Dynamic Programming Examples

Sam McCauley
April 18, 2025



Welcome Back!

e Class of 60s speaker tonight 7:30, tomorrow at 2:35
e Problem sets: last one almost done grading; next one out tonight

e Be sure to get practice with dynamic programming!

e Easy to get undetectable outside help

e You learn by getting stuck and getting confused. Take the time (and the
frustration) to get to that point.

e There will be multiple dynamic programming questions on the midterm. Practice
now will give you the best chance on that day!

e Questions?



Safety and Security on Campus

e Please come to me if you have any problems

e Our goal here is to learn about algorithms



generate a picture that gives a sense of serenity to help switch
gears between a discussion about horrible political policies towards
a technical discussion of algorithms






can you make it more computer science-y? We're going to really be
getting into some dynamic programs

g 2






Knapsack




Today: Weight limit only




Knapsack

You are packing a bag, with a weight capacity C

You have a collection of items to put in your bag

Each item i has a weight w; and a value v; (both nonnegative integers)

Choose a subset of items with fotal weight at most C

Goal: maximize the total value of the items you pack



A

EXPERT ADVICE

Knapsack

From Last Class:

Does greedy work? How could we greedily pack a bag?

Option 1: pick the highest-value item. Counterexample?

Option 2: pick the lowest-weight item. Counterexample?

Option 3: pick the item maximizing value/weight. Counterexample?



Recursive Knapsack

e Goal for the next portion of class: come up with the dynamic program for
knapsack together [Blackboard]

e There are likely to be some false starts! I'm not writing the solution line by
line.

¢ (Also there are some ideas that don’t work that I specifically want to discuss :)
so we may circle back to some suggestions)



Recursive Knapsack Solution

e Subproblem: (i, c): what is the largest-value solution among the first 7 items
with total weight at most ¢?

e Memoization structure: n x (C + 1) matrix (storing OPT(i,c) fori € {1,...,n}
andc €{0,...,C}.
e Recurrence: OPT(i,c) = max{OPT(i —1,c),v; + OPT(i —1,c —w;)} if w; < ¢
OPT(i,c) = OPT(i — 1,c) otherwise.
e Final answer: OPT(n,C)
e Before moving forward: what subproblems do we need to solve in order to fill
in OPT(i,c)?
e In what order should we fill out the table?
e Base cases?

o Answer: we need all entries in OPT (i — 1, ¢c) to fill out any entry in OPT(i, c). So
go item by item. Our base case must fill out all entries in OPT(1, c).



Recursive Knapsack Solution

(recall) Memoization structure: n x (C + 1) matrix (storing OPT (i, c) for
ie{l,...,n}andce{0,...,C}).

Evaluation order: Row-major order (row by row: fill in OPT(i, c) for
c € {0,...,C} before filling in OPT(i + 1,c) forc € {1,...,C}).

Base cases: OPT(1,¢) = vq if ¢ > wq, OPT(1,c) = 0 if c < ws.

Space: O(nC) Time: O(nC)



A Comment on Running Time

e Running time is O(nC)

e In algorithms we generally want a “polynomial” running time (i.e. a polynomial
in the size of the input). All running times we've seen so far in this class were
polynomial.

e Is this polynomial in the size of the input?

o No! The size of the input is O(n + log, C) (it takes log, C bits to write C down)

e Cis exponential in log, C. So this running time is not polynomial

e This knapsack DP is pseudopolynomial: the running time is polynomial in the
value of the input, not the size



Pseudopolynomial Running Time Comments

e When is pseudopolynomial running time a big downside?

e Is this a practical problem?

e What happens when the weights of the items are not integers? Does our DP
work? Can we make it work?



	Knapsack

