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Welcome Back!

e Due date wrong on homework (it's due Thursday)

e Let’s look at the midterm

e Then get backtoD & C



More Recurrences



Divide and Conquer and Recurrences

e We analyze divide and conquer algorithms using recurrences

e Gives us a bird’s eye view of the cost of the algorithm
e Recurrence relations can also guide us in searching for algorithms

e “How can I sort in O(nlogn) time?”

o If my sorting method recurses on two halves, and does O(n) additional work, I
get T(n) = 2T(n/2) + O(n), which gives O(n logn)

e (Of course, this is just a starting point: many other recurrences solve to
O(nlogn).)

e Let's look at some other recurrences



Three practice recurrences

Let’s do the following recurrences [Blackboard]

For all of these assume T(1) = 1.

T(n)=4T(n/2) + 0O(1)

T(n) =3T(n/3) + O(n)



Recall: Floors and Ceilings in Recurrences

Most input sizes are not (say) powers of 2

Merge sort’s actual recurrence is:

T(n) = T([n/21]) + T(|n/2]) + O(n)

Does this change the solution?

e No. We will ignore all floors and ceilings in this class. See Erikson 1.7 for some
formal justification



Tree Height and Recurrences that Don’t Branch

Let’s do the following recurrences [Blackboard]

T(n) =T(n/2)+ 0(1)

T(n) =T(n/2) 4+ O(n)

Lemma: if we start with n, after taking the square root ©(log logn) times we reach 1.



Three kinds of recurrences

Recurrences often fit into one of three types:

e Cost at the root dominates

e Cost at the leaves dominate

e Cost at each level is the same



Ways to Solve Recurrences

e Recursion tree (recommended)

e Guess and check
o If we have the solution for T(n), we can substitute it into the recurrence to check
that it is satisfied
e Can formalize using induction
e “Unroll” recurrence a few steps to get intuition before guessing

e Master theorem (next slide) gives the solution for many common recurrences



Master Theorem (Simple Version)

For constants a and b and a function f(n), to solve

T(n) =aT(n/b) +f(n), T(1)=1

o If f(n) = O(n®) for ¢ < log, a then T(n) = ©(n'°&»?)
e So T(n) = 4T(n/2) + O(n) solves to T(n) = ©(n?)
o If f(n) = ©(n'°&?) then T(n) = ©(n'°& 2 log n)
e So T(n) =2T(n/2) 4+ O(n) solves to T(n) = ©(nlogn)

e A fast way to solve simpler recurrences. But a pain to memorize and only
works situationally.



Binary Search



Binary Search

binary_search(key, A, start, end):
mid = (start + end)/2
if key == A[mid]:
return mid
else if key < A[mid]:
return binary_search(key, A, start, mid-1)
else:
return binary_search(key, A, mid+1l, end)

e Correctness intuition: we recurse on the half of A that must contain key.
e How would we prove correctness formally?

e Running time? T(n) = T(n/2) + O(1) We've seen: T(n) = O(logn)



Binary Search on a Linked List?

This is not a good algorithm. But I've seen people implement it many times.
Today: how efficient is it?
We can binary search by:

e Find the middle item of the linked list
e By iterating through the linked list

Compare to query item

Recurse on first or second half of the linked list

Recurrence?
T(n) =T(n/2)+ ©(n)

Solution: ©(n) time

(Could have just scanned!)



Matrix Multiplication



Matrix Multiplication

Problem: For two n x n matrices A and B, compute matrix C = A - B.
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Matrix Multiplication
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The value of cp3is18 -1+ 2-19 +24 -13 + 1120 = 588.



Matrix Multiplication

Problem: For two n x n matrices A and B, compute matrix C = A - B.
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Matrix Multiplication

e Used extremely often in modern computing

e Graphics, machine learning applications; many others

e GPUs are basically purpose-built hardware to do matrix multiplication quickly

e Not literally; what they do is significantly broader than that

e But it's not a coincidence that areas where matrix multiplication are most used
are also known for heavy GPU requirements



Matrix Multiplication Algorithm

First attempt: do all multiplications

Running time?
e Cisann x n matrix so has n? entries
e Each takes O(n) time to compute

e O(n3) time in total

Can we do better?

Seems difficult, since there are Q(n3) terms we need to multiply across all
entries of C



Block Matrix Multiplication

If we divide each matrix into four pieces, can rewrite matrix multiplication using
recursive calls.

Cn An Az By
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In other words: in a 2 x 2 matrix, we have cy1 = a1 - b11 + a12 - bo1. We can fill in an
entire quadrant of C by multiplying the quadrants of A and B:

Ci1 = A1 Bn+ A2 Ba.



Divide and Conquer Matrix Multiplication

We have:
Ci1 = A1 - Bn + A2 - B
C21 = A21 - B + A2z - By
Ci2 = A1 - B2 +A12 - B2
Co2 = A21- B2 + A - B

This gives a divide and conquer algorithm!

e How many recursive calls do we make? How large are they? How much extra
work do we need to do?

o 8 calls of size n/2. Takes O(n?) time in total to do all additions

o T(n) = 8T(n/2) + O(n?). Let’s solve [Blackboard]

e Answer: T(n) = O(n®). No gain over normal matrix multiplication!



Improving Blocked Matrix Multiplication

e What do we want to improve?

o It would be nice if we could improve the O(n?). But seems difficult...

e What if we could reduce the number of calls from 8? Would that make a
difference?

e Yes. This affects running time by more than a constant

e Same thing we saw with large-integer multiplication



Let’s look at a magic algorithm.



Strassen’s Algorithm

First, let's define 7 completely random-looking matrices (1 multiplication each):
P> = (At +As2) - B2

P4 = Az - (B21 — Bn)

Pe = (A12 — A2) - (B21 + B22)

Py = At - (B12 — B22)
P3 = (A21 + A22) - Bn
Ps = (A1 + A22) - (B11 + B22)
P7 = (A —A21) - (B + B12)

Now we can calculate C using only addition and subtraction:
Ci1=Ps+Ps— P+ Psg
Ci2=P1+P;
Co1=P3+Pas
Co2=P1+Ps —P3—P;



Analyzing Strassen’s Algorithm

Need to do 7 recursive calls, each of size n/2

Then add together in O(n?) time

e T(n) =7T(n/2) + O(n?); T(1) = O(1) [Blackboard]

0 T(n) —_ O(nlog27) —_ O(n2.81)



Matrix Multiplication

e Surprising that we don’t need to do all the calculations
e How fast can matrix multiplication run?
e One of the best-known open problems in algorithms

e It is unknown if a linear time O(n?) algorithm is possible

« Best algorithm as of today: O(n?37133%) [Alman et al. 2024]



Selection




Median finding

Goal: given an unsorted array A of length n, find the median of A

Can someone give an O(n log n) time algorithm to solve this?

Sort A using Merge Sort. Return A[[n/2]]

Can we do better?



Linear-Time Median Finding

Goal: an O(n) algorithm to find the median of any unsorted array A

Can't sort! (Sorting takes Q(nlogn) time.) Is it really possible to find the
median of an array without sorting it?

We'll solve a more general problem: find the kth largest element in the array

Divide and conquer algorithm; invested by Blum, Floyd, Pratt, Rivest, Tarjan
1973



Partition (Selection Subroutine)

Partition(A, p):
Create empty arrays Ao, and As,
for i = 0 to |Al—1:
if Ali] <p:
add A[i] to A,
if Al > p:
add A[i] to A,
return |A.,|,Ap,Asp

Returns two arrays, one with elements < p and one with elements > p

The rank of p is the number of elements in A smaller than p; also returns the rank
of p.



Selection (First Attempt)

Select(A, k):
if |A|=1:
return A[Q]
else:
choose a pivot p # we’ll define how later
r,Acp,Asp, = Partition(A, p)
if k == r:
return p
else:
if k<r:
return Select (A, k)
else:
return Select(Asp k—r—1)

The main question is: How do we select our pivot? (And how does that impact
performance?)



How good does our pivot selection need to be?

Let’s say our pivot is not in the first or last 3n/10 items of A (where n = |A|)

It's in the middle 4n/10 items

What is our recurrence?

T(n) < T(7n/18) + O(n)

pivot

3n/10 items 3n/10 items



Finding the Pivot: Goal

Find a pivot that has rank between 3n/18 and 7n/18 in time O(n) !

The array is unsorted

Want to always be successful

Note: Can verify in O(n) time!

In practice: pick a random number to be the pivot. You'll probably find a good
one pretty quickly.



Finding an Approximate Median

e Divide the array into [n/5] groups of 5 elements (ignore leftovers)

e Find median of each group
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Finding an Approximate Median

« Divide the array into [n/5] groups of 5 elements (ignore leftovers)

e Find median of each group
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Finding an Approximate Median

» Divide the array into G = [n/5] groups of 5 elements (ignore leftovers)

e Find median of each group

e Find the median of these G medians (the element of rank |G/2]); this is our
pivot
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Finding an Approximate Median

Divide the array into G = |[n/5] groups of 5 elements (ignore leftovers)

Find median of each group

Find the median of these G medians (the element of rank [G/2]); this is our
pivot (call it M)

e How can we find the median of these medians? Recursively!

e This is a median-finding algorithm! We call Select to find the median of these
medians to get our pivot



Rank of the Median of Medians
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e What elements are smaller than the median of medians M?

e Half the medians (at least G/2 ~ n/10 elements)

e Also: for each such median, two elements in the median’s list (2n/10
elements)



Rank of the Median of Medians
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e > 3n/10 are less than M
e Similarly: > 3n/10 are greater than M
e So M is a good pivot!



Linear-Time Selection

Select(A, k):
if |Al<5:
return kth largest element of A
else:
divide A into |n/5] groups of 5 elements
Create array A, containing the median of each group
p = Select(Am,[|Am|/2])
r,Acp,Asp, = Partition(A, p)
if k == r:
return p
else:
if k<r:
return Select(A.p, k)
else:
return Select(Asp,k—r—1)

Recurrence: T(n) = T(n/5) + T(7n/18) + O(n); T(5) = O(1) [Blackboard]



Median Finding

e An advanced Divide and Conquer application

e Uses a nontrivial recurrence

e Can find median of an unsorted array in O(n) time—strictly faster than sorting!



Dynamic Programming




Algorithmic Design Paradigms

Greedy Algorithms
e Gas-filling; maximum interval scheduling
e Prim’s, Kruskal’s, Dijkstra’s
¢ Idea: we choose an item to add permanently to the solution
e Proof that each item we have is correct

Divide and Conquer

e Divide problem into multiple parts
e Combine solutions into a new correct solution

Dynamic Programming <= we are here!
e Use recursive solutions repeatedly to avoid wasted work

Network Flow



Fibonacci Numbers




Fibonacci Numbers

e Definition: F, = F,_1+Fpn_2, Fg =0, F =1

e 0,1,1,2,3,5,8,13,21, ...

¢ How can we calculate these numbers?

AT
Ne




Fibonacci Algorithm

fib(n):
if n == 0:
return 0
if n == 1:
return 1
return fib(n-1) + fib(n-2)

Clearly correct (can prove using strong induction); what'’s the running time?

o T(n) = T(n—1)+T(n—2)+©(1); T(8) = T(1) = 1

Atleastaslargeas: T'(n) =T'(n—1)+T'(n—-2);T(1)=T(2) =1

Which is the nth fibonacci number!



Fibonacci Algorithm

fib(n):
if n ==
return 1
if n ==
return 1
return fib(n-1) + fib(n-2)

e 200th Fibonacci number is > 2 x 104", So would need at least 2 x 104
operations to calculate.

o World's fastest supercomputer would need 10, 900 x (age of the universe)
years to finish this calculation

e Let's discuss: is there a better way?



Fibonacci Algorithm Improved

o Create an array F, where F[i] stores the ith largest Fibonacci number

e Set F[®] = 1and F[1] = 1.

e Now we can fill out F[2], then F[3], and so on.



Fibonacci Algorithm Improved

fib(n):
create an array F
F[®] =F[1] =1

for j = 2 to n:
Flil=Flj —1+F[j - 2]

Correctness: when we fill in F[j], we have already put the correct value in
F[j — 1] and F[j — 2]

What is the running time?
e O(n)

Can calculate the 200th Fibonacci number with ~ 200 additions!



What happened here?

e Both algorithms seem reasonable

e One takes 200 operations, the other takes 194! operations

e Where are we losing time?



Recursive Fibonacci

fib(n):
if n ==
return 0
if n ==
return 1
return fib(n-1) + fib(n-2)




Recursive Fibonacci
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Recursive Fibonacci Slowness

We recompute the entire recursive call each time we “need” a number

So to compute Fogg, We need Fi9o and Fiog

The first thing F99 does is call Fi9s. We do that entire computation twice!

We compute (say) Figg many, many, many times



Array-Based Fibonacci

e Same recursive structure, but

e each number is computed exactly once.

e We write down the solutions in our array so that we can reuse them later

e Dynamic Programming: recursive algorithm where we write down solutions we
calculated to reuse them later

e Writing down already-calculated values is called memoization. So dynamic
programming is recursion with memoization



lofa]1]2]3]5]813] |




Dynamic Programming

e Fibonacci numbers are a nice example

e Dynamic programming is extremely powerful, and can solve a wide variety of
problems

o We'll be exploring these problems over the next 2-3 lectures, obtaining
increasingly powerful strategies for dynamic programming solutions



Longest Increasing Subsequence




Longest Increasing Subsequence

e Given: an arbitrary array A of length n

e Goal: find the length of the longest subsequence of elements that are in
sorted order

[1]2]w][3]7]6]4]8]1]3]1]




Longest Increasing Subsequence

e Given: an arbitrary array A of length n

e Goal: find the length of the longest subsequence of elements that are in
sorted order

[1]2]we]3]7]6]4]8]1]3]1]

The longest increasing subsequence has length 6.



Longest Increasing Subsequence

e Given: an arbitrary array A of length n

e Goal: find the length of the longest subsequence of elements that are in
sorted order

[1]2]w][3]7]6]4]8]11]3]1]

An increasing subsequence of length 4 (not longest!)



Greedy Doesn’t Work

[1[2]10]3]7[6[4]8]11[3]1]

Greedy: (repeatedly) take the next item larger than our current item and add it
to our solution.

Why doesn’t this work?

Greedy makes bad early decisions which prevents us from getting the optimal

solution

Taking 10 means we can't take 3, 4, 8!



Longest Increasing Subsequence Definition (and extension)

Given an array A of length n

Find the largest ¢ such that there is a sequence of indices iy <1, < ... <1y
such that for all k < ¢, A[ix] < Alik+1]

Also called LIS

We'll talk about how to get the sequence (not just the length) after spring
break



LISE

e Consider the following restricted problem: the Longest Increasing
Subsequence Ending at n — 1 (LISE)

o Find the length of the longest increasing subsequence that includes A[n — 1]

e Let’s focus on LISE for now. Then we'll double back for LIS

(1]2]18]3]7]|6]|4]|8[11]3]1]

LISE of this array is 1!



Solving LISE Recursively

12]1]w0]3]7]6]4]8]1]5]

e How can I recursively find the LISE of this array?

e What do I know about any increasing subsequence ending at the last element
(5)?

e The second to last element must be < 5



Solving LISE Recursively

[2]1]18]3]7]6]4]8]11]5

e One of 2,1, 3,4 must be the second-to-last element in my LISE

e Which one is best?

e Let's say I already wrote down the length of the longest increasing
subsequence ending at 2, 1, 3, 4? How does that help us?



Solving LISE Recursively

[2]1]18]3]7]6]|4]8]11]5

e The length of the longest increasing subsequence ending at 5 is 14+ the max
of:
e The longest increasing subsequence ending at 4
e The longest increasing subsequence ending at 3
e The longest increasing subsequence ending at 1
e The longest increasing subsequence ending at 2



Solving LISE Recursively

e We can solve LISE on an array A with < n recursive calls, each to a prefix of A

e Running time?
e Something like T(n) =T(n —1)+T(n —2)+ ...+ T(1) + O(n).
o VERY large! ©(n2")

e Dynamic Programming to the rescue



LISE Using Dynamic Programming

12]1]w]3]7]6]4]8]1]5]

e Create an array L

e L[i] stores LISE of A[O,...,1]

e Let’s fill in L[i] for the above example [Blackboard] (Recall that we take 1+ the
max, over all previous smaller elements, of their LISE)



LISE Using Dynamic Programming

Let’s formalize what we just did on the board.

e Base Case: What is L[8]? 1

How to Fill in L[7]: First, create a set M consisting of all entries in A that are:

e beforeiin A, and
o less than A[i]

L[i] =1+ maxmem L[m]

Running time? O(n?)



LISE Using Dynamic Programming

e Recursive algorithm, but

e Since we write down solutions as we get them, we obtain O(n?) running time
rather than ©(n2")

e What about LIS?

e The Longest Increasing Subsequence must end at some entry j of A

o After we fill out the table L, can find:
o LIS = max; L[]

¢ O(n?) algorithm for Longest Increasing Subsequence



LISE Using Dynamic Programming

e First set L[®] =1

e Fill out each L][i] by finding previous elemements smaller than 7 and taking the
max

e Take the max L[i] after we are done to find the LIS

[1[2]10]3]7[6[4]8]11[3]1]
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