Divide and Conquer

Sam McCauley March 17, 2025 • Due date wrong on homework (it's due Thursday)

• Let's look at the midterm

• Then get back to D & C

More Recurrences

Divide and Conquer and Recurrences

- We analyze divide and conquer algorithms using recurrences
- Gives us a bird's eye view of the cost of the algorithm
- Recurrence relations can also guide us in searching for algorithms
 - "How can I sort in $O(n \log n)$ time?"
 - If my sorting method recurses on two halves, and does O(n) additional work, I get T(n) = 2T(n/2) + O(n), which gives O(n log n)
 - (Of course, this is just a starting point: many other recurrences solve to $O(n \log n)$.)
- Let's look at some other recurrences

Let's do the following recurrences [Blackboard]

For all of these assume T(1) = 1.

T(n) = 4T(n/2) + O(1)

T(n) = 3T(n/3) + O(n)

Recall: Floors and Ceilings in Recurrences

- Most input sizes are not (say) powers of 2
- Merge sort's actual recurrence is:

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n)$$

- Does this change the solution?
- No. *We will ignore all floors and ceilings in this class.* See Erikson 1.7 for some formal justification

Tree Height and Recurrences that Don't Branch

Let's do the following recurrences [Blackboard]

$$T(n) = T(n/2) + O(1)$$

$$T(n) = T(\sqrt{n}) + O(1)$$

$$T(n) = T(n/2) + O(n)$$

Lemma: if we start with *n*, after taking the square root $\Theta(\log \log n)$ times we reach 1.

Recurrences often fit into one of three types:

• Cost at the root dominates

• Cost at the leaves dominate

• Cost at each level is the same

- Recursion tree (recommended)
- Guess and check
 - If we have the solution for *T*(*n*), we can substitute it into the recurrence to check that it is satisfied
 - Can formalize using induction
 - "Unroll" recurrence a few steps to get intuition before guessing
- Master theorem (next slide) gives the solution for many common recurrences

Master Theorem (Simple Version)

For *constants* a and b and a function f(n), to solve

$$T(n) = aT(n/b) + f(n);$$
 $T(1) = 1$

- If $f(n) = O(n^c)$ for $c < \log_b a$ then $T(n) = \Theta(n^{\log_b a})$
 - So T(n) = 4T(n/2) + O(n) solves to $T(n) = \Theta(n^2)$
- If $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log n)$
 - So T(n) = 2T(n/2) + O(n) solves to $T(n) = \Theta(n \log n)$
- A fast way to solve simpler recurrences. But a pain to memorize and only works situationally.

Binary Search

Binary Search

```
1 binary_search(key, A, start, end):
2 mid = (start + end)/2
3 if key == A[mid]:
4 return mid
5 else if key < A[mid]:
6 return binary_search(key, A, start, mid-1)
7 else:
8 return binary_search(key, A, mid+1, end)
```

- Correctness intuition: we recurse on the half of A that *must contain* key.
- How would we prove correctness formally?
- Running time? T(n) = T(n/2) + O(1) We've seen: $T(n) = O(\log n)$

Binary Search on a Linked List?

This is not a good algorithm. But I've seen people implement it many times.

Today: how efficient is it?

We can binary search by:

- Find the middle item of the linked list
 - By iterating through the linked list
- Compare to query item
- Recurse on first or second half of the linked list
- Recurrence?
- $T(n) = T(n/2) + \Theta(n)$
- Solution: $\Theta(n)$ time
- (Could have just scanned!)

Matrix Multiplication

Problem: For two $n \times n$ matrices *A* and *B*, compute matrix $C = A \cdot B$.

a ₁₁	a ₁₂		a _{1n}		b ₁₁	b ₁₂		b _{1n}		C ₁₁	C ₁₂	•••	c _{1n}
a ₂₁	a ₂₂	•••	a _{2n}		b ₂₁	b ₂₂	• • •	b _{2n}		c ₂₁	c ₂₂	• • •	c _{2n}
:	:	·	:	×	:	:	·	:	=	:	:	·	÷
<i>a</i> _{n1}	a _{n2}		ann		b _{n1}	b _{n2}		b _{nn}		C _{n1}	C _{n2}		c _{nn}

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Matrix Multiplication

The value of c_{23} is $18 \cdot 1 + 2 \cdot 19 + 24 \cdot 13 + 11 \cdot 20 = 588$.

Problem: For two $n \times n$ matrices *A* and *B*, compute matrix $C = A \cdot B$.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$
$$\mathbf{C} = \mathbf{A} \times \mathbf{B} = \begin{bmatrix} \sum_{k=1}^{n} a_{1k} b_{k1} & \sum_{k=1}^{n} a_{1k} b_{k2} & \cdots & \sum_{k=1}^{n} a_{1k} b_{kn} \\ \sum_{k=1}^{n} a_{2k} b_{k1} & \sum_{k=1}^{n} a_{2k} b_{k2} & \cdots & \sum_{k=1}^{n} a_{2k} b_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} a_{nk} b_{k1} & \sum_{k=1}^{n} a_{nk} b_{k2} & \cdots & \sum_{k=1}^{n} a_{nk} b_{kn} \end{bmatrix}$$

- Used *extremely* often in modern computing
 - Graphics, machine learning applications; many others
- GPUs are basically purpose-built hardware to do matrix multiplication quickly
 - Not literally; what they do is significantly broader than that
 - But it's not a coincidence that areas where matrix multiplication are most used are also known for heavy GPU requirements

Matrix Multiplication Algorithm

- First attempt: do all multiplications
- Running time?
 - *C* is an $n \times n$ matrix so has n^2 entries
 - Each takes O(n) time to compute
 - $O(n^3)$ time in total
- Can we do better?
- Seems difficult, since there are $\Omega(n^3)$ terms we need to multiply across all entries of *C*

Block Matrix Multiplication

If we divide each matrix into four pieces, can rewrite matrix multiplication using recursive calls.

In other words: in a 2 × 2 matrix, we have $c_{11} = a_{11} \cdot b_{11} + a_{12} \cdot b_{21}$. We can fill in an *entire* quadrant of *C* by multiplying the quadrants of *A* and *B*:

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

Divide and Conquer Matrix Multiplication

We have:

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$
$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$
$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$
$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

This gives a divide and conquer algorithm!

- How many *recursive calls* do we make? How large are they? How much extra work do we need to do?
- 8 calls of size n/2. Takes $O(n^2)$ time in total to do all additions
- $T(n) = 8T(n/2) + O(n^2)$. Let's solve [Blackboard]
- Answer: $T(n) = O(n^3)$. No gain over normal matrix multiplication!

- What do we want to improve?
- It would be nice if we could improve the $O(n^2)$. But seems difficult...
- What if we could reduce the number of calls from 8? Would that make a difference?
 - Yes. This affects running time by more than a constant
 - Same thing we saw with large-integer multiplication

Let's look at a magic algorithm.

Strassen's Algorithm

First, let's define 7 completely random-looking matrices (1 multiplication each):

$$P_{1} = A_{11} \cdot (B_{12} - B_{22}) \qquad P_{2} = (A_{11} + A_{12}) \cdot B_{22}$$

$$P_{3} = (A_{21} + A_{22}) \cdot B_{11} \qquad P_{4} = A_{22} \cdot (B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \qquad P_{6} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21}) \cdot (B_{11} + B_{12})$$

Now we can calculate C using only addition and subtraction:

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_1 + P_5 - P_3 - P_7$$

- Need to do 7 recursive calls, each of size n/2
- Then add together in $O(n^2)$ time
- $T(n) = 7T(n/2) + O(n^2)$; T(1) = O(1) [Blackboard]
- $T(n) = O(n^{\log_2 7}) = O(n^{2.81})$

- · Surprising that we don't need to do all the calculations
- How fast can matrix multiplication run?
 - One of the best-known open problems in algorithms
 - It is unknown if a linear time $O(n^2)$ algorithm is possible
- Best algorithm as of today: $O(n^{2.371339})$ [Alman et al. 2024]

Selection

- Goal: given an unsorted array A of length n, find the median of A
- Can someone give an $O(n \log n)$ time algorithm to solve this?
- Sort A using Merge Sort. Return $A[\lceil n/2 \rceil]$
- Can we do better?

- Goal: an O(n) algorithm to find the median of any unsorted array A
- Can't sort! (Sorting takes Ω(*n* log *n*) time.) Is it really possible to find the median of an array without sorting it?
- We'll solve a more general problem: find the kth largest element in the array
- Divide and conquer algorithm; invested by Blum, Floyd, Pratt, Rivest, Tarjan 1973

```
Partition(A, p):

Create empty arrays A_{<p} and A_{>p}

for i = 0 to |A| - 1:

if A[i] < p:

add A[i] to A_{<p}

if A[i] > p:

add A[i] to A_{>p}

return |A_{<p}|, A_{<p}, A_{>p}
```

Returns two arrays, one with elements < p and one with elements > p

The *rank* of *p* is the number of elements in *A* smaller than *p*; also returns the rank of *p*.

Selection (First Attempt)

```
Select(A, k):
2
        if |A| = 1:
3
             return A[0]
        else:
4
5
             choose a pivot p # we'll define how later
6
             r, A_{<\rho}, A_{>\rho} = Partition(A, p)
7
             if k == r:
8
                  return p
9
             else:
                  if k < r:
10
11
                       return Select(A_{<p}, k)
12
                  else:
13
                       return Select (A_{>p}, k-r-1)
```

The main question is: How do we select our pivot? (And how does that impact performance?)

How good does our pivot selection need to be?

- Let's say our pivot is *not* in the first or last 3n/10 items of A (where n = |A|)
- It's in the middle 4n/10 items
- What is our recurrence?
- $T(n) \le T(7n/10) + O(n)$
- T(n) = O(n)

- Find a pivot that has rank between 3n/10 and 7n/10 in time O(n)
- The array is *unsorted*
- Want to always be successful
- Note: Can verify in O(n) time!
- In practice: pick a random number to be the pivot. You'll probably find a good one pretty quickly.

Finding an Approximate Median

- Divide the array into $\lceil n/5 \rceil$ groups of 5 elements (ignore leftovers)
- Find median of each group

n = 54

Finding an Approximate Median

- Divide the array into $\lfloor n/5 \rfloor$ groups of 5 elements (ignore leftovers)
- Find median of each group

Finding an Approximate Median

- Divide the array into $G = \lfloor n/5 \rfloor$ groups of 5 elements (ignore leftovers)
- Find median of each group
- Find the median of these *G* medians (the element of rank $\lfloor G/2 \rfloor$); this is our pivot

- Divide the array into $G = \lfloor n/5 \rfloor$ groups of 5 elements (ignore leftovers)
- Find median of each group
- Find the median of these *G* medians (the element of rank $\lceil G/2 \rceil$); this is our pivot (call it *M*)
- How can we find the median of these medians? Recursively!
 - This is a median-finding algorithm! We call Select to find the median of these medians to get our pivot

Rank of the Median of Medians

- What elements are smaller than the median of medians M?
- Half the medians (at least $G/2 \approx n/10$ elements)
- Also: for each such median, two elements in the median's list (2n/10) elements)

Rank of the Median of Medians

- $\geq 3n/10$ are less than *M*
- Similarly: $\geq 3n/10$ are greater than *M*
- So *M* is a good pivot!

Linear-Time Selection

```
Select(A, k):
        if |A| < 5:
2
3
             return kth largest element of A
4
        else:
5
             divide A into |n/5| groups of 5 elements
6
             Create array A_m containing the median of each group
7
             p = \text{Select}(A_m, \lceil |A_m|/2 \rceil)
8
             r, A_{< p}, A_{> p} = Partition(A, p)
9
             if k == r:
10
                  return p
11
             else:
12
                  if k < r:
13
                       return Select(A_{<p}, k)
14
                  else:
                       return Select (A_{>p}, k-r-1)
```

Recurrence: T(n) = T(n/5) + T(7n/10) + O(n); T(5) = O(1) [Blackboard]

• An advanced Divide and Conquer application

• Uses a nontrivial recurrence

• Can find median of an unsorted array in O(n) time—strictly faster than sorting!

Dynamic Programming

Algorithmic Design Paradigms

- Greedy Algorithms
 - Gas-filling; maximum interval scheduling
 - Prim's, Kruskal's, Dijkstra's
 - Idea: we choose an item to add *permanently* to the solution
 - Proof that each item we have is correct
- Divide and Conquer
 - Divide problem into multiple parts
 - Combine solutions into a new correct solution
- Dynamic Programming \leftarrow we are here!
 - Use recursive solutions *repeatedly* to avoid wasted work
- Network Flow

Fibonacci Numbers

• Definition: $F_n = F_{n-1} + F_{n-2}$, $F_0 = 0$, $F_1 = 1$

• 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

• How can we calculate these numbers?

1	fib(n):
2	if n == 0:
3	return 0
4	if n == 1:
5	return 1
6	<pre>return fib(n-1) + fib(n-2</pre>

• Clearly correct (can prove using strong induction); what's the running time?

•
$$T(n) = T(n-1) + T(n-2) + \Theta(1); T(0) = T(1) = 1$$

- At least as large as: T'(n) = T'(n-1) + T'(n-2); T(1) = T(2) = 1
- Which is the nth fibonacci number!

```
1 fib(n):
2     if n == 1:
3         return 1
4     if n == 2:
5         return 1
6         return fib(n-1) + fib(n-2)
```

- 200th Fibonacci number is ≥ 2 × 10⁴¹. So would need at least 2 × 10⁴¹ operations to calculate.
- World's fastest supercomputer would need 10, 000 \times (age of the universe) years to finish this calculation
- Let's discuss: is there a better way?

• Create an array F, where F[i] stores the *i*th largest Fibonacci number

• Set *F*[0] = 1 and *F*[1] = 1.

• Now we can fill out *F*[2], then *F*[3], and so on.

Fibonacci Algorithm Improved

```
1 fib(n):

2 create an array F

3 F[0] = F[1] = 1

4 for j = 2 to n:

5 F[j] = F[j-1] + F[j-2]
```

- Correctness: when we fill in F[j], we have already put the correct value in F[j-1] and F[j-2]
- What is the running time?
- *O*(*n*)
- Can calculate the 200th Fibonacci number with \approx 200 additions!

• Both algorithms seem reasonable

• One takes 200 operations, the other takes 10⁴¹ operations

• Where are we losing time?

Recursive Fibonacci

Recursive Fibonacci

- We recompute the entire recursive call each time we "need" a number
- So to compute F_{200} , we need F_{199} and F_{198}
- The first thing F_{199} does is call F_{198} . We do that entire computation twice!
- We compute (say) F_{100} many, many, many times

- Same recursive structure, but
- each number is computed *exactly once*.
- We write down the solutions in our array so that we can reuse them later
- *Dynamic Programming*: recursive algorithm where we write down solutions we calculated to reuse them later
- Writing down already-calculated values is called *memoization*. So dynamic programming is recursion with memoization

- Fibonacci numbers are a nice example
- Dynamic programming is *extremely* powerful, and can solve a wide variety of problems
- We'll be exploring these problems over the next 2-3 lectures, obtaining increasingly powerful strategies for dynamic programming solutions

Longest Increasing Subsequence

- Given: an arbitrary array A of length n
- Goal: find the length of the longest subsequence of elements that are in sorted order

- Given: an arbitrary array A of length n
- Goal: find the length of the longest subsequence of elements that are in sorted order

The longest increasing subsequence has length 6.

- Given: an arbitrary array A of length n
- Goal: find the length of the longest subsequence of elements that are in sorted order

An increasing subsequence of length 4 (not longest!)

1 2 10 3 7 6 4 8 11 3 1

- Greedy: (repeatedly) take the next item larger than our current item and add it to our solution.
- Why doesn't this work?
- Greedy makes bad early decisions which prevents us from getting the optimal solution
- Taking 10 means we can't take 3, 4, 8!

Longest Increasing Subsequence Definition (and extension)

- Given an array A of length n
- Find the largest ℓ such that there is a sequence of indices $i_1 \leq i_2 \leq \ldots \leq i_\ell$ such that for all $k < \ell$, $A[i_k] < A[i_{k+1}]$
- Also called LIS
- We'll talk about how to get the *sequence* (not just the length) after spring break

- Consider the following restricted problem: the Longest Increasing Subsequence Ending at n 1 (LISE)
 - Find the length of the longest increasing subsequence that includes A[n-1]
- Let's focus on LISE for now. Then we'll double back for LIS

LISE of this array is 1!

- How can I recursively find the LISE of this array?
- What do I know about any increasing subsequence ending at the last element (5)?
 - The second to last element must be < 5

- One of 2, 1, 3, 4 must be the second-to-last element in my LISE
- Which one is best?
- Let's say I *already wrote down* the length of the longest increasing subsequence ending at 2, 1, 3, 4? How does that help us?

- The length of the longest increasing subsequence ending at 5 is 1+ the max of:
 - The longest increasing subsequence ending at 4
 - The longest increasing subsequence ending at 3
 - The longest increasing subsequence ending at 1
 - The longest increasing subsequence ending at 2

- We can solve LISE on an array A with < n recursive calls, each to a prefix of A
- Running time?
 - Something like $T(n) = T(n-1) + T(n-2) + \ldots + T(1) + O(n)$.
 - VERY large! $\Theta(n2^n)$

• Dynamic Programming to the rescue

- Create an array L
- *L*[*i*] stores LISE of *A*[0,...,*i*]
- Let's fill in *L*[*i*] for the above example [Blackboard] (Recall that we take 1+ the max, over all previous smaller elements, of their LISE)

LISE Using Dynamic Programming

Let's formalize what we just did on the board.

- Base Case: What is *L*[0]? 1
- How to Fill in *L*[*i*]: First, create a set *M* consisting of all entries in *A* that are:
 - before *i* in *A*, and
 - less than A[i]
- $L[i] = 1 + \max_{m \in M} L[m]$
- Running time? $O(n^2)$

LISE Using Dynamic Programming

- Recursive algorithm, but
- Since we write down solutions as we get them, we obtain $O(n^2)$ running time rather than $\Theta(n2^n)$
- What about LIS?
- The Longest Increasing Subsequence must end at some entry *j* of *A*
- After we fill out the table *L*, can find:
 - LIS = $\max_j L[j]$
- $O(n^2)$ algorithm for Longest Increasing Subsequence

- First set *L*[0] = 1
- Fill out each *L*[*i*] by finding previous elemements smaller than *i* and taking the max
- Take the max L[i] after we are done to find the LIS