
MST: Kruskal’s Algorithm

Sam McCauley

March 6, 2025

Welcome Back!

• Both homeworks back! (Shout out to TA Charlotte for the fast turnaround.)

• Homework due today: solution posted (including Kruskal’s)

• Practice midterm: I realized it has no longer proof-style questions. The

problem sets are good practice for those. Practice midterm solutions are

posted

• I’ll get Problem Sets 2 and 3 graded as soon as I can

• Plan for today: first half of the class we’ll do Kruskal’s algorithm; I’ll set an

alarm and second half of class we’ll do review.

• Any questions before we start??

Prim’s Wrapup

Prim’s Algorithm

• Let’s do an example on the board

• Recall: maintain a set S of vertices, all connected by a set of edges T . At each

time, find the cut edge (edge with one vertex in S, one vertex not in S) with

minimum weight; add it to T .

• Recall: we assume for simplicity that all edge weights are positive and distinct.

(Easy to generalize!)

Recall: Cut Property of MST

A cut is a partition of the vertices V into two subsets: S, and V \ S. A cut edge is an

edge with one endpoint in S and the other in V \ S.

Lemma

Let G be a graph where all edge weights are distinct. For any cut S, let e = (u, v)

be the minimum weight cut edge. Then e is in every minimum spanning tree of G.

Side note: this lemma implies that there is actually only one minimum spanning

tree if all edge weights are distinct.

Proving Prim’s Correct

• In pairs: How can we use the cut property to prove Prim’s algorithm correct?

• Answer: Every edge we add is the smallest cut edge between S and V \ S; by

the cut property it is in every MST.

Implementing Prim’s Algorithm

What do we need to be able to do?

• Maintain all cut edges!

• Must be able to insert new edges when adding a vertex to S

• Must be able to find minimum-weight cut edge (i.e. minimum-weight edge in

the data structure) and remove it

• Priority Queue!

• Note that: we will (again!) wind up with some edges from S to S in the data
structure (why?). If we remove such an edge we’ll just skip it.

• Reason: when we add v to S, there could be some extra edges to v already in the
priority queue

Prim’s Algorithm (Jarník’s Algorithm)

First, choose a starting vertex u. Create a set of vertices, starting with S← {u} and

a tree starting with T ← ∅. Add all edges adjacent to u to a priority queue PQ.

While |T| ≤ n− 1, find the min-cost edge e = (u, v) such that one end u ∈ S and

v ∈ V \ S. Set T ← T ∪ {e} and S← S ∪ {v}.

To implement: each time we add a vertex to S, add its incident edges to PQ. To

find the minimum cut edge, remove edges from PQ until we find a cut edge. Cost?

Need to do ≤ 2m inserts, and ≤ 2m extract mins (why?).

Running time: O(m logm).

As with Dijkstra’s, can use Fibonacci heap to improve to O(m+ n log n).

Prim’s Algorithm Pseudocode

1 Prims(G):
2 pick a vertex v as the starting vertex
3 let T and S be empty sets and pq be an empty priority

queue
4 add v to S
5 for each edge e′ adjacent to v:
6 pq.insert(e′)
7
8 while pq is not empty:
9 e = pq.removeMin()

10 if e has an endpoint w /∈ S:
11 add e to T; add w to S
12 for each edge e′ adjacent to w:
13 pq.insert(e′)

MST

Kruskal’s Algorithm

Another MST Approach

• In Prim’s: we grew from a starting vertex s

• Idea: the cheapest neighbor of s must be in the tree

• Let’s look at the whole graph. (No starting vertex.) Is there an edge that we
know must be in the graph?

• Either intuitively or using the cut property

• Answer: The smallest edge in the whole graph must be in the minimum

spanning tree

• Why does this follow from the cut property?

Building to Kruskal’s Algorithm

• Repeatedly: add the smallest remaining edge in the graph(?)

• Can you come up with an example of when you don’t want to add the smallest

remaining edge?

• Answer: we don’t want to add the edge if it is between two vertices that are

already connected by the minimum spanning tree [Blackboard]

• With this exception we have Kruskal’s algorithm

Kruskal’s Algorithm

1 Let T be an empty set of edges
2 while |T| < n− 1:
3 let e be the lowest-weight edge in G
4 remove e from G
5 if adding e to T does not create a cycle:
6 add e to T

• That’s it! Let’s do an example [Blackboard]

• Why does the cut property imply that Kruskal’s is correct? [Blackboard]

• What operations do we need to make this work?

• Find smallest edge in G

• Find out of an edge e creates a cycle

Finding the Smallest Edge in G

• In pairs: can you come up with a simple data structure that allows us to

repeatedly find the smallest remaining edge in G?

• A priority queue is one option

• Another option (how it’s usually implemented): put all edges into an array and

sort them by weight. Keep track of which one was chosen most recently

• Time to sort all edges is O(m logm). So if we can find if an edge creates a
cycle in O(logm) time, Kruskal’s takes O(m logm) total time.

• We will. Kruskal’s takes O(m logm) total time.

• Let’s talk about how to detect a cycle. Everything from here on out is good

practice for the midterm. But: you do not need to know for the midterm.

Determining if an Edge Creates a Cycle

• Any thoughts? Not an easy problem to solve!

• Can run DFS on T each time to see if it contains a cycle in O(n) time

• Can we do better?

What it Means for an Edge to Create a Cycle

• At all times, T is a forest: a

collection of trees

• A new edge e is either between two

different trees (no cycle), or

between two vertices in the same

tree (does create a cycle)

• So: we want to find out if the

endpoints in e are in the same

(connected) tree of T

What it Means for an Edge to Create a Cycle

• We want to find out if the endpoints

of e are in the same subtree of T

• What if we could label the trees,

and quickly find out the label for

each vertex?

• We’d be done: an edge (u, v)

creates a cycle if and only if u and v

have the same label

Labels on Trees

• Maintain labels on all vertices so

that two vertices have the same

label if they are in the same tree

• Query: given a vertex v, what is its
label?

• We’ll call this a find() operation

• What happens when we insert a new

edge?

• Must merge the two trees

• We’ll call this a union() operation

• Notice: we don’t really need to keep

track of the tree structure...

Union-Find Data Structure

• Classic data structure on sets of items. To begin, all vi are in their own set,
each with its own unique label

• This works for any set, but visually we’ll discuss it for vertices

• Can handle three operations:

• initialize(n): build the data structure with all n vi in their own set

• find(vi): find which set vi is in.

• union(vi, vj): take the set containing vi and the set containing vj, and combine
them into a single set

• This is one of my favorite data structures. We’ll start by building some

not-so-efficient ways to do this. We’ll quickly get to a very efficient

methodology

Union-Find: Any Ideas?

• In pairs: can you get a data structure with O(1) find(), and O(n) union()?

• Hint: we’ll be maintaining labels

• First, come up with intuition for how to do this. Then, try to be specific about
exactly how your data structure works—whether you store information in a linked
list/an array/etc.

• Answer: maintain a label for each vertex (e.g. in an array of length n). find(vi)
can be done by looking up the ith entry of the array. For union(vi, vj), we first

find the labels ℓi and ℓj. Then, we go through the whole array, replacing all

instances of ℓj with ℓi

Union-Find: Improving Union

• How can we avoid the Θ(n) time search for union?

• Can’t store an array—don’t have the time to update it

• It takes Ω(n) time just to find the items with a given label using the array
approach

• Need to somehow “link” the items together

• Idea: Let’s store a special “head” vertex in each set. Store a pointer from any

vertex in the set to the head vertex; from the head vertex to all other vertices

in the set.

Union-Find: Improving Union

• Idea: Let’s store a special “head”

vertex in each set. Store a pointer

from any vertex in the set to the

head vertex; from the head vertex to

all other vertices in the set.

Union-Find: Improving Union

• Idea: Let’s store a special “head”

vertex in each set. Store a pointer

from any vertex in the set to the

head vertex; from the head vertex to

all other vertices in the set.

• Not necessarily graph edges!! We’re

only using these to keep track of

which vertices are in the same

subtree

• How to do find(vi)?
• Either vi is the head; or follow

pointer to head and return it.

• How to do union(vi)?

Union-Find: Improving Union

re
al

ed
ge

!

• How to do union(vi)?

• Find the head of both sets. Pick

one; make all vertices in the other

set point to that head.

• What’s the running time?

• O(k) if smaller set has k elements
• Could be Θ(n) in the worst case

• Which head should we pick?

• Idea: Keep track of the size of each

set. Make the smaller head point to

the larger head

Union-Find: Improving Union

re
al

ed
ge

!

• How to do union(vi)?

• Find the head of both sets. Pick

one; make all vertices in the other

set point to that head.

• What’s the running time?

• O(k) if smaller set has k elements
• Could be O(n) in the worst case

• Which head should we pick?

• Idea: Keep track of the size of each

set. Make the smaller head point to

the larger head

Union-Find: Improving Union

• How to do union(vi)?

• Find the head of both sets. Pick

one; make all vertices in the other

set point to that head.

• What’s the running time?

• O(k) if smaller set has k elements
• Could be O(n) in the worst case

• Which head should we pick?

• Idea: Keep track of the size of each

set. Make the smaller head point to

the larger head

Tighter Analysis

• Some union operations are Ω(n)

• Does this mean that the total cost over all operations is Ω(n2)

• Surprisingly: No—because we always picked the head of the smaller set!

• I think it’s surprising that this choice actually affects asymptotics.

• Let’s look at this in more detail

Tighter Analysis

Course note: You won’t be tested on the remainder of the union-find data structure

analysis. In particular, you don’t need to know or use the “on average” argument

we’re about to use.

Lemma

Over n union operations using the above method, the total cost is O(n log n)

Proof Sketch: Let’s each vertex vi is reassigned a new head.

If vertex vi points to a new head, the size of the set containing vi at least doubled.

(Why?) Because we redid the pointers in the smaller set!

Since vi starts in a set of size 1, and cannot be in a set of size > n, vi can only be

reassinged to a new head O(log n) times.

Union is O(k) where k is the size of the smallest set. The above argument means

that
∑

k = O(n log n). So the total cost of all union operations is O(n log n).

Improved Union-Find

• We have O(1) find() per operation, and all union operations cost O(n log n)

total

• Essentially O(log n) “on average”; this is called the “amortized” cost. You will

not be tested on analyzing amortized algorithms.

• Can we improve even further? What if we want O(log n) find and O(1) union?

(Detail: we’ll run find() on each vertex before taking the union.)

Fast Union; Slower Find

re
al

ed
ge

!

• Keep a head node as before

• Nodes don’t point straight to the

head; keep them in an “up tree”

• How does find() work for this data
structure?

• Follow pointers! Running time?
• O(h) if height is h

• How does union() work for this data

structure?

Fast Union; Slower Find

re
al

ed
ge

!

• How does union() work for this data

structure?

• Point one head node to the other
and we’re done!

• No longer need back pointers

• Which one should become the new
head?

• The tree of smaller height

• Time? O(1) after we do a find()

• Exercise at home: show that if we

always point the smaller-height

node to the larger-height node, all

trees have height O(log n)

Fast Union; Slower Find

• How does union() work for this data

structure?

• Point one head node to the other
and we’re done!

• No longer need back pointers

• Which one should become the new
head?

• The tree of smaller height

• Time? O(1) after we do a find()

• Exercise at home: show that if we

always point the smaller-height

node to the larger-height node, all

trees have height O(log n)

Where do you think we’re going?

• (This is a just-for-fun topic.)

• Do you think we can do better? Which do
you think is the case?

1. Either union() or find() take Ω(log n)

2. If you multiply the time to do union() and
find() the product must be Ω(log n)

3. Both can be O(1)

4. Something in the middle

Union-Find: The True Data Structure

• Let’s start with some practical improvements

• Then I’ll talk about running time

Saving Work for the Future: Path Compression

• When we’re doing a find(), is there
work we can do that makes future
find() operations faster?

• The running time of find() is
proportional to the height of the
tree. Degree doesn’t really matter!

• We can take any nodes visited
during the find() and point them
to the head of the tree directly

• Called path compression

Saving Work for the Future: Path Compression

• When we’re doing a find(), is there
work we can do that makes future
find() operations faster?

• The running time of find() is
proportional to the height of the
tree. Degree doesn’t really matter!

• We can take any nodes visited
during the find() and point them
to the head of the tree directly

• Called path compression

Saving Work for the Future: Path Compression

• Any subsequent call to find() on

any of these vertices—before the

head changes—takes O(1) time

• Any downsides to doing this?

• Recall: for the union, we pointed the

smaller-height node to the

larger-height node

• These shortcuts change the height!

Can we resolve this??

Keeping Track of the Height

• No, we can’t resolve this. We can’t keep track of the height quickly.

• What can we do instead?

• Let’s just....not fix it

• Rather than keeping the height, we’ll call it the “rank”

• All ranks start at 0

• If we point a smaller-rank tree to a larger-rank tree, its rank stays the same

• If two trees have the same rank, point one to the other, increment the rank

Keeping Track of the Height

re
al

ed
ge

!
• If we point a smaller-rank tree to a

larger-rank tree, its rank stays the

same

• If two trees have the same rank,

point one to the other, increment

the rank

Have we changed the asymptotics?

• We’ve made some find() operations faster—though it’s no longer clear that the

height really stays O(log n). union() is still fast

• Surprisingly: yes it’s better than O(log n)

• The running time for any n union and find operations is O(n log∗ n) [Hopcroft
Ullman 1973]

• log∗ n is the number of times you need to apply the log2 function to get to a
number ≤ 1

n 2 4 24 = 16 65536 = 216 265536

log∗ n 1 2 3 4 5

This is O(1) for all intents and purposes. Is this analysis tight? Is it actually O(1)?

Union-Find True Running Time

• [Tarjan 1975]: n union and find operations require Θ(n · α(n)) time using this
data structure

• α(n) is the inverse Ackermann function

• α(n) is (essentially) the number of times you need to apply log∗ to get to 2

• For example: α(222216

) = 4

• Ridiculously slowly growing

• This is optimal; any data structure for union-find requires Ω(α(n)) time

Takeaways

• A couple simple heuristics on top of a simple data structure leads to

outstanding performance, and some really cool math

• Kruskal’s running time?

• O(m logm) to sort all the edges

• O(m · α(m)) for all union-find operations to detect cycles

• O(m logm) overall

MST Algorithms

• Prims: O(m logm) using a binary heap; O(m+n log n) using a Fibonnacci heap

• Kruskal’s: O(m logm)

• Kruskal’s is usually better in practice (sorts are easy to optimize)

• Is it possible to do better than m logm time?

Best Known MST Algorithm

[Chazelle 1999]: Minimum Spanning Tree in O(m · α(m) time

Optimal MST Algorithm

• [Pettie Ramachandran 2002]: An optimal algorithm for minimum spanning

tree (as fast as any other algorithm)

• Must be O(m · α(m)) because it’s as least as fast as Chazelle’s algorithm. But

could be better!

Review!

	Prim's Wrapup
	Kruskal's Algorithm
	Review!

