Dynamic Programming:
Memoized Recursion

Sam McCauley
March 20, 2025

Welcome Back!

e Problem set 4 deadline postponed
e Problem Set 5 out this afternoon

e Shorter, lots of parts filled in; on Problems 2-3 the parts you should fill in are
in red

e Focus: practice with dynamic programming

e Relies entirely on foday (not Monday after break, though we’ll get more DP
practice then)

e Looking ahead: on midterm 2 you can have a 1-page cheat sheet

e Questions?

Fibonacci Numbers

Fibonacci Numbers

e Definition: F, = F,_1+Fn_2,Fg =0, F =1

¢ 0,1,1,2,3,5,8,13,21,. ..

¢ How can we calculate these numbers?

AT
Ne

Fibonacci Algorithm

fib(n):
if n == 0:
return 0
if n == 1:
return 1
return fib(n-1) + fib(n-2)

Clearly correct (can prove using strong induction); what'’s the running time?

o T(n) = T(n—1)+T(n—2)+©(1); T(8) = T(1) =1

Atleastaslargeas: T'(n) =T'(n—1)+T'(n—-2);T()=T(2) =1

Which is the nth fibonacci number!

Fibonacci Algorithm

fib(n):
if n ==
return 1
if n ==
return 1
return fib(n-1) + fib(n-2)

e 200th Fibonacci number is > 2 x 104", So would need at least 2 x 104
operations to calculate.

o World's fastest supercomputer would need 10, 900 x (age of the universe)
years to finish this calculation

e Let's discuss: is there a better way?

Fibonacci Algorithm Improved

o Create an array F, where F[i] stores the ith largest Fibonacci number

e Set F[®] = 1and F[1] = 1.

e Now we can fill out F[2], then F[3], and so on.

Fibonacci Algorithm Improved

fib(n):
create an array F
F[O] =F[1] =1

for j = 2 to n:
Flil=Flj —1+F[j— 2]

Correctness: when we fill in F[j], we have already put the correct value in
F[j — 1] and F[j — 2]

What is the running time?
e O(n)

Can calculate the 200th Fibonacci number with ~ 200 additions!

What happened here?

e Both algorithms seem reasonable

e One takes 200 operations, the other takes 184! operations

e Where are we losing time?

Recursive Fibonacci

fib(n):
if n ==
return 0
if n ==
return 1
return fib(n-1) + fib(n-2)

Recursive Fibonacci

;) R. R. .. R.
... B E) E)E

Recursive Fibonacci Slowness

We recompute the entire recursive call each time we “need” a number

So to compute Fogg, We need Fi9o and Fiog

The first thing F99 does is call Fi9s. We do that entire computation twice!

We compute (say) Figg many, many, many times

Array-Based Fibonacci

e Same recursive structure, but
e each number is computed exactly once.
e We write down the solutions in our array so that we can reuse them later

e Dynamic Programming: recursive algorithm where we write down solutions we
calculated to reuse them later

e Writing down already-calculated values is called memoization. So dynamic
programming is recursion with memoization

lofa]1]2]3]5]813] |

Dynamic Programming

e Fibonacci numbers are a nice example

e Dynamic programming is extremely powerful, and can solve a wide variety of
problems

o We'll be exploring these problems over the next 2-3 lectures, obtaining
increasingly powerful strategies for dynamic programming solutions

Longest Increasing Subsequence

Longest Increasing Subsequence

e Given: an arbitrary array A of length n

e Goal: find the length of the longest subsequence of elements that are in
increasing order

(1[2]10]3]7[6[4]8]1][3]1]

Longest Increasing Subsequence

e Given: an arbitrary array A of length n

e Goal: find the length of the longest subsequence of elements that are in
sorted order

[1]2]we]3]7]6]4]8]1]3]1]

The longest increasing subsequence has length 6.

Longest Increasing Subsequence

e Given: an arbitrary array A of length n

e Goal: find the length of the longest subsequence of elements that are in
sorted order

[1]2]w][3]7]6]4]8]11]3]1]

An increasing subsequence of length 4 (not longest!)

Greedy Doesn’t Work

[1[2]10]3]7[6[4]8]11[3]1]

Greedy: (repeatedly) take the next item larger than our current item and add it
to our solution.

Why doesn’t this work?

Greedy makes bad early decisions which prevents us from getting the optimal

solution

Taking 10 means we can't take 3, 4, 8!

Longest Increasing Subsequence Definition (and extension)

e Given an array A of length n

e Find the largest ¢ such that there is a sequence of indices i1 <ix < ... <1
such that for all k < ¢, Alix] < Alik+1]

e Also called LIS
¢ Note that today we will just get the length of the sequence

o We’'ll talk about how to get the sequence (not just the length) after spring
break

LISE

e Consider the following restricted problem: the Longest Increasing
Subsequence Ending at n — 1 (LISE)

o Find the length of the longest increasing subsequence that includes A[n — 1]
e 0-indexed; so this is the last element of the array

e Let’s focus on LISE for now. Then we’ll double back for LIS

(1[2]10]3]7[6[4]8]1[3]1]

LISE of this array is: 1!

Solving LISE Recursively

]2|1|1®|3|7|6 4 8 11 5

3 4 5

e How can I recursively find the LISE of this array?

e What do I know about any increasing subsequence ending at the last element
(5)?

e The second to last element must be < 5

Solving LISE Recursively

(2] 1]we]3][7]6]4a]8][n]5]

e One of 2,1,3,4 (in slots ®, 1, 3, 6) must be the second-to-last element in my
LISE

e Which one is best?

e Let’s say I already wrote down the length of the longest increasing
subsequence ending at 2, 1, 3, 4? How does that help us?

Solving LISE Recursively

]2|1|1®|3|7|6 48 11 5

3 4 5

e The length of the longest increasing subsequence ending at 5 is 14 the max
of:
e The longest increasing subsequence ending at 4 (slot 6)
e The longest increasing subsequence ending at 3 (slot 3)
e The longest increasing subsequence ending at 1 (slot 1)
e The longest increasing subsequence ending at 2 (slot ®)

Solving LISE Recursively (Slow if we're not careful!)

e We can solve LISE on an array A with < n recursive calls, each to a prefix of A

e Running time?
o Something like T(n) =T(n — 1)+ T(n —2)+ ...+ T(1) + O(n).
o VERY large! ©(n2")

e Dynamic Programming to the rescue

LISE Using Dynamic Programming (Same idea, but fast!)

12]1]w0]3]7]6]4]8]1]5]

e Create an array L
e L[i] stores LISE of A[O,...,1]

e Let’s fill in L[i] for the above example [Blackboard] (Recall that we take 1+ the
max, over all previous smaller elements, of their LISE)

LISE Using Dynamic Programming

Let’s formalize what we just did on the board.

e Base Case: What is L[®]? 1

e How to Fill in L[7]: First, create a set M consisting of all entries in A that are:

e beforeiin A, and
o less than A[f]

e L[i] =14 maxmemL[m] (so L[i] =1if M = ()
e Running time?
o It takes O(n) time to calculate L[i]

e Do thatfori e {®,...,n—1} (n values)
e O(n?)

LIS Using Dynamic Programming

e Recursive algorithm, but

« Since we write down solutions as we get them, we obtain O(n?) running time
rather than ©(n2")

e What about LIS?

e The Longest Increasing Subsequence must end at some entry j of A

o After we fill out the table L, can find:
o LIS = max; L[]

¢ O(n?) algorithm for Longest Increasing Subsequence

LIS Using Dynamic Programming

e First set L[®] =1

e Fill out each L][i] by finding previous elemements smaller than 7 and taking the
max

o Take the max L[i] after we are done to find the LIS

[1[2]10]3]7[6[4]8]11[3]1]

Dynamic Programming Structure

Dynamic Programming

e Memoized recursion

e All dynamic programs have a common structure (which we’ll go over on the
next slide)

e To ensure clarity in expectations, I will always ask you to use this structure
when giving a dynamic program

e Some of these entries may be very easy to fill out!

e On this assignment, I have written these out specifically for you. But I may not
do that the future

e You do not need to memorize this; I will give it to you on midterm/exams

Elements of a Dynamic Program

e Subproblem Definition: what subproblem are you using in your DP?

e Memoization Structure: what data structure are you using? (Almost always an
array. But: how big? How many dimensions?)

e Recurrence: State the recurrence used for the DP.
e Base Case: Base case for the recurrence/first entry we can fill out in the table

e Evaluation Order: In what order should we fill out our table? (Almost always
left to right for 1-D tables.)

e Final Solution: After we filled out the table, how do we read off the final
solution?

¢ Time and Space Analysis

Elements of a Dynamic Program: LIS

e Subproblem Definition: Longest increasing subsequence ending at an
element i

e Memoization Structure: 1-dimensional array of length n (this was L[])
e Recurrence L[i] =1+ maxmemL[m] where m = {j | j < 1,A[j] < A[i]}
e Base Case: L[0] =1

o Final Solution: maxjc(g,... n—1} L[]

e Evaluation Order: Calculate L[j] for j = ® to n — 1 (left to right)

 Time and Space Analysis: O(n?) time, O(n) space

Improving LIS

12]1]18]3]7]6]4]8]11]5]

o Can we calculate the LIS more quickly than ©(n?)?
e (Seems like we're wasting some time on the above.)
e Yes! We'll see next week how to solve this in O(nlogn) time

¢ (I want to focus on how DP works, rather than optimizing speed, for now.)

Approaching a Dynamic
Programming Problem

Designing a DP

The first question to ask yourself is: what does a solution look like?

Usually: there are several cases for what a solution looks like

We can recursively figure out the cost of the solution for each case

Taking the best cost gives us the best answer!

LISE in Cases

We want to find the longest increasing subsequence ending at position n — 1

What does a solution look like?

e The element at position n — 1is in the solution
e Either the solution has length 1, or there is a second-to-last element

e The second-to-last element is smaller than the element at position n — 1

Cases: there are n — 2 possible second-to-last elements

For each second-to-last element, I want the best solution ending at that
element.

e Recursive call!

Phrased Another Way

The optimal solution ending at element n — 1 consists of:

e Elementn — 1, and

e The optimal solution ending at some earlier element with value less than the
n — 1st element

Can someone give a short proof of why we always want the optimal solution ending
at element n — 1?

Weighted Interval Scheduling

	Fibonacci Numbers
	Longest Increasing Subsequence
	Dynamic Programming Structure
	Approaching a Dynamic Programming Problem
	Weighted Interval Scheduling

