
Divide and Conquer

Sam McCauley

March 17, 2025

Welcome Back!

• Due date wrong on homework (it’s due Thursday)

• Let’s look at the midterm

• Then get back to D & C

More Recurrences

Divide and Conquer and Recurrences

• We analyze divide and conquer algorithms using recurrences

• Gives us a bird’s eye view of the cost of the algorithm

• Recurrence relations can also guide us in searching for algorithms

• “How can I sort in O(n log n) time?”

• If my sorting method recurses on two halves, and does O(n) additional work, I
get T(n) = 2T(n/2) + O(n), which gives O(n log n)

• (Of course, this is just a starting point: many other recurrences solve to
O(n log n).)

• Let’s look at some other recurrences

Three practice recurrences

Let’s do the following recurrences [Blackboard]

For all of these assume T(1) = 1.

T(n) = 4T(n/2) + O(1)

T(n) = 3T(n/3) + O(n)

Recall: Floors and Ceilings in Recurrences

• Most input sizes are not (say) powers of 2

• Merge sort’s actual recurrence is:

T(n) = T(⌈n/2⌉) + T(⌊n/2⌋) + O(n)

• Does this change the solution?

• No. We will ignore all floors and ceilings in this class. See Erikson 1.7 for some

formal justification

Tree Height and Recurrences that Don’t Branch

Let’s do the following recurrences [Blackboard]

T(n) = T(n/2) + O(1)

T(n) = T(
√
n) + O(1)

T(n) = T(n/2) + O(n)

Lemma: if we start with n, after taking the square root Θ(log log n) times we reach 1.

Three kinds of recurrences

Recurrences often fit into one of three types:

• Cost at the root dominates

• Cost at the leaves dominate

• Cost at each level is the same

Ways to Solve Recurrences

• Recursion tree (recommended)

• Guess and check

• If we have the solution for T(n), we can substitute it into the recurrence to check
that it is satisfied

• Can formalize using induction
• “Unroll” recurrence a few steps to get intuition before guessing

• Master theorem (next slide) gives the solution for many common recurrences

Master Theorem (Simple Version)

For constants a and b and a function f(n), to solve

T(n) = aT(n/b) + f(n); T(1) = 1

• If f(n) = O(nc) for c < logb a then T(n) = Θ(nlogb a)

• So T(n) = 4T(n/2) + O(n) solves to T(n) = Θ(n2)

• If f(n) = Θ(nlogb a) then T(n) = Θ(nlogb a log n)

• So T(n) = 2T(n/2) + O(n) solves to T(n) = Θ(n log n)

• A fast way to solve simpler recurrences. But a pain to memorize and only

works situationally.

Binary Search

Binary Search

1 binary_search(key, A, start, end):
2 mid = (start + end)/2
3 if key == A[mid]:
4 return mid
5 else if key < A[mid]:
6 return binary_search(key, A, start, mid-1)
7 else:
8 return binary_search(key, A, mid+1, end)

• Correctness intuition: we recurse on the half of A that must contain key.

• How would we prove correctness formally?

• Running time? T(n) = T(n/2) + O(1) We’ve seen: T(n) = O(log n)

Binary Search on a Linked List?

This is not a good algorithm. But I’ve seen people implement it many times.

Today: how efficient is it?

We can binary search by:

• Find the middle item of the linked list

• By iterating through the linked list

• Compare to query item

• Recurse on first or second half of the linked list

• Recurrence?

• T(n) = T(n/2) + Θ(n)

• Solution: Θ(n) time

• (Could have just scanned!)

Matrix Multiplication

Matrix Multiplication

Problem: For two n× n matrices A and B, compute matrix C = A · B.


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

 ×


b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...

bn1 bn2 · · · bnn

 =


c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
. . .

...

cn1 cn2 · · · cnn



cij =
n∑

k=1

aik · bkj

Matrix Multiplication


 =


7 12 21 5

18 2 24 11

19 9 17 13

28 6 10 4

 ×


14 30 1 22

5 18 19 9

8 7 13 25

11 16 20 3



The value of c23 is 18 · 1 + 2 · 19 + 24 · 13 + 11 · 20 = 588.

Matrix Multiplication

Problem: For two n× n matrices A and B, compute matrix C = A · B.

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

 B =


b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...

bn1 bn2 · · · bnn



C = A× B =


∑n

k=1 a1kbk1
∑n

k=1 a1kbk2 · · ·
∑n

k=1 a1kbkn∑n
k=1 a2kbk1

∑n
k=1 a2kbk2 · · ·

∑n
k=1 a2kbkn

...
...

. . .
...∑n

k=1 ankbk1
∑n

k=1 ankbk2 · · ·
∑n

k=1 ankbkn



Matrix Multiplication

• Used extremely often in modern computing

• Graphics, machine learning applications; many others

• GPUs are basically purpose-built hardware to do matrix multiplication quickly

• Not literally; what they do is significantly broader than that

• But it’s not a coincidence that areas where matrix multiplication are most used
are also known for heavy GPU requirements

Matrix Multiplication Algorithm

• First attempt: do all multiplications

• Running time?

• C is an n× n matrix so has n2 entries

• Each takes O(n) time to compute

• O(n3) time in total

• Can we do better?

• Seems difficult, since there are Ω(n3) terms we need to multiply across all

entries of C

Block Matrix Multiplication

If we divide each matrix into four pieces, can rewrite matrix multiplication using

recursive calls.




C11

=


27 12 21 15

18 12 24 11

19 19 17 13

28 16 10 4


A11 A12

×


14 30 11 22

15 18 19 19

18 17 13 25

11 16 20 3


B11

B21

In other words: in a 2 × 2 matrix, we have c11 = a11 · b11 + a12 · b21. We can fill in an

entire quadrant of C by multiplying the quadrants of A and B:

C11 = A11 · B11 + A12 · B21.

Divide and Conquer Matrix Multiplication

We have:

C11 = A11 · B11 + A12 · B21

C21 = A21 · B11 + A22 · B21

C12 = A11 · B12 + A12 · B22

C22 = A21 · B12 + A22 · B22

This gives a divide and conquer algorithm!

• How many recursive calls do we make? How large are they? How much extra

work do we need to do?

• 8 calls of size n/2. Takes O(n2) time in total to do all additions

• T(n) = 8T(n/2) + O(n2). Let’s solve [Blackboard]

• Answer: T(n) = O(n3). No gain over normal matrix multiplication!

Improving Blocked Matrix Multiplication

• What do we want to improve?

• It would be nice if we could improve the O(n2). But seems difficult...

• What if we could reduce the number of calls from 8? Would that make a
difference?

• Yes. This affects running time by more than a constant

• Same thing we saw with large-integer multiplication

Let’s look at a magic algorithm.

Strassen’s Algorithm

First, let’s define 7 completely random-looking matrices (1 multiplication each):

P1 = A11 · (B12 − B22) P2 = (A11 + A12) · B22

P3 = (A21 + A22) · B11 P4 = A22 · (B21 − B11)

P5 = (A11 + A22) · (B11 + B22) P6 = (A12 − A22) · (B21 + B22)

P7 = (A11 − A21) · (B11 + B12)

Now we can calculate C using only addition and subtraction:

C11 = P5 + P4 − P2 + P6

C12 = P1 + P2

C21 = P3 + P4

C22 = P1 + P5 − P3 − P7

Analyzing Strassen’s Algorithm

• Need to do 7 recursive calls, each of size n/2

• Then add together in O(n2) time

• T(n) = 7T(n/2) + O(n2); T(1) = O(1) [Blackboard]

• T(n) = O(nlog2 7) = O(n2.81)

Matrix Multiplication

• Surprising that we don’t need to do all the calculations

• How fast can matrix multiplication run?

• One of the best-known open problems in algorithms

• It is unknown if a linear time O(n2) algorithm is possible

• Best algorithm as of today: O(n2.371339) [Alman et al. 2024]

Selection

Median finding

• Goal: given an unsorted array A of length n, find the median of A

• Can someone give an O(n log n) time algorithm to solve this?

• Sort A using Merge Sort. Return A[⌈n/2⌉]

• Can we do better?

Linear-Time Median Finding

• Goal: an O(n) algorithm to find the median of any unsorted array A

• Can’t sort! (Sorting takes Ω(n log n) time.) Is it really possible to find the

median of an array without sorting it?

• We’ll solve a more general problem: find the kth largest element in the array

• Divide and conquer algorithm; invested by Blum, Floyd, Pratt, Rivest, Tarjan

1973

Partition (Selection Subroutine)

1 Partition(A, p):
2 Create empty arrays A<p and A>p

3 for i = 0 to |A| − 1:
4 if A[i] < p:
5 add A[i] to A<p

6 if A[i] > p:
7 add A[i] to A>p

8 return |A<p|,A<p,A>p

Returns two arrays, one with elements < p and one with elements > p

The rank of p is the number of elements in A smaller than p; also returns the rank

of p.

Selection (First Attempt)

1 Select(A, k):
2 if |A| = 1:
3 return A[0]
4 else:
5 choose a pivot p # we’ll define how later
6 r,A<p,A>p = Partition(A, p)
7 if k == r:
8 return p
9 else:

10 if k < r:
11 return Select(A<p, k)
12 else:
13 return Select(A>p, k − r − 1)

The main question is: How do we select our pivot? (And how does that impact

performance?)

How good does our pivot selection need to be?

• Let’s say our pivot is not in the first or last 3n/10 items of A (where n = |A|)

• It’s in the middle 4n/10 items

• What is our recurrence?

• T(n) ≤ T(7n/10) + O(n)

• T(n) = O(n)

3n/10 items 3n/10 items

pivot

Finding the Pivot: Goal

• Find a pivot that has rank between 3n/10 and 7n/10 in time O(n)

• The array is unsorted

• Want to always be successful

• Note: Can verify in O(n) time!

• In practice: pick a random number to be the pivot. You’ll probably find a good

one pretty quickly.

Finding an Approximate Median

• Divide the array into ⌈n/5⌉ groups of 5 elements (ignore leftovers)

• Find median of each group

Finding an Approximate Median

• Divide the array into ⌈n/5⌉ groups of 5 elements (ignore leftovers)

• Find median of each group

Finding an Approximate Median

• Divide the array into G = ⌈n/5⌉ groups of 5 elements (ignore leftovers)

• Find median of each group

• Find the median of these G medians (the element of rank ⌊G/2⌋); this is our

pivot

Finding an Approximate Median

• Divide the array into G = ⌊n/5⌋ groups of 5 elements (ignore leftovers)

• Find median of each group

• Find the median of these G medians (the element of rank ⌈G/2⌉); this is our

pivot (call it M)

• How can we find the median of these medians? Recursively!

• This is a median-finding algorithm! We call Select to find the median of these
medians to get our pivot

Rank of the Median of Medians

• What elements are smaller than the median of medians M?

• Half the medians (at least G/2 ≈ n/10 elements)

• Also: for each such median, two elements in the median’s list (2n/10

elements)

Rank of the Median of Medians

• ≥ 3n/10 are less than M

• Similarly: ≥ 3n/10 are greater than M

• So M is a good pivot!

Linear-Time Selection

1 Select(A, k):
2 if |A| ≤ 5:
3 return kth largest element of A
4 else:
5 divide A into ⌊n/5⌋ groups of 5 elements
6 Create array Am containing the median of each group
7 p = Select(Am, ⌈|Am|/2⌉)
8 r,A<p,A>p = Partition(A, p)
9 if k == r:

10 return p
11 else:
12 if k < r:
13 return Select(A<p, k)
14 else:
15 return Select(A>p, k − r − 1)

Recurrence: T(n) = T(n/5) + T(7n/10) + O(n); T(5) = O(1) [Blackboard]

Median Finding

• An advanced Divide and Conquer application

• Uses a nontrivial recurrence

• Can find median of an unsorted array in O(n) time—strictly faster than sorting!

Dynamic Programming

Algorithmic Design Paradigms

• Greedy Algorithms

• Gas-filling; maximum interval scheduling
• Prim’s, Kruskal’s, Dijkstra’s
• Idea: we choose an item to add permanently to the solution
• Proof that each item we have is correct

• Divide and Conquer

• Divide problem into multiple parts
• Combine solutions into a new correct solution

• Dynamic Programming ⇐ we are here!
• Use recursive solutions repeatedly to avoid wasted work

• Network Flow

Fibonacci Numbers

Fibonacci Numbers

• Definition: Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1

• 0, 1, 1, 2,3,5,8, 13, 21, . . .

• How can we calculate these numbers?

Fibonacci Algorithm

1 fib(n):
2 if n == 0:
3 return 0
4 if n == 1:
5 return 1
6 return fib(n-1) + fib(n-2)

• Clearly correct (can prove using strong induction); what’s the running time?

• T(n) = T(n− 1) + T(n− 2) + Θ(1); T(0) = T(1) = 1

• At least as large as: T ′(n) = T ′(n− 1) + T ′(n− 2); T(1) = T(2) = 1

• Which is the nth fibonacci number!

Fibonacci Algorithm

1 fib(n):
2 if n == 1:
3 return 1
4 if n == 2:
5 return 1
6 return fib(n-1) + fib(n-2)

• 200th Fibonacci number is ≥ 2 × 1041. So would need at least 2 × 1041

operations to calculate.

• World’s fastest supercomputer would need 10,000 × (age of the universe)

years to finish this calculation

• Let’s discuss: is there a better way?

Fibonacci Algorithm Improved

• Create an array F, where F[i] stores the ith largest Fibonacci number

• Set F[0] = 1 and F[1] = 1.

• Now we can fill out F[2], then F[3], and so on.

Fibonacci Algorithm Improved

1 fib(n):
2 create an array F
3 F[0] = F[1] = 1
4 for j = 2 to n:
5 F[j] = F[j − 1] + F[j − 2]

• Correctness: when we fill in F[j], we have already put the correct value in

F[j − 1] and F[j − 2]

• What is the running time?

• O(n)

• Can calculate the 200th Fibonacci number with ≈ 200 additions!

What happened here?

• Both algorithms seem reasonable

• One takes 200 operations, the other takes 1041 operations

• Where are we losing time?

Recursive Fibonacci

1 fib(n):
2 if n == 0:
3 return 0
4 if n == 1:
5 return 1
6 return fib(n-1) + fib(n-2)

Recursive Fibonacci

Recursive Fibonacci Slowness

• We recompute the entire recursive call each time we “need” a number

• So to compute F200, we need F199 and F198

• The first thing F199 does is call F198. We do that entire computation twice!

• We compute (say) F100 many, many, many times

Array-Based Fibonacci

• Same recursive structure, but

• each number is computed exactly once.

• We write down the solutions in our array so that we can reuse them later

• Dynamic Programming: recursive algorithm where we write down solutions we

calculated to reuse them later

• Writing down already-calculated values is called memoization. So dynamic

programming is recursion with memoization

Dynamic Programming

• Fibonacci numbers are a nice example

• Dynamic programming is extremely powerful, and can solve a wide variety of

problems

• We’ll be exploring these problems over the next 2-3 lectures, obtaining

increasingly powerful strategies for dynamic programming solutions

Longest Increasing Subsequence

Longest Increasing Subsequence

• Given: an arbitrary array A of length n

• Goal: find the length of the longest subsequence of elements that are in

sorted order

1 2 10 3 7 6 4 8 11 3 1

Longest Increasing Subsequence

• Given: an arbitrary array A of length n

• Goal: find the length of the longest subsequence of elements that are in

sorted order

1 2 10 3 7 6 4 8 11 3 1

The longest increasing subsequence has length 6.

Longest Increasing Subsequence

• Given: an arbitrary array A of length n

• Goal: find the length of the longest subsequence of elements that are in

sorted order

1 2 10 3 7 6 4 8 11 3 1

An increasing subsequence of length 4 (not longest!)

Greedy Doesn’t Work

1 2 10 3 7 6 4 8 11 3 1

• Greedy: (repeatedly) take the next item larger than our current item and add it

to our solution.

• Why doesn’t this work?

• Greedy makes bad early decisions which prevents us from getting the optimal

solution

• Taking 10 means we can’t take 3, 4, 8!

Longest Increasing Subsequence Definition (and extension)

• Given an array A of length n

• Find the largest ℓ such that there is a sequence of indices i1 ≤ i2 ≤ . . . ≤ iℓ
such that for all k < ℓ, A[ik] < A[ik+1]

• Also called LIS

• We’ll talk about how to get the sequence (not just the length) after spring

break

LISE

• Consider the following restricted problem: the Longest Increasing
Subsequence Ending at n− 1 (LISE)

• Find the length of the longest increasing subsequence that includes A[n− 1]

• Let’s focus on LISE for now. Then we’ll double back for LIS

1 2 10 3 7 6 4 8 11 3 1

LISE of this array is 1!

Solving LISE Recursively

2 1 10 3 7 6 4 8 11 5

• How can I recursively find the LISE of this array?

• What do I know about any increasing subsequence ending at the last element
(5)?

• The second to last element must be < 5

Solving LISE Recursively

2 1 10 3 7 6 4 8 11 5

• One of 2, 1,3,4 must be the second-to-last element in my LISE

• Which one is best?

• Let’s say I already wrote down the length of the longest increasing

subsequence ending at 2, 1, 3, 4? How does that help us?

Solving LISE Recursively

2 1 10 3 7 6 4 8 11 5

• The length of the longest increasing subsequence ending at 5 is 1+ the max
of:

• The longest increasing subsequence ending at 4
• The longest increasing subsequence ending at 3
• The longest increasing subsequence ending at 1
• The longest increasing subsequence ending at 2

Solving LISE Recursively

• We can solve LISE on an array A with < n recursive calls, each to a prefix of A

• Running time?

• Something like T(n) = T(n− 1) + T(n− 2) + . . .+ T(1) + O(n).
• VERY large! Θ(n2n)

• Dynamic Programming to the rescue

LISE Using Dynamic Programming

2 1 10 3 7 6 4 8 11 5

• Create an array L

• L[i] stores LISE of A[0, . . . , i]

• Let’s fill in L[i] for the above example [Blackboard] (Recall that we take 1+ the

max, over all previous smaller elements, of their LISE)

LISE Using Dynamic Programming

Let’s formalize what we just did on the board.

• Base Case: What is L[0]? 1

• How to Fill in L[i]: First, create a set M consisting of all entries in A that are:

• before i in A, and
• less than A[i]

• L[i] = 1 +maxm∈M L[m]

• Running time? O(n2)

LISE Using Dynamic Programming

• Recursive algorithm, but

• Since we write down solutions as we get them, we obtain O(n2) running time

rather than Θ(n2n)

• What about LIS?

• The Longest Increasing Subsequence must end at some entry j of A

• After we fill out the table L, can find:

• LIS = maxj L[j]

• O(n2) algorithm for Longest Increasing Subsequence

LISE Using Dynamic Programming

• First set L[0] = 1

• Fill out each L[i] by finding previous elemements smaller than i and taking the

max

• Take the max L[i] after we are done to find the LIS

1 2 10 3 7 6 4 8 11 3 1

	More Recurrences
	Binary Search
	Matrix Multiplication
	Selection
	Dynamic Programming
	Fibonacci Numbers
	Longest Increasing Subsequence

