
Dynamic Programming Examples

Sam McCauley

April 7, 2025



Welcome Back!

• Two weeks is surprisingly short!

• Problem Set 5 due Wednesday

• Today: start with something familiar, then extend to new things

• Last lecture before break is recorded and posted

• Questions?



Longest Increasing Subsequence



Longest Increasing Subsequence

• Given: an arbitrary array A of length n

• Goal: find the length of the longest subsequence of elements that are in

sorted order

1 2 10 3 7 6 4 8 11 3 1



Longest Increasing Subsequence

• Given: an arbitrary array A of length n

• Goal: find the length of the longest subsequence of elements that are in

sorted order

1 2 10 3 7 6 4 8 11 3 1

The longest increasing subsequence has length 6.



Breaking down a DP

• What does an optimal solution look like? Can we break it down further?

• Strategy: split into several cases

• The optimal solution must satisfy one of these case
• We don’t know which yet! That’s OK
• Get the cost of each case recursively and take whichever has lowest cost



Longest Increasing Subsequence: Cases

• Given: an arbitrary array A of length n

• Goal: find the length of the longest subsequence of elements that are in

sorted order

1 2 10 3 7 6 4 8 11 3 1

We solve a slightly different problem: longest increasing subsequence ending at

the last element. Let’s look at 11.

The second-to-last element must have been one of 1, 2, 10, 3, 7, 6, 4, 8.

Strategy: find the cost of the longest increasing subsequence ending at each. Take

the smallest!



LISE Using Dynamic Programming

Subproblem: L[i] stores the longest increasing sequence ending at A[i]

• Base Case: L[0] = 1

• How to Fill in L[i]: First, create a set M consisting of all entries in A that are:

• before i in A, and
• less than A[i]

• L[i] = 1 +maxm∈M L[m]

• Running time: O(n2)

• How to find the solution: LIS = maxj L[j]



LIS Using Dynamic Programming

• First set L[0] = 1

• Fill out each L[i] by finding previous elemements smaller than i and taking the

max

• Take the max L[i] after we are done to find the LIS

• Takes Θ(i) time to fill out L[i], giving Θ(n2) time overall.

1 2 10 3 7 6 4 8 11 3 1



New Ideas for LIS



Recovering the LIS Solution

1 2 10 3 7 6 4 8 11 3 1

• Recall: our solution cost was L[i] = 1 +maxm∈M L[m]; M consists of entries L[j]

with j < i and L[j] < L[i]

• What elements are in the LISE of A[i] (the longest increasing subsequence
that must include A[i]?

• A[i] is! And?

• All the elements in the LISE of A[m] (where m is the max above)

• What do we need to store to get the solution back?

• Store the “m” for each element! Can just store them in an array

• Doesn’t matter how we break ties

• Store −1 if there is no m (i.e. if M is empty)



Recovering the LIS Solution

Visually:

2 1 10 3 7 6 4 8 11 5A :

1 1 2 2 3 3 3 4 5 4L :



Recovering the LIS Solution

What we actually store:

Original array A:

2 1 10 3 7 6 4 8 11 5

Dynamic Programming array L:

1 1 2 2 3 3 3 4 5 4

Solution array B storing best value of m for each i (or −1 if M empty):

-1 -1 1 1 3 3 3 6 7 6

Can fill in B while filling in L!



Recovering the LIS Solution

1 i = max value in L
2 S = ∅ // holds our solution
3 while i ̸= −1:
4 add i to S
5 i = B[i]

• It took O(n2) time to fill out L and B

• How much time does it take to find the solution S using the above?

• O(n)

• Total time: O(n2) to find the LIS!



Finding DP Solutions

• Dynamic programming: use the solution to already-solved subproblems to find

solutions to a larger subproblem (a.k.a. recursion)

• To keep track of the solution: write down what subproblems we used to find

the new solution

• By backtracking through what subproblems were used for the optimal cost, we

can find the actual solution



Edit Distance



Knapsack



A familiar problem?



A familiar problem?



A familiar problem?



Packing is Hard

• Sometimes: you pack a suitcase, dishwasher, backpack, etc.

• Items don’t fit

• You take everything out and put it back in and suddenly it fits

• Can we come up with an algorithm to pack items efficiently? Can we beat

brute force?



Today: Weight limit only

We’ll come back to packing items so that they fit physically in a couple weeks.

Long story short: some of the same challenges; but even harder—DP may not work



Knapsack

• You are packing a bag, with a weight capacity C

• You have a collection of items to put in your bag

• Each item i has a weight wi and a value vi (both nonnegative integers)

• Choose a subset of items with total weight at most C

• Goal: maximize the total value of the items you pack



Knapsack

• Does greedy work? How could we greedily pack a bag?

• Option 1: pick the highest-value item. Counterexample? [Blackboard]

• Option 2: pick the lowest-weight item. Counterexample?

• Option 3: pick the item maximizing value/weight. Counterexample?



Recursive Knapsack

• Goal for the next portion of class: come up with the dynamic program for

knapsack together [Blackboard]

• There are likely to be some false starts! I’m not writing the solution line by

line.

• (Also there are some ideas that don’t work that I specifically want to discuss :)

so we may circle back to some suggestions)



Recursive Knapsack Solution

• Subproblem: (i, c): what is the largest-value solution among the first i items

with total weight at most c?

• Memoization structure: n× C matrix (storing OPT(i, c) for i ∈ {1, . . . , n} and

c ∈ {1, . . . ,C}.

• Recurrence: OPT(i, c) = max{OPT(i − 1, c), vi + OPT(i − 1, c− wi)}

• Final answer: OPT(n,C)

• Before moving forward: what subproblems do we need to solve in order to fill
in OPT(i, c)?

• In what order should we fill out the table?

• Base cases?

• Answer: we need all entries in OPT(i − 1, c) to fill out any entry in OPT(i, c). So
go item by item. Our base case must fill out all entries in OPT(1, c).



Recursive Knapsack Solution

• (recall) Memoization structure: n× C matrix (storing OPT(i, c) for i ∈ {1, . . . , n}
and c ∈ {1, . . . ,C}).

• Evaluation order: Row-major order (row by row: fill in OPT(i, c) for

c ∈ {1, . . . ,C} before filling in OPT(i + 1, c) for c ∈ {1, . . . ,C}).

• Base cases: OPT(1, c) = v1 if c ≥ w1, OPT(1, c) = 0 if c < w1.

• Space: O(nC) Time: O(nC)



A Comment on Running Time

• Running time is O(nC)

• In algorithms we generally want a “polynomial” running time (i.e. a polynomial

in the size of the input). All running times we’ve seen so far in this class were

polynomial.

• Is this polynomial in the size of the input?

• No! The size of the input is O(n+ log2 C) (it takes log2 C bits to write C down)

• C is exponential in log2 C. So this running time is not polynomial

• This knapsack DP is pseudopolynomial: the running time is polynomial in the

value of the input, not the size



Pseudopolynomial Running Time Comments

• When is pseudopolynomial running time a big downside?

• Is this a practical problem?

• What happens when the weights of the items are not integers? Does our DP

work? Can we make it work?


	Longest Increasing Subsequence
	New Ideas for LIS
	Edit Distance
	Knapsack

