Partitioning Books

Partitioning Work

- Suppose we have to scan through a shelf of books, and each book has a different size
- We want to divide the shelf into k region of books, and each region is assigned one of the workers
- Order of books fixed by cataloging system: cannot reorder/ rearrange the books
- **Goal**: divide the work in a fair way among the workers

Linear Partition Problem

- Input. A input arrangement S of nonnegative integers $\{s_1,\ldots,s_n\}$ and an integer k
- Problem. Partition S into k ranges such that the maximum sum over all the ranges is minimized
- Example.
 - Consider the following arrangement

500 200 300 400 100 700 600 800 900

• If k = 3, a partition that minimizes the maximum sum:

500 200 300 400 100 | 700 600 | 800 900

Subproblem

• Subproblem

M(i, j) be the optimal cost of partitioning elements s_1, s_2, \dots, s_i using j partitions, where $1 \le i \le n, 1 \le j \le k$

• Final answer

Base Cases

- Let us think about which rows/columns can we fill initially
- What about the first row corresponding to item 1?
- Remember that optimal cost is max sum over all partitions
- M(1, j): optimal cost of partitioning s_1 across j partitions
- For j = 1, 2, ..., k we can fill out the first column as:

$$M(1, j) = s_1$$

Base Cases

- Let us think about which rows/columns can we fill initially
- What about the first row corresponding to item 1?
- Remember that optimal cost is max sum over all partitions
- M(i, 1): optimal cost of partitioning s_1, s_2, \ldots, s_i using only 1 partition
- For i = 1, 2, ..., n we can fill out the first column as:

Base Cases Summary

• For j = 1, 2, ..., k we can fill out the first column as:

$$M(1, j) = s_1$$

• For i = 1, 2, ..., n we can fill out the first column as:

$$M(i, 1) = \sum_{\ell=1}^{i} s_{\ell}$$

- Want a recurrence for M(i, j)
- Notice that the jth partition starts after we place the (j-1)st "divider"
- Where can we place the j 1st divider? ("Cases")

- Where can we place the j 1 st divider?
 - Between books i' and i' + 1 for some i' < i

 $1, \ldots, i'$ books using j - 1 partitions

- Finally: for to choose the partition point i' for starting the jth partition
 - Let us consider all possibilities $1 \le i' < i$
 - Take min cost option among them

Final Recurrence

• For $2 \le i \le n$ and $2 \le j \le k$, we have:

 $M(i, j) = \min_{1 \le i' < i} \text{ cost of starting } j$ th parition at book (i' + 1)

- Cost of this way of partitioning?
 - (Remember cost is max sum across all partitions)

Cost of jth partition itself:

• Cost of remaining partitions? M[i', j-1]

Final Recurrence

• For $2 \le i \le n$ and $2 \le j \le k$, we have:

$$M(i, j) = \min_{1 \le i' < i} \max\{M(i', j - 1), \sum_{\ell=i'+1}^{i} s_t\}$$

- Memoization structure: We store M[i, j] values in a 2-D array or table using space O(nk)
- Evaluation order: In what order should we fill in the table?

Final Pieces

- Evaluation order.
 - To fill out M[i, j], I need the previous column filled in for rows less than i, that is, M[i', j-1] for all $1 \le i' < i$
 - Can compute using column major order: column by column
- Running time?
 - Size of table (space): $O(k \cdot n)$
 - How long to compute a single cell?
 - Depends on *n* other cells
 - O(n) time to fill in one cell

Running Time

- Running time
 - $O(n^2 \cdot k)$
- Is this a polynomial running time?
 - Not as stated, not polynomial in the number of bits required to write \boldsymbol{k}
 - But lets think if we can upper bound k using n
- How big can k get?
 - At most *n* non-empty partitions of *n* elements
 - $O(n^3)$ algorithm in the worst case

Last Topic in Dynamic Programming: Shortest Paths Revisited

Shortest Path Problem

• Single-Source Shortest Path Problem.

Given a directed graph G = (V, E) with edge weights w_e on each $e \in E$ and a a source node s, find the shortest path from s to to all nodes in G.

- Negative weights. The edge-weights w_e in G can be negative. (When we studied Dijkstra's, we assumed non-negative weights.)
- Let *P* be a path from *s* to *t*, denoted $s \sim t$.
 - The length of P is the number of edges in P

The cost or weight of P is
$$w(P) = \sum_{e \in P} w_e$$

• Goal: **cost** of the shortest path from *s* to all nodes

Negative Weights & Dijkstra's

- **Dijkstra's Algorithm**. Does the greedy approach work for graphs with negative edge weights?
 - Dijkstra's will explore *s*'s neighbor and add *t*, with $d[t] = w_{sv} = 2$ to the shortest path tree
 - Dijkstra assumes that there cannot be a "longer path" that has lower cost (relies on edge weights being non-negative)

Dijkstra's will find $s \to t$ as shortest path with cost 2 But the shortest path is $s \to v \to w \to t$ with cost 1

Negative Weights: Failed Attempt

- What if we add a large enough constant C such that all weights become positive
 - $w'_{ij} = w_{ij} + C > 0$
 - Run Dijkstra's algorithm based with w'
- Does this give us the shortest path in the original graph?

Negative Cycles

- **Definition**. A negative cycle is a directed cycle C such that the sum of all the edge weights in C is less than zero
- **Question**. How do negative cycles affect shortest path?

a negative cycle W :
$$\ell(W) = \sum_{e \in W} \ell_e < 0$$

Negative Cycles & Shortest Paths

• **Claim.** If a path from *s* to some node *v* contains a negative cycle, then there does not exist a shortest path from *s* to *v*.

• Proof.

- Suppose there exists a shortest $s \sim v$ path with cost d that traverses the negative cycle t times for $t \geq 0$.
- Can construct a shorter path by traversing the cycle t + 1 times

$\Rightarrow \in \blacksquare$

- Assumption. *G* has no negative cycle.
- Later in the lecture: how can we detect whether the input graph G contains a negative cycle?

Dynamic Programming Approach

- First step to a dynamic program? Recursive formulation
 - Subproblem with an "optimal substructure"
 - A.k.a.: what is the subproblem? What is the recurrence?
- Structure of the problem. With negative edge weights, the optimal cost can have any length
 - Let's keep track of length of paths considered so far
- How long can the shortest path from s to any node u be, assuming no negative cycle?
- Claim. If G has no negative cycles, then exists a shortest path from s to any node u that uses at most n 1 edges.

No. of Edges in Shortest Path

- Claim. If G has no negative cycles, then exists a shortest path from s to any node u that uses at most n 1 edges.
- **Proof**. Suppose there exists a shortest path from *s* to *u* made up of *n* or more edges
- A path of length at least n must visit at least n + 1 nodes
- There exists a node x that is visited more than once (pigeonhole principle). Let P denote the portion of the path between the successive visits.
- Can remove P without increasing cost of path.

Shortest Path Subproblem

- Subproblem. D[v, i]: (optimal) cost of shortest path from s to v using $\leq i$ edges (or ∞ if there is no path using $\leq i$ edges)
- Base cases.
 - D[s, i] = 0 for any i
 - $D[v,0] = \infty$ for any $v \neq s$
- Final answer for shortest path cost to node v
 - D[v, n-1]

Recurrence

- Suppose we have found shortest paths to all nodes of length at most i-1
- We are now considering shortest paths of length i
- Cases to consider for the **recurrence** of D[v, i]
 - **Case 1**. Shortest path to v was already found (is same as D[v, i 1])
 - Case 2. Shortest path to v is "longer" than paths found so far:
 - Look at all nodes *u* that have incoming edges to *v*
 - Take minimum over their distances and add $w_{\mu\nu}$

Bellman-Ford-Moore Algorithm

• **Recurrence.** For all nodes $v \neq s$, and for all $1 \leq i \leq n - 1$,

$$D[v, i] = \min\{D[v, i-1], \min_{(u,v)\in E} \{D[u, i-1] + w_{uv}\}\}$$

• Called the **Bellman-Ford-Moore** algorithm

Bellman-Ford-Moore Algorithm

- Subproblem. D[v, i]: (optimal) cost of shortest path from s to v using $\leq i$ edges
- Recurrence.

 $D[v, i] = \min\{D[v, i-1], \min_{(u,v)\in E} \{D[u, i-1] + w_{uv}\}\}$

- Memoization structure. Two-dimensional array
- Evaluation order.
 - $i: 1 \rightarrow n-1$ (column major order)
 - Starting from *s*, the row of vertices can be in any order

Running Time

- Recurrence. $D[v, i] = \min\{D[v, i-1], \min_{(u,v)\in E} \{D[u, i-1] + w_{uv}\}\}$
- Naive analysis. $O(n^3)$ time
 - Each entry takes O(n) to compute, there are $O(n^2)$ entries
- Improved analysis. For a given i, v, d[v, i] looks at each incoming edge of v
 - Takes indegree(v) accesses to the table

• For a given *i*, filling d[-, i] takes $\sum_{v \in V}$ indegree(*v*) accesses

- At most O(n + m) = O(m) accesses for connected graphs where $m \ge n 1$
- Overall running time is O(nm)

Shortest-Path Summary. Assuming there are no negative cycles in G, we can compute the shortest path from s to all nodes in G in O(nm) time using the Bellman-Ford-Moore algorithm

Dynamic Programming Shortest Path: Bellman-Ford-Moore Example

- D[s, i] = 0 for any i
- $D[v,0] = \infty$ for any $v \neq s$

	0	1	2	3
S	0	0	0	0
а	inf			
b	inf			
С	inf			

	0	1	2	3
S	0	0	0	0
а	inf			
b	inf			
С	inf			

	0	1	2	3
S	0	0	0	0
а	inf	-3		
b	inf			
С	inf			

	0	1	2	3
S	0	0	0	0
а	inf	-3		
b	inf	2		
С	inf			

	0	1	2	3
S	0	0	0	0
а	inf	-3		
b	inf	2		
С	inf	inf		

	0	1	2	3
S	0	0	0	0
а	inf	-3		
b	inf	2		
С	inf	inf		

	0	1	2	3
S	0	0	0	0
а	inf	-3	-3	
b	inf	2		
С	inf	inf		

	0	1	2	3
S	0	0	0	0
а	inf	-3	-3	
b	inf	2	2	
С	inf	inf		

	0	1	2	3
S	0	0	0	0
а	inf	-3	-3	
b	inf	2	2	
С	inf	inf	-2	

	0	1	2	3
S	0	0	0	0
а	inf	-3	-3	-3
b	inf	2	2	
С	inf	inf	-2	

	0	1	2	3
S	0	0	0	0
а	inf	-3	-3	-3
b	inf	2	2	-1
С	inf	inf	-2	

	0	1	2	3
S	0	0	0	0
а	inf	-3	-3	-3
b	inf	2	2	-1
С	inf	inf	-2	-2

Bellman-Ford Fun Facts?

Can we do better than O(nm) time?

- Well-known open problem
- [Fineman 2024]: $O(n^{8/9}m)$ algorithm (plus some extra log factors)
- Doesn't use DP: works by changing the graph very carefully and running Dijkstra's algorithm

Dynamic Programming Shortest Path: Detecting a Negative Cycle

Negative Cycle

- **Definition**. A negative cycle is a directed cycle C such that the sum of all the edge weights in C is less than zero
- **Claim.** If a path from *s* to some node *v* contains a negative cycle, then there does not exist a shortest path from *s* to *v*.

a negative cycle W :
$$\ell(W) = \sum_{e \in W} \ell_e < 0$$

Detecting a Negative Cycle

- Question. Given a directed graph G = (V, E) with edgeweights w_e (can be negative), determine if G contains a negative cycle.
- Now, we don't a specific source node given to us
- Let's change this problem a little bit
- Problem. Given G and source s, find if there is negative cycle on a s → v path for any node v.

Detecting a Negative Cycle

- **Problem**. Given *G* and source *s*, find if there is negative cycle on a $s \sim v$ path for any node *v*.
- D[v, i] is the cost of the shortest path from s to v of length at most i
- Suppose there is a negative cycle on a $s \leadsto v$ path

• Then
$$\lim_{i \to \infty} D[v, i] = -\infty$$

- If D[v, n] = D[v, n 1] for every node v then G has no negative cycles exists!
 - Table values converge, no further improvements possible

Detecting a Negative Cycle

- Lemma. If D[v, n] < D[v, n-1] then any shortest $s \sim v$ path contains a negative cycle.
- **Proof**. [By contradiction] Suppose G does not contain a negative cycle
- Since D[v, n] < D[v, n − 1], the shortest s ~ v path that caused this update has exactly n edges
- By pigeonhole principle, path must contain a repeated node, let the cycle between two successive visits to the node be P
- If *P* has non-negative weight, removing it would give us a shortest path with less than *n* edges $\Rightarrow \Leftarrow$

Problem Reduction

- Now we know how to detect negative cycles on a shortest path from *s* to some node *v*.
- How do we detect a negative cycle anywhere in G?
- One idea: run Bellman-Ford for all s
 - Running time?
 - $O(n^2m)$
 - Can we do better?

Problem Reduction

- Solution: change G so that we can run the algorithm from a single source
- Reduction. Given graph G, add a source s and connect it to all vertices in G with edge weight 0. Let the new graph be G'
- Claim. *G* has a negative cycle iff *G*' has a negative cycle from *s* to some node *v*.
- **Proof**. \Rightarrow If *G* has a negative cycle, then this cycle lies on the shortest path from *s* to a node on the cycle in *G*'
- \Leftarrow If G' has a negative cycle on a shortest path from s to some node, then that node is on a negative cycle in G