all edges leaving are completely saturated and all
edges entering have zero flow

•

• Corollary. Ford-Fulkerson returns the maximum flow.

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

S*
S*

v(f) = fout(S*) − fin(S*) = fout(S*) = c(S*, T*) ∎

Ford-Fulkerson Algorithm
Running Time

Ford-Fulkerson Performance

• Does the algorithm terminate?

• Can we bound the number of iterations it does?

• Running time?

FORD–FULKERSON(G)
__
_

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

• Recall we proved that with each call to AUGMENT, we increase
value of flow by

• Assumption. Suppose all capacities are integers.

• Integrality invariant. Throughout Ford–Fulkerson, every edge flow
 and corresponding residual capacity is an integer. Thus .

• Let be the maximum capacity among edges

leaving the source .

• It must be that

• Since, increases by in each iteration, it follows that FF
algorithm terminates in at most iterations.

b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v(f) ≤ (n − 1)C

v(f) b ≥ 1
v(f) = O(nC)

Ford-Fulkerson Running Time

Ford-Fulkerson Performance

• Operations in each iteration?

• Find an augmenting path in

• Augment flow on path

• Update

Gf

Gf

FORD–FULKERSON(G)
__
_

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

• Claim. Ford-Fulkerson can be implemented to run in time
, where and .

• Proof. Time taken by each iteration:

• Finding an augmenting path in

• has at most edges, using BFS/DFS takes

 time

• Augmenting flow in takes time

• Given new flow, we can build new residual graph in time

• Overall, time per iteration

O(nmC) m = |E | ≥ n − 1 C = max
u

c(s → u)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m)

O(m) ∎

Ford-Fulkerson Running Time

