
Dynamic Programming:
Memoized Recursion

Sam McCauley

March 20, 2025



Welcome Back!

• Problem set 4 deadline postponed

• Problem Set 5 out this afternoon

• Shorter, lots of parts filled in; on Problems 2–3 the parts you should fill in are

in red

• Focus: practice with dynamic programming

• Relies entirely on today (not Monday after break, though we’ll get more DP

practice then)

• Looking ahead: on midterm 2 you can have a 1-page cheat sheet

• Questions?



Fibonacci Numbers



Fibonacci Numbers

• Definition: Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1

• 0, 1, 1, 2,3,5,8, 13, 21, . . .

• How can we calculate these numbers?



Fibonacci Algorithm

1 fib(n):
2 if n == 0:
3 return 0
4 if n == 1:
5 return 1
6 return fib(n-1) + fib(n-2)

• Clearly correct (can prove using strong induction); what’s the running time?

• T(n) = T(n− 1) + T(n− 2) + Θ(1); T(0) = T(1) = 1

• At least as large as: T ′(n) = T ′(n− 1) + T ′(n− 2); T(1) = T(2) = 1

• Which is the nth fibonacci number!



Fibonacci Algorithm

1 fib(n):
2 if n == 1:
3 return 1
4 if n == 2:
5 return 1
6 return fib(n-1) + fib(n-2)

• 200th Fibonacci number is ≥ 2× 1041. So would need at least 2× 1041

operations to calculate.

• World’s fastest supercomputer would need 10,000× (age of the universe)

years to finish this calculation

• Let’s discuss: is there a better way?



Fibonacci Algorithm Improved

• Create an array F, where F[i] stores the ith largest Fibonacci number

• Set F[0] = 1 and F[1] = 1.

• Now we can fill out F[2], then F[3], and so on.



Fibonacci Algorithm Improved

1 fib(n):
2 create an array F
3 F[0] = F[1] = 1
4 for j = 2 to n:
5 F[j] = F[j − 1] + F[j − 2]

• Correctness: when we fill in F[j], we have already put the correct value in

F[j − 1] and F[j − 2]

• What is the running time?

• O(n)

• Can calculate the 200th Fibonacci number with ≈ 200 additions!



What happened here?

• Both algorithms seem reasonable

• One takes 200 operations, the other takes 1041 operations

• Where are we losing time?



Recursive Fibonacci

1 fib(n):
2 if n == 0:
3 return 0
4 if n == 1:
5 return 1
6 return fib(n-1) + fib(n-2)



Recursive Fibonacci



Recursive Fibonacci Slowness

• We recompute the entire recursive call each time we “need” a number

• So to compute F200, we need F199 and F198

• The first thing F199 does is call F198. We do that entire computation twice!

• We compute (say) F100 many, many, many times



Array-Based Fibonacci

• Same recursive structure, but

• each number is computed exactly once.

• We write down the solutions in our array so that we can reuse them later

• Dynamic Programming: recursive algorithm where we write down solutions we

calculated to reuse them later

• Writing down already-calculated values is called memoization. So dynamic

programming is recursion with memoization





Dynamic Programming

• Fibonacci numbers are a nice example

• Dynamic programming is extremely powerful, and can solve a wide variety of

problems

• We’ll be exploring these problems over the next 2-3 lectures, obtaining

increasingly powerful strategies for dynamic programming solutions



Longest Increasing Subsequence



Longest Increasing Subsequence

• Given: an arbitrary array A of length n

• Goal: find the length of the longest subsequence of elements that are in

increasing order

1 2 10 3 7 6 4 8 11 3 1



Longest Increasing Subsequence

• Given: an arbitrary array A of length n

• Goal: find the length of the longest subsequence of elements that are in

sorted order

1 2 10 3 7 6 4 8 11 3 1

The longest increasing subsequence has length 6.



Longest Increasing Subsequence

• Given: an arbitrary array A of length n

• Goal: find the length of the longest subsequence of elements that are in

sorted order

1 2 10 3 7 6 4 8 11 3 1

An increasing subsequence of length 4 (not longest!)



Greedy Doesn’t Work

1 2 10 3 7 6 4 8 11 3 1

• Greedy: (repeatedly) take the next item larger than our current item and add it

to our solution.

• Why doesn’t this work?

• Greedy makes bad early decisions which prevents us from getting the optimal

solution

• Taking 10 means we can’t take 3, 4, 8!



Longest Increasing Subsequence Definition (and extension)

• Given an array A of length n

• Find the largest ` such that there is a sequence of indices i1 < i2 < . . . < i`
such that for all k < `, A[ik] < A[ik+1]

• Also called LIS

• Note that today we will just get the length of the sequence

• We’ll talk about how to get the sequence (not just the length) after spring

break



LISE

• Consider the following restricted problem: the Longest Increasing
Subsequence Ending at n− 1 (LISE)

• Find the length of the longest increasing subsequence that includes A[n− 1]

• 0-indexed; so this is the last element of the array

• Let’s focus on LISE for now. Then we’ll double back for LIS

1 2 10 3 7 6 4 8 11 3 1

LISE of this array is: 1!



Solving LISE Recursively

2 1 10 3 7 6 4 8 11 5
0 1 2 3 4 5 6 7 8 9

• How can I recursively find the LISE of this array?

• What do I know about any increasing subsequence ending at the last element
(5)?

• The second to last element must be < 5



Solving LISE Recursively

2 1 10 3 7 6 4 8 11 5
0 1 2 3 4 5 6 7 8 9

• One of 2, 1,3,4 (in slots 0, 1,3,6) must be the second-to-last element in my

LISE

• Which one is best?

• Let’s say I already wrote down the length of the longest increasing

subsequence ending at 2, 1, 3, 4? How does that help us?



Solving LISE Recursively

2 1 10 3 7 6 4 8 11 5
0 1 2 3 4 5 6 7 8 9

• The length of the longest increasing subsequence ending at 5 is 1+ the max
of:

• The longest increasing subsequence ending at 4 (slot 6)
• The longest increasing subsequence ending at 3 (slot 3)
• The longest increasing subsequence ending at 1 (slot 1)
• The longest increasing subsequence ending at 2 (slot 0)



Solving LISE Recursively (Slow if we’re not careful!)

• We can solve LISE on an array A with < n recursive calls, each to a prefix of A

• Running time?

• Something like T(n) = T(n− 1) + T(n− 2) + . . . + T(1) + O(n).
• VERY large! Θ(n2n)

• Dynamic Programming to the rescue



LISE Using Dynamic Programming (Same idea, but fast!)

2 1 10 3 7 6 4 8 11 5
0 1 2 3 4 5 6 7 8 9

• Create an array L

• L[i] stores LISE of A[0, . . . , i]

• Let’s fill in L[i] for the above example [Blackboard] (Recall that we take 1+ the

max, over all previous smaller elements, of their LISE)



LISE Using Dynamic Programming

Let’s formalize what we just did on the board.

• Base Case: What is L[0]? 1

• How to Fill in L[i]: First, create a set M consisting of all entries in A that are:

• before i in A, and
• less than A[i]

• L[i] = 1 + maxm∈M L[m] (so L[i] = 1 if M = ∅)

• Running time?

• It takes O(n) time to calculate L[i]

• Do that for i ∈ {0, . . . , n− 1} (n values)

• O(n2)



LIS Using Dynamic Programming

• Recursive algorithm, but

• Since we write down solutions as we get them, we obtain O(n2) running time

rather than Θ(n2n)

• What about LIS?

• The Longest Increasing Subsequence must end at some entry j of A

• After we fill out the table L, can find:

• LIS = maxj L[j]

• O(n2) algorithm for Longest Increasing Subsequence



LIS Using Dynamic Programming

• First set L[0] = 1

• Fill out each L[i] by finding previous elemements smaller than i and taking the

max

• Take the max L[i] after we are done to find the LIS

1 2 10 3 7 6 4 8 11 3 1



Dynamic Programming Structure



Dynamic Programming

• Memoized recursion

• All dynamic programs have a common structure (which we’ll go over on the

next slide)

• To ensure clarity in expectations, I will always ask you to use this structure

when giving a dynamic program

• Some of these entries may be very easy to fill out!

• On this assignment, I have written these out specifically for you. But I may not

do that the future

• You do not need to memorize this; I will give it to you on midterm/exams



Elements of a Dynamic Program

• Subproblem Definition: what subproblem are you using in your DP?

• Memoization Structure: what data structure are you using? (Almost always an

array. But: how big? How many dimensions?)

• Recurrence: State the recurrence used for the DP.

• Base Case: Base case for the recurrence/first entry we can fill out in the table

• Evaluation Order: In what order should we fill out our table? (Almost always

left to right for 1-D tables.)

• Final Solution: After we filled out the table, how do we read off the final

solution?

• Time and Space Analysis



Elements of a Dynamic Program: LIS

• Subproblem Definition: Longest increasing subsequence ending at an

element i

• Memoization Structure: 1-dimensional array of length n (this was L[])

• Recurrence L[i] = 1 + maxm∈M L[m] where m = {j | j < i,A[j] < A[i]}

• Base Case: L[0] = 1

• Final Solution: maxi∈{0,...,n−1} L[i]

• Evaluation Order: Calculate L[j] for j = 0 to n− 1 (left to right)

• Time and Space Analysis: O(n2) time, O(n) space



Improving LIS

2 1 10 3 7 6 4 8 11 5

• Can we calculate the LIS more quickly than Θ(n2)?

• (Seems like we’re wasting some time on the above.)

• Yes! We’ll see next week how to solve this in O(n log n) time

• (I want to focus on how DP works, rather than optimizing speed, for now.)



Approaching a Dynamic
Programming Problem



Designing a DP

• The first question to ask yourself is: what does a solution look like?

• Usually: there are several cases for what a solution looks like

• We can recursively figure out the cost of the solution for each case

• Taking the best cost gives us the best answer!



LISE in Cases

• We want to find the longest increasing subsequence ending at position n− 1

• What does a solution look like?

• The element at position n− 1 is in the solution

• Either the solution has length 1, or there is a second-to-last element

• The second-to-last element is smaller than the element at position n− 1

• Cases: there are n− 2 possible second-to-last elements

• For each second-to-last element, I want the best solution ending at that
element.

• Recursive call!



Phrased Another Way

The optimal solution ending at element n− 1 consists of:

• Element n− 1, and

• The optimal solution ending at some earlier element with value less than the

n− 1st element

Can someone give a short proof of why we always want the optimal solution ending

at element n− 1?



Weighted Interval Scheduling


	Fibonacci Numbers
	Longest Increasing Subsequence
	Dynamic Programming Structure
	Approaching a Dynamic Programming Problem
	Weighted Interval Scheduling

