Dynamic Programming Examples

Sam McCauley
April 7, 2025

Welcome Back!

Two weeks is surprisingly short!

Problem Set 5 due Wednesday

Today: start with something familiar, then extend to new things

Last lecture before break is recorded and posted

Questions?

Longest Increasing Subsequence

Longest Increasing Subsequence

e Given: an arbitrary array A of length n

e Goal: find the length of the longest subsequence of elements that are in
sorted order

(1[2]10]3]7]6[4]8]1][3]1]

Longest Increasing Subsequence

e Given: an arbitrary array A of length n

e Goal: find the length of the longest subsequence of elements that are in
sorted order

[1[2[10]3]7[6[4]8]11][3]1]

The longest increasing subsequence has length 6.

Breaking down a DP

e What does an optimal solution look like? Can we break it down further?

e Strategy: split into several cases

e The optimal solution must satisfy one of these case
¢ We don’t know which yet! That's OK
¢ Get the cost of each case recursively and take whichever has lowest cost

Longest Increasing Subsequence: Cases

e Given: an arbitrary array A of length n

e Goal: find the length of the longest subsequence of elements that are in
sorted order

[1]2[e[3[7]6[4f8 1] | |

We solve a slightly different problem: longest increasing subsequence ending at
the last element. Let’s look at 11.

The second-to-last element must have been one of 1, 2, 10, 3, 7, 6, 4, 8.

Strategy: find the cost of the longest increasing subsequence ending at each. Take
the smallest!

LISE Using Dynamic Programming

Subproblem: L[i] stores the longest increasing sequence ending at A[i]

Base Case: L[®] =1

How to Fill in L[7]: First, create a set M consisting of all entries in A that are:

e beforeiin A, and
o less than A[f]

L[i] =14+ maxmem L[m]

Running time: O(n?)

How to find the solution: LIS = max; L[j]

LIS Using Dynamic Programming

First set L[®] =1

Fill out each L[i] by finding previous elemements smaller than i and taking the

max

Take the max L[i] after we are done to find the LIS

Takes O(7) time to fill out L[f], giving ©(n?) time overall.

[1]2]we]3]7]6]4]8]11]3]1]

New Ideas for LIS

Recovering the LIS Solution

[1]2]0]3]7]6]|4]8]11]3]1]

e Recall: our solution cost was L[i] =1+ maxmem L[m]; M consists of entries L|j]
with j < iand L[j] < L[]
e What elements are in the LISE of A[i] (the longest increasing subsequence
that must include A[i]?
o A[i] is! And?
o All the elements in the LISE of A[m] (where m is the max above)
e What do we need to store to get the solution back?
e Store the “m” for each element! Can just store them in an array
o Doesn’t matter how we break ties

e Store —1if there is no m (i.e. if M is empty)

Recovering the LIS Solution

Visually:

A: |2]1]e]3]7]6]4]8]11]5]

L:]1|1|2|2|3|3|3|4ij3|4\

Recovering the LIS Solution

What we actually store:

Original array A:

(2] 1]e]3]7]6]4]8]11]5]

Dynamic Programming array L:

(1l1]2]2]3[3]3]4]5]4]

Solution array B storing best value of m for each i (or —1 if M empty):

Al r]1]3[3]3]e[7]6]

Can fill in B while filling in L!

Recovering the LIS Solution

i= max value 1in L
S=0 // holds our solution
while i# —1:
add i to S
i = BJ[i]
o It took O(n?) time to fill out L and B

e How much time does it take to find the solution S using the above?

e O(n)

o Total time: O(n?) to find the LIS!

Finding DP Solutions

-

e Dynamic programming: use the solution to already-solved subproblems to find
solutions to a larger subproblem (a.k.a. recursion)

e To keep track of the solution: write down what subproblems we used to find
the new solution

e By backtracking through what subproblems were used for the optimal cost, we
can find the actual solution

Edit Distance

Knapsack

A familiar problem?

A familiar problem?

A familiar problem?

Packing is Hard

Sometimes: you pack a suitcase, dishwasher, backpack, etc.

Items don't fit

You take everything out and put it back in and suddenly it fits

Can we come up with an algorithm to pack items efficiently? Can we beat
brute force?

Today: Weight limit only

Knapsack

You are packing a bag, with a weight capacity C

You have a collection of items to put in your bag

Each item i has a weight w; and a value v; (both nonnegative integers)

Choose a subset of items with fotal weight at most C

Goal: maximize the fotal value of the items you pack

A

EXPERT ADVICE

Knapsack

Does greedy work? How could we greedily pack a bag?

Option 1: pick the highest-value item. Counterexample? [Blackboard]

Option 2: pick the lowest-weight item. Counterexample?

Option 3: pick the item maximizing value/weight. Counterexample?

Recursive Knapsack

e Goal for the next portion of class: come up with the dynamic program for
knapsack together [Blackboard]

e There are likely to be some false starts! I'm not writing the solution line by
line.

¢ (Also there are some ideas that don’t work that I specifically want to discuss :)
so we may circle back to some suggestions)

Recursive Knapsack Solution

e Subproblem: (7, c): what is the largest-value solution among the first i items
with total weight at most c?

e Memoization structure: n x C matrix (storing OPT(i,c) fori € {1,...,n} and
ce{l,...,C}

e Recurrence: OPT(i,c) = max{OPT(i —1,c),v; + OPT(i — 1,c — w;)}

e Final answer: OPT(n,C)

e Before moving forward: what subproblems do we need to solve in order to fill
in OPT(i,c)?
¢ In what order should we fill out the table?
e Base cases?

o Answer: we need all entries in OPT(i — 1, ¢) to fill out any entry in OPT (i, c). So
go item by item. Our base case must fill out all entries in OPT(1,c).

Recursive Knapsack Solution

andc e {1,...,C}).

Evaluation order: Row-major order (row by row: fill in OPT(i, c) for
c e {1,...,C} before filling in OPT(i 4+ 1,c) forc € {1,...,C}).

Base cases: OPT(1,¢) = vy if ¢ > wq, OPT(1,c) = 0 if c < ws.

Space: O(nC) Time: O(nC)

(recall) Memoization structure: n x C matrix (storing OPT(i,c) fori € {1,...

A Comment on Running Time

e Running time is O(nC)

e In algorithms we generally want a “polynomial” running time (i.e. a polynomial
in the size of the input). All running times we've seen so far in this class were
polynomial.

e Is this polynomial in the size of the input?

o No! The size of the input is O(n + log, C) (it takes log, C bits to write C down)

e C is exponential in log, C. So this running time is not polynomial

e This knapsack DP is pseudopolynomial: the running time is polynomial in the
value of the input, not the size

Pseudopolynomial Running Time Comments

e When is pseudopolynomial running time a big downside?

e Is this a practical problem?

e What happens when the weights of the items are not integers? Does our DP
work? Can we make it work?

	Longest Increasing Subsequence
	New Ideas for LIS
	Edit Distance
	Knapsack

