Partitioning Books

Partitioning Work

Suppose we have to scan through a shelf of books, and each book
has a different size

We want to divide the shelf into k region of books, and each region
IS assigned one of the workers

Order of books fixed by cataloging system: cannot reorder/
rearrange the books

Goal: divide the work in a fair way among the workers

)
.
-
hd
[
0

RETICAL PHYSICS

ICS & ENGINEERING
I QA L REPY F RN CE
SOPHY of LIFE -

Linear Partition Problem

« Input. A input arrangement S of nonnegative integers
{81, ...,8,} and an integer k

« Problem. Partition S into k ranges such that the maximum
sum over all the ranges is minimized

 Example.

e (Consider the following arrangement

500 200 300 400 100 700 600 800 900

o If kK = 3, a partition that minimizes the maximum sum:

500 200 300 400 100 | 700 600 | 800 900

Subproblem

 Subproblem

M(1, j) be the optimal cost of partitioning
elements §¢, S, ..., S; Using J partitions,
wherel <i1<n, 1 <j<k

* Final answer

M(n, k)

Base Cases

Let us think about which rows/columns can we fill initially
What about the first row corresponding to item 17
Remember that optimal cost is max sum over all partitions
M(1, j): optimal cost of partitioning s; across j partitions

Forj = 1,2,..., k we can fill out the first column as:

M, j) = s

Base Cases

Let us think about which rows/columns can we fill initially
What about the first row corresponding to item 17
Remember that optimal cost is max sum over all partitions

M(i, 1): optimal cost of partitioning sy, S, ..., S; Using
only 1 partition

Fori = 1,2,...,n we can fill out the first column as:

l

M@, 1) = Zsf

=1

Base Cases Summary

o Forj=1,2,..., kwe can fill out the first column as:

M, j) = s

e Fori=1,2,...,nwe can fill out the first column as:

l

MG, 1)=) s,

=1

Towards a Recurrence

« Want a recurrence for M(i, j)

 Notice that the jth partition starts after we place the
(j — 1)st “divider”
« Where can we place the j — 1stdivider? (“Cases”)

'+ 1,...,1books
in Jth partition

44 LA

 ———————

SUCCESS

¥ SUCCESS

o
Q

ICS & ENGINEERING

| n "E af
> ~ ~
2 — k‘ &
»
A L
LS OF NATURE PROTECTION
i G L RETYT FERENCOCTEK |
E T L
L
| !
\ ‘ /},/‘””
- RN R A NSRS RST RS
|
£
ENCY Gl
SOPHY of LIF)
» 2. % Lt op bt i p
g [T :
- |
: B ALE - X1
'
> o ~ ~
- — ;.‘ [1
»
A'SIC RS —_

ALPHOTOGRAPHY
R e e

1,...,1" books using j — 1 partitions

Towards a Recurrence

« Where can we place the j — 1st divider?

e Between booksi’andi’+ 1 forsomei’ <i

'+ 1,...,1books
in Jth partition

|-

SUCCESS
SUCCESS

o¥

L B T
ICS & ENGINEERING
1 CALREF ERENCHE

ICS & ENGINEERING

C
O

1,...,1" books using j — 1 partitions

Towards a Recurrence

e Finally: for to choose the partition point i’ for starting the jth
partition

« Let us consider all possibilities 1 < i1’ <i

* Take min cost option among them

'+ 1,...,1books
in Jth partition

! L 4

2
Q
=
-

V)
/)
-
w
v
-
7

ORUFRYS E

Y SUCCESS
ETICAL PHYSICS

EressE U RS E

ETICAL PHYSICS
CS & ENGINEERING

ALPHOTOGRAPHY

< L G

Q

€S & ENGINEERING

1,...,1" books using j — 1 partitions

Final Recurrence

e« For2 <i<mnand2 < j<k, wehave:

M(i, j) = min cost of starting jth parition at book (i" + 1)
1<i'<i

Towards a Recurrence

* (Cost of this way of partitioning”

 (Remember cost is max sum across all partitions)

'+ 1,...,1books
in Jth partition

ECTION
——
g

SUCCESS

OWSUC(,ESS
ICS & ENGINEERING

¥i€
€S & ENGINEERING
ALPHOTOGRAPHY

&

1,...,1" books using j — 1 partitions

Towards a Recurrence

i
Cost of jth partition itself: Z S;
r=i'+1

 Cost of remaining partitions? M|i’,j — 1]

'+ 1,...,1books
in Jth partition

ECTION
——
g

)
)
=
w
v
7
RS

OWSUC(,EsS
ICS & ENGINEERING

€S & ENGINEERING
ALPHOTOGRAPHY

&

1,...,1" books using j — 1 partitions

Final Recurrence

e« For2 <i<mnand2 < j<k, wehave:

M(i, j) = min max{M(@i',j - 1),) s}

1<i'<i

« Memoization structure: We store M|i, j] values in a 2-D array
or table using space O(nk)

 Evaluation order: In what order should we fill in the table?

Final Pieces

e Evaluation order.

o Tofill out M|, j], | need the previous column filled in for rows
less than 7, thatis, M|[i’,j— 1] foralll <i' <1

* Can compute using column major order: column by column
* Running time?
« Size of table (space): O(k - n)
 How long to compute a single cell?
« Depends on n other cells

« O(n) time to fill in one cell

Running Time

* Running time
. O(n?-k
* |s this a polynomial running time?

* Not as stated, not polynomial in the number of bits required to
write k

« But lets think if we can upper bound k using n
« How big can k get?
« At most n non-empty partitions of n elements

. O(n?) algorithm in the worst case

Last Topic in Dynamic Programming:
Shortest Paths Revisited

Shortest Path Problem

Single-Source Shortest Path Problem.

Given a directed graph G = (V, E) with edge weights w, on each
e € E and a a source node s, find the shortest path from s to to all
nodes in G.

Negative weights. The edge-weights w,in G can be negative.
(When we studied Dijkstra's, we assumed non-negative weights.)

Let P be a path from s to ¢, denoted s ~ t.

« The length of P is the number of edges in P

The cost or weight of P is w(P) = Z w,

ecP

Goal: cost of the shortest path from s to all nodes

Negative Weights & Dijkstra's

* Dijkstra’s Algorithm. Does the greedy approach work for graphs
with negative edge weights?

e Dijkstra’'s will explore s's neighbor and add #, with
d[t] = w,, = 2 to the shortest path tree

* Dikstra assumes that there cannot be a "longer path" that has
lower cost (relies on edge weights being non-negative)

O— . —6
e —8

Dijkstra's will find s — t as shortest path with cost 2
But the shortest path is s — v — w — ¢ with cost 1

Negative Weights: Failed Attempt

« What if we add a large enough constant C such that all weights
become positive

e Wy=w;+C>0
« Run Dijkstra’s algorithm based with w’

* Does this give us the shortest path in the original graph?

@_"C‘?
@__é

Adding C = 8 to all weights does not work

Negative Cycles

« Definition. A negative cycle is a directed cycle C such that the
sum of all the edge weights in C is less than zero

 Question. How do negative cycles affect shortest path?

N

Q
=
M
«Q
Q
=
<
(¢°)
N
<
o
m
=
PN
—~~
=
|
N
Q)
A
-

Negative Cycles & Shortest Paths

« Claim. If a path from s to some node v contains a negative cycle,
then there does not exist a shortest path from s to v.

 Proof.

« Suppose there exists a shortest s ~ v path with cost d that
traverses the negative cycle t times for t > 0.

« Can construct a shorter path by traversing the cycle t + 1 times
=>< 1
« Assumption. G has no negative cycle.

« Later in the lecture: how can we detect whether the input graph G
contains a negative cycle”

Dynamic Programming Approach

First step to a dynamic program? Recursive formulation
e Subproblem with an “optimal substructure”
 Ak.a.: what is the subproblem? What is the recurrence?

Structure of the problem. \With negative edge weights, the
optimal cost can have any length

* Let's keep track of length of paths considered so far

How long can the shortest path from s to any node u be,
assuming no negative cycle?

Claim. If G has no negative cycles, then exists a shortest
path from s to any node u that uses at most n — 1 edges.

No. of Edges in Shortest Path

« Claim. If G has no negative cycles, then exists a shortest path
from s to any node u that uses at most n — 1 edges.

« Proof. Suppose there exists a shortest path from s to u made
up of n or more edges

« A path of length at least n must visit at least n + 1 nodes

e Jhere exists a node x that is visited more than once
(pigeonhole principle). Let P denote the portion of the path
between the successive Visits.

« Can remove P without increasing cost of path. B

o) (x)

P

(W

w(P) = 0

Shortest Path Subproblem

« Subproblem. DJv,i]: (optimal) cost of shortest path from s
to v using < 1 edges (or oo if there is no path using <1
edges)

 Base cases.

e D[s,i]=0foranyi
e D[v,0] =coforanyv # s

« Final answer for shortest path cost to node v

e Dlv,n—1]

Recurrence

* Suppose we have found shortest paths to all nodes of
length at most 7 — 1

« We are now considering shortest paths of length 1

« Cases to consider for the recurrence of D|v, i]

Case 1. Shortest path to v was already found (is same
as D[v,i — 1))

Case 2. Shortest path to v is "longer” than paths found
SO far:

« Look at all nodes u that have incoming edges to v

« [ake minimum over their distances and add w,,

Bellman-Ford-Moore Algorithm

« Recurrence. Forallnodesv # s,andforalll <i<n-1,

D[v,i] = min{D[v,i — 1], min {D[u,i—1]+w,}}
(u,v)eE

Uu

)
e (Called the Bellman-Ford-Moore algorithm / ;

Bellman-Ford-Moore Algorithm

Subproblem. D]v,i]: (optimal) cost of shortest path from s to v
using < I edges

e Recurrence.

D[v,i] = min{D[v,i — 1], min {D[u,i—1]+w,}}
(u,v)eEr

 Memoization structure. Two-dimensional array
 Evaluation order.
e 1:1 — n—1 (column major order)

e Starting from s, the row of vertices can
be in any order

Running Time

Recurrence.
D[v,i] = min{D[v,i — 1], min {D[u,i—1]+w,}}
(u,v)eE
Naive analysis. O(n°>) time
. Each entry takes O(n) to compute, there are O(n?) entries

Improved analysis. For a giveni,v, d[v,i] looks at each incoming
edge of v

. Takes indegree(v) accesses to the table
For a given i, filling d[— , i] takes Z indegree(v) accesses
vevV

« Atmost O(n + m) = O(m) accesses for connected graphs
wherem > n — 1

Overall running time is O(nm)

* Shortest-Path Summary. Assuming there are no negative
cycles in G, we can compute the shortest path from s to all nodes
in G in O(nm) time using the Bellman-Ford-Moore algorithm

Dynamic Programming
Shortest Path:
Bellman-Ford-Moore Example

e« Dl|s,i] =0foranyi
e DIv,0] =00 foranyv # s

INf

INf

O O Q0 o

INf

. D[v,1] = min{D[v,0], min {D[u,0] +w,, }

u,vek
-3

0 2 3 S >
S 0 0 0 0 1

: 2] 1
a INf
b Inf = =

. b < C
C inf | 1

. D[v,1] = min{D[v,0], min {D[u,0] +w,, }

u,vek

-3

0 2 3) >
S 0 0 0 0 1

- 2] 1
a INf -3
b INf = =

. b <« C
C inf | 1

. D[v,1] = min{D[v,0], min {D[u,0] +w,, }

u,vek

-3

0 2 3) >
S 0 0 0 0 1

- 2] 1
a INf -3
b INf 2 = =

. b <« C
C inf | 1

. D[v,1] = min{D[v,0], min {D[u,0] +w,, }

u,vek

-3

0 2 3 \ > a
S 0 0 0 0 1

- 2) 1
a inf | -3
b inf 2 5 Y

. . b < C
C inf | inf 1

. D[v,2] = min{D[v,1], min {D[u,1]+w,,}

u,vek

-3

0 2 3 \ >
S 0 0 0 0 1

- 2) 1
a inf | -3
b inf 2 Y Y

. . b < C
C inf | inf , 1

. D[v,2] = min{D[v,1], min {D[u,1]+w,,}

u,vek

-3

0 2 3 \ >
S 0 0 0 0 1

- 2) 1
a inf | -3 -3
b inf 2 Y Y

. . b < C
C inf | inf , 1

. D[v,2] = min{D[v,1], min {D[u,1]+w,,}

u,vek

-3

0 2 3 \) >
S 0 0 0 0 1

: 2] 1
a INf -3 -3
b Inf 2 2 = =

. . b < C
C inf | inf 1

. D[v,2] = min{D[v,1], min {D[u,1]+w,,}

u,vek

-3
0 2 3 S >
S 0 0 0 0 1
: 2] 1
a INf -3 -3
b INf 2 2 = =
C inf | inf -2 2 1 ¢

. D[v,3] = min{D[v,2], min {D[u,2] +w,,}

u,vek

-3
0 1 2 3 S >
S 0 0 0 0 1
: 2] 1
a INf -3 -3 -3
b INf 2 2 = =
C inf | inf -2 2 1 ¢

. D[v,3] = min{D[v,2], min {D[u,2] +w,,}

u,vek

-3
0 1 2 3 S >
S 0 0 0 0) 1
- 2] 1
a Inf -3 -3 -3
b Inf 2 2 -1 Y ¥
C inf | inf -2 2 1 ¢

. D[v,3] = min{D[v,2], min {D[u,2] +w,,}

u,vek

-3
0 1 2 3 \) > a
S 0 0 0 0 1
: 2] 1
a INf -3 -3 -3
b INf 2 2 -1 = =
C INf INf -2 -2 b < 1 ¢

Bellman-Ford Fun Facts?

Can we do better than O(nm) time?
* Well-known open problem

. [Fineman 2024]: O(n®”m) algorithm (plus some
extra log factors)

 Doesn't use DP: works by changing the graph
very carefully and running Dijkstra’s algorithm

Dynamic Programming
Shortest Path:
Detecting a Negative Cycle

Negative Cycle

Definition. A negative cycle is a directed cycle C such that the
sum of all the edge weights in C is less than zero

Claim. [f a path from s to some node v contains a negative cycle,
then there does not exist a shortest path from s to v.

N

Q
=
M
«Q
Q
=
<
(¢°)
N
<
o
m
=
PN
—~~
=
|
N
Q)
A
-

Detecting a Negative Cycle

Question. Given a directed graph G = (V, E) with edge-
weights w, (can be negative), determine if G contains a
negative cycle.

Now, we don't a specific source node given to us
Let's change this problem a little bit

Problem. Given G and source s, find if there is negative cycle
on as ~ v path for any node v.

Detecting a Negative Cycle

« Problem. Given G and source s, find if there is negative cycle on a

s ~ v path for any node v.

« Dlv,1] is the cost of the shortest path from s to v of length at most i
e Suppose there is a negative cycle onas ~ v path

., Then lim D[v,i] = — o©

1— 00

e If D[v,n] = D|v,n — 1] for every node v then
G has no negative cycles exists!

* Table values converge, no further improvements possible

Detecting a Negative Cycle

Lemma. If D|v, n] < D|[v, n — 1] then any shortest s ~ v
path contains a negative cycle.

Proof. [By contradiction] Suppose G does not contain a
negative cycle

Since D[v, n] < D|v, n — 1], the shortest s ~ v path that
caused this update has exactly n edges

By pigeonhole principle, path must contain a repeated node,
let the cycle between two successive visits to the node be P

If P has non-negative weight, removing it would give us a
shortest path with less than n edges =<

) (x)

P

O

Problem Reduction

* Now we know how to detect negative cycles on a shortest path
from § to some node V.

« How do we detect a negative cycle anywhere in G?
e One idea: run Bellman-Ford for all s

* Running time?

. O(n’m)

e (Can we do better?

Problem Reduction

Solution: change G so that we can run the algorithm from a
single source

Reduction. Given graph G, add a source s and connect it to
all vertices in G with edge weight 0. Let the new graph be G’

Claim. G has a negative cycle iff G’ has a negative cycle from
s 1o some node v.

Proof. = If G has a negative cycle, then this cycle lies
on the shortest path from s to a node on the cycle in G’

< If G' has a negative cycle on a shortest path from s
to some node, then that node is on a negative cycle in G

