
Partitioning Books

Partitioning Work
• Suppose we have to scan through a shelf of books, and each book

has a different size

• We want to divide the shelf into region of books, and each region
is assigned one of the workers

• Order of books fixed by cataloging system: cannot reorder/
rearrange the books

• Goal: divide the work in a fair way among the workers

k

Linear Partition Problem
• Input. A input arrangement of nonnegative integers

 and an integer

• Problem. Partition into ranges such that the maximum
sum over all the ranges is minimized

• Example.

• Consider the following arrangement

• If , a partition that minimizes the maximum sum:

S
{s1, …, sn} k

S k

500 200 300 400 100 700 600 800 900
k = 3

500 200 300 400 100 | 700 600 | 800 900

Subproblem
• Subproblem  
 
 
 
 
 

• Final answer

 be the optimal cost of partitioning
elements using partitions,
where

M(i, j)
s1, s2, …, si j

1 ≤ i ≤ n, 1 ≤ j ≤ k

M(n, k)

Base Cases
• Let us think about which rows/columns can we fill initially

• What about the first row corresponding to item

• Remember that optimal cost is max sum over all partitions

• : optimal cost of partitioning across partitions

• For we can fill out the first column as:

1?

M(1, j) s1 j

j = 1,2,…, k

M(1, j) = s1

Base Cases
• Let us think about which rows/columns can we fill initially

• What about the first row corresponding to item

• Remember that optimal cost is max sum over all partitions

• : optimal cost of partitioning using
only partition

• For we can fill out the first column as:

1?

M(i, 1) s1, s2, …, si
1

i = 1,2,…, n

M(i, 1) =
i

∑
ℓ=1

sℓ

Base Cases Summary
• For we can fill out the first column as:

• For we can fill out the first column as:

j = 1,2,…, k

i = 1,2,…, n

M(i, 1) =
i

∑
ℓ=1

sℓ

M(1, j) = s1

Towards a Recurrence
• Want a recurrence for

• Notice that the th partition starts after we place the
st “divider”

• Where can we place the st divider? (“Cases”)

M(i, j)
j

(j − 1)
j − 1

 books using partitions 1,…, i′￼ j − 1

 books
in th partition

i′￼+ 1,…, i
j

Towards a Recurrence
• Where can we place the st divider?

• Between books and for some

j − 1
i′￼ i′￼+ 1 i′￼< i

 books using partitions 1,…, i′￼ j − 1

 books
in th partition

i′￼+ 1,…, i
j

Towards a Recurrence
• Finally: for to choose the partition point for starting the th

partition

• Let us consider all possibilities

• Take min cost option among them

i′￼ j

1 ≤ i′￼< i

 books using partitions 1,…, i′￼ j − 1

 books
in th partition

i′￼+ 1,…, i
j

Final Recurrence
• For and , we have:

2 ≤ i ≤ n 2 ≤ j ≤ k

M(i, j) = min
1≤i′￼<i

cost of starting jth parition at book (i′￼+ 1)

Towards a Recurrence
• Cost of this way of partitioning?

• (Remember cost is max sum across all partitions)

 books using partitions 1,…, i′￼ j − 1

 books
in th partition

i′￼+ 1,…, i
j

Towards a Recurrence

•
Cost of th partition itself:

• Cost of remaining partitions?

j
i

∑
t=i′￼+1

si

M[i′￼, j − 1]

 books using partitions 1,…, i′￼ j − 1

 books
in th partition

i′￼+ 1,…, i
j

Final Recurrence
• For and , we have:

• Memoization structure: We store values in a 2-D array
or table using space

• Evaluation order: In what order should we fill in the table?

2 ≤ i ≤ n 2 ≤ j ≤ k

M[i, j]
O(nk)

M(i, j) = min
1≤i′￼<i

max{M(i′￼, j − 1),
i

∑
ℓ=i′￼+1

st}

• Evaluation order.

• To fill out , I need the previous column filled in for rows
less than , that is, for all

• Can compute using column major order: column by column

• Running time?

• Size of table (space):

• How long to compute a single cell?

• Depends on other cells

• time to fill in one cell

M[i, j]
i M[i′￼, j − 1] 1 ≤ i′￼< i

O(k ⋅ n)

n

O(n)

Final Pieces

Running Time
• Running time

•

• Is this a polynomial running time?

• Not as stated, not polynomial in the number of bits required to
write

• But lets think if we can upper bound using

• How big can get?

• At most non-empty partitions of elements

• algorithm in the worst case

O(n2 ⋅ k)

k
k n

k
n n

O(n3)

Last Topic in Dynamic Programming:
Shortest Paths Revisited

Shortest Path Problem
• Single-Source Shortest Path Problem.

Given a directed graph with edge weights on each
 and a a source node , find the shortest path from to to all

nodes in .

• Negative weights. The edge-weights in can be negative.
(When we studied Dijkstra's, we assumed non-negative weights.)

• Let be a path from to , denoted .

• The length of is the number of edges in

•
The cost or weight of is

• Goal: cost of the shortest path from to all nodes

G = (V, E) we
e ∈ E s s

G

we G

P s t s ↝ t

P P

P w(P) = ∑
e∈P

we

s

Negative Weights & Dijkstra's
• Dijkstra’s Algorithm. Does the greedy approach work for graphs

with negative edge weights?

• Dijkstra's will explore 's neighbor and add , with
 to the shortest path tree

• Dijkstra assumes that there cannot be a "longer path" that has
lower cost (relies on edge weights being non-negative)

s t
d[t] = wsv = 2

t

v

2

6

−8

3

Dijkstra's will find as shortest path with cost
But the shortest path is with cost

s → t 2
s → v → w → t 14

s

w

Negative Weights: Failed Attempt
• What if we add a large enough constant such that all weights

become positive

•

• Run Dijkstra’s algorithm based with

• Does this give us the shortest path in the original graph?

C

w′￼ij = wij + C > 0

w′￼

t

v

2

6

−8

3

Adding C = 8 to all weights does not work
4

s

w

10

14

0

11

Negative Cycles
• Definition. A negative cycle is a directed cycle such that the

sum of all the edge weights in is less than zero

• Question. How do negative cycles affect shortest path?

C
C

−3

5

−3

−44

a negative cycle W : �(W) =
�

e�W

�e < 0
<latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit>

Negative Cycles & Shortest Paths
• Claim. If a path from to some node contains a negative cycle,

then there does not exist a shortest path from to .

• Proof.

• Suppose there exists a shortest path with cost that
traverses the negative cycle times for .

• Can construct a shorter path by traversing the cycle times

• Assumption. has no negative cycle.

• Later in the lecture: how can we detect whether the input graph
contains a negative cycle?

s v
s v

s ↝ v d
t t ≥ 0

t + 1
⇒⇐ ∎

G
G

Dynamic Programming Approach
• First step to a dynamic program? Recursive formulation

• Subproblem with an “optimal substructure”

• A.k.a.: what is the subproblem? What is the recurrence?

• Structure of the problem. With negative edge weights, the
optimal cost can have any length

• Let's keep track of length of paths considered so far

• How long can the shortest path from to any node be,
assuming no negative cycle?

• Claim. If has no negative cycles, then exists a shortest
path from to any node that uses at most edges.

s u

G
s u n − 1

No. of Edges in Shortest Path
• Claim. If has no negative cycles, then exists a shortest path

from to any node that uses at most edges.

• Proof. Suppose there exists a shortest path from to made
up of or more edges

• A path of length at least must visit at least nodes

• There exists a node that is visited more than once
(pigeonhole principle). Let denote the portion of the path
between the successive visits.

• Can remove without increasing cost of path.

G
s u n − 1

s u
n

n n + 1
x

P

P ∎

P

w(P) ≥ 0

s u
x

Shortest Path Subproblem
• Subproblem. : (optimal) cost of shortest path from

to using edges (or if there is no path using
edges)

• Base cases.

• for any

• for any

• Final answer for shortest path cost to node

•

D[v, i] s
v ≤ i ∞ ≤ i

D[s, i] = 0 i

D[v,0] = ∞ v ≠ s

v

D[v, n − 1]

Recurrence
• Suppose we have found shortest paths to all nodes of

length at most

• We are now considering shortest paths of length

• Cases to consider for the recurrence of

• Case 1. Shortest path to was already found (is same
as)

• Case 2. Shortest path to is "longer" than paths found
so far:

• Look at all nodes that have incoming edges to

• Take minimum over their distances and add

i − 1

i

D[v, i]

v
D[v, i − 1]

v

u v

wuv v

u

Bellman-Ford-Moore Algorithm

• Recurrence. For all nodes , and for all , v ≠ s 1 ≤ i ≤ n − 1

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}

• Called the Bellman-Ford-Moore algorithm v

u

Bellman-Ford-Moore Algorithm
• Subproblem. : (optimal) cost of shortest path from to

using edges

• Recurrence.

• Memoization structure. Two-dimensional array

• Evaluation order.

• (column major order)

• Starting from , the row of vertices can
be in any order

D[v, i] s v
≤ i

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}

i : 1 → n − 1

s

Running Time
• Recurrence.

• Naive analysis. time

• Each entry takes to compute, there are entries

• Improved analysis. For a given , looks at each incoming
edge of

• Takes accesses to the table

•
For a given filling takes accesses

• At most accesses for connected graphs
where

• Overall running time is

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}

O(n3)

O(n) O(n2)
i, v d[v, i]

v
indegree(v)

i, d[− , i] ∑
v∈V

indegree(v)

O(n + m) = O(m)
m ≥ n − 1

O(nm)

• Shortest-Path Summary. Assuming there are no negative
cycles in , we can compute the shortest path from to all nodes
in in time using the Bellman-Ford-Moore algorithm

G s
G O(nm)

Dynamic Programming
Shortest Path:

Bellman-Ford-Moore Example

• for any

• for any

D[s, i] = 0 i
D[v,0] = ∞ v ≠ s

0 1 2 3
s 0 0 0 0
a inf
b inf
c inf

s a

b c

-3

1

1

2 -1

1

• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf
b inf
c inf

s a

b c

-3

1

1

2 -1

1

• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf
c inf

s a

b c

-3

12 -1

1

• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf

s a

b c

-3

12 -1

1

• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf inf

s a

b c

-3

12 -1

1

• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf inf

s a

b c

-3

12 -1

1

• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3
b inf 2
c inf inf

s a

b c

-3

12 -1

1

0 1 2 3
s 0 0 0 0
a inf -3 -3
b inf 2 2
c inf inf

s a

b c

-3

12 -1

1

• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3
b inf 2 2
c inf inf -2

s a

b c

-3

12 -1

1

• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3 -3
b inf 2 2
c inf inf -2

s a

b c

-3

12 -1

1

• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3 -3
b inf 2 2 -1
c inf inf -2

s a

b c

-3

12 -1

1

0 1 2 3
s 0 0 0 0
a inf -3 -3 -3
b inf 2 2 -1
c inf inf -2 -2

s a

b c

-3

1

1

2 -1

• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}

Bellman-Ford Fun Facts?
Can we do better than time?

• Well-known open problem
• [Fineman 2024]: algorithm (plus some

extra log factors)
• Doesn’t use DP: works by changing the graph

very carefully and running Dijkstra’s algorithm

O(nm)

O(n8/9m)

Dynamic Programming
Shortest Path:

Detecting a Negative Cycle

Negative Cycle
• Definition. A negative cycle is a directed cycle such that the

sum of all the edge weights in is less than zero

• Claim. If a path from to some node contains a negative cycle,
then there does not exist a shortest path from to .

C
C

s v
s v

−3

5

−3

−44

a negative cycle W : �(W) =
�

e�W

�e < 0
<latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit>

Detecting a Negative Cycle
• Question. Given a directed graph with edge-

weights (can be negative), determine if contains a
negative cycle.

• Now, we don't a specific source node given to us

• Let's change this problem a little bit

• Problem. Given and source , find if there is negative cycle
on a path for any node .

G = (V, E)
we G

G s
s ↝ v v

• Problem. Given and source , find if there is negative cycle on a
 path for any node .

• is the cost of the shortest path from to of length at most

• Suppose there is a negative cycle on a path

• Then

• If for every node then
 has no negative cycles exists!

• Table values converge, no further improvements possible

G s
s ↝ v v

D[v, i] s v i

s ↝ v

lim
i→∞

D[v, i] = − ∞

D[v, n] = D[v, n − 1] v
G

Detecting a Negative Cycle

Detecting a Negative Cycle
• Lemma. If then any shortest

path contains a negative cycle.

• Proof. [By contradiction] Suppose does not contain a
negative cycle

• Since , the shortest path that
caused this update has exactly edges

• By pigeonhole principle, path must contain a repeated node,
let the cycle between two successive visits to the node be

• If has non-negative weight, removing it would give us a
shortest path with less than edges

D[v, n] < D[v, n − 1] s ↝ v

G

D[v, n] < D[v, n − 1] s ↝ v
n

P
P

n ⇒⇐

P

w(P) ≥ 0

s v
x

Problem Reduction
• Now we know how to detect negative cycles on a shortest path

from to some node .

• How do we detect a negative cycle anywhere in ?

• One idea: run Bellman-Ford for all

• Running time?

•

• Can we do better?

s v

G

s

O(n2m)

Problem Reduction
• Solution: change so that we can run the algorithm from a

single source

• Reduction. Given graph , add a source and connect it to
all vertices in with edge weight . Let the new graph be

• Claim. has a negative cycle iff has a negative cycle from
 to some node .

• Proof. If has a negative cycle, then this cycle lies
on the shortest path from to a node on the cycle in

• If has a negative cycle on a shortest path from
to some node, then that node is on a negative cycle in

G

G s
G 0 G′￼

G G′￼

s v

⇒ G
s G′￼

⇐ G′￼ s
G

