
Dijkstra’s Algorithm

Sam McCauley

March 5, 2025

Welcome Back!

• Problem Set 1 back

• Please come to office hours with questions!

• I did my best to explain any issues I found with proofs, but it’s much easier if it’s
a two-way discussion

• Reminder: should only use textbooks and slides; discuss with your partner and

instructor/TAs. (No serious problems! Just a reminder.)

• Sample student solutions for selected problems on Glow

• Problem Set out tonight; last one before Midterm 1

• We’ll discuss Midterm 1 on Monday; it is on March 10 (a week from Monday)

• Any questions?

Greedy Algorithms Takeaway

• Greedy algorithms are a sometimes thing

• Usually fast; Correctness is the main question!
• Only use a greedy algorithm when you can show that it is correct

• Starting in March we’ll look at more sophisticated problem-solving techniques

Dijkstra’s Algorithm

Shortest Path in Weighted Graphs

• Given a directed graph G with positive edge weights

• Find the shortest path from s to t

• Path p from s to t minimizing
∑

e∈p we

Shortest Path Applications

• Map routing

• Robot navigation

• Texture mapping

• Latex typesetting

• Traffic Planning

• Scheduling

• Network routing protocols

• We’ll revisit later in class as well (to allow for negative weights in the graph)

Shortest Path: Plan

• Greedy algorithm

• Goal: find shortest path from s to all vertices of the graph
• Therefore, we get the shortest path to t
• Assume G is connected to keep things simple. (If there is no path from s to t we

will detect that anyway)

• Each time we add a new vertex, guarantee that we’ve found the shortest

distance to that vertex

• Greedily grow the vertices until we’ve found the shortest path to all vertices

• Denote the actual shortest path d(s, v). We will store the shortest path we find

in an array d[]; so our goal is d[v] = d(s, v).

• As we did with BFS/DFS, we can build a tree of shortest paths by defining

each vertex’s parent to be the one that added it to the queue

• Let’s start building the algorithm [Blackboard]

Dijkstra’s Algorithm

We want to get the distance to every vertex; we’ll store the distances in an array

d[]. Idea:

1. There are some finished vertices where we’ve found the shortest path

2. The fringe consists of all (unfinished) neighbors of all finished vertices

3. We find the fringe vertex v with the shortest total path length

• Shortest path from s to some finished v′, plus the weight of the edge from v′ to v

4. This path length is the distance from s to v! Store that distance in d[v]. We

add v to the finished vertices, and update the fringe. The parent of v in the

shortest path tree is v′.

How can we prove that this is correct? (Then: how can we implement this?)

Dijkstra’s Proof Intuition

Dijkstra’s Algorithm Proof Strategy

• By induction

• I.H.: after k vertices are marked finished, for any finished vertex v, d[v] stores

the distance from s to v.

• Base case?

• k = 1; d[s] = 0

• We are done because all edge lengths are positive so no path can have length
less than 0.

Dijkstra’s Algorithm Inductive Step

• Assume: after k vertices are finished, for all finished vertices w, d[w] = d(s,w)

• We find the edge e = (u, v) between a finished u and and unfinished v that

minimizes d[u] + we; mark v finished; set d[v] = d[u] + we. To show:

d[v] = d(s, v)

• Now: there cannot be a path p′ to v with length less than d[u] + we

• Assume contrary. Let y be the first vertex in p′ not finished, and let e′ = (x, y) be
the edge to y in p′. Then the length of p′ is at least d(s, x) + we′ + d(y, v)

• We have d(s, x) = d[x] by I.H., and d[x] + we′ ≥ d[u] + we by definition of
Dijkstra’s

• d(y, v) ≥ 0 since all edge weights are positive

• So length of p′ is:

d(s, x) + we′ + d(y, v) ≥ d[x] + we′ ≥ d[u] + we.

Implementing Dijkstra’s Algorithm

• Notice: we don’t need to keep track of which vertices are “finished”. We mark

a vertex as finished exactly when we fill in the array d. So we start with

d[v] =∞ for all v, and the finished vertices are those with d[v] ≤ ∞.

• How do we keep track of the fringe? How do we find the fringe vertex with

smallest path length?

• We can keep the fringe in a linked list, and scan through it every time. But

that’s very slow.

• What operations do we want to do on the fringe?

• Insert a new path to a vertex into the fringe

• Like we saw with BFS/DFS: some vertices might wind up in the fringe multiple times.
That’s OK; if we remove a finished vertex from the fringe we ignore it

• Remove the smallest-path-length vertex from the fringe

Priority Queues

(Lengthy) Aside: Priority Queues

• Priority queue: A data structure that can store a set of items, each with some
priority, with the following operations:

• Insert(i,p): Insert a new item i with priority p into the priority queue

• RemoveMin(): Remove (and return) the item i with the smallest priority in the
queue

• Has anyone seen a priority queue before? How to implement a priority queue

before?

Heap

• Let’s define a data structure using a tree

• Then: we’ll significantly simplify it into an array data structure

• This data structure is called a heap

• Invariant: Each element in the heap is smaller than its children

• This implies: each element in the heap is smaller than all of its descendants

• Invariant 2: The heap is a complete binary tree: all levels but the last are “full”;

last is filled left to right

• Let’s draw a heap [Blackboard]

• Does not necessarily satisfy Binary Search Tree property (left child is less than

right child)

Inserting into a Heap

In pairs: How can we insert into a heap to maintain these invariants?

• Where does the new item go?

• Last level must be filled in left to right; let’s put it there

• How can we ensure that this satisfies the heap property?

• Swap with parent until the heap property is satisfied

• Called “sift up”

• Why does this work? [Blackboard]

Inserting into a Heap: Analysis

• What is the height of a complete binary tree with n nodes?

• O(log n)

• Each swap takes O(1) time, so insert takes O(log n) time

Removing the Minimum Element of a Heap

• How can we remove the minimum element?

• It would be a lot nicer to remove the last element of the last level

• Idea: Swap the root and the last element. Then we can safely remove it. Then,
we’ll “sift down” to preserve the heap property [Blackboard]

• To sift down: swap the element with its smaller child (why?). Repeat until heap

property is maintained

• Also O(log n)

Heap as array

• Observation: The shape of our tree is super restricted. Can we store it in an

easier way?

• Let’s number the nodes starting at 1, in level order

• If a node has number i, what numbers are its children?

• 2i and 2i + 1

• If a node has number i, what number is its parent?

• bi/2c

• (Can prove by induction.)

• Let’s throw out the tree and do a heap operation using just the array!

[Blackboard]

Priority Queue

• Insert a new item (Insert)

• Remove minimum weight item

(ExtractMin)

• Done using a heap

• Extremely efficient; used

extensively in practice

• O(log n) time to insert or remove

minimum item

• Will help us out with Dijkstra’s

algorithm

Heaps (Reference)

• Heap property: each item in the tree is smaller than either of its children

• Tree has minimum height; filled in left to right (“full” tree)

• Maintain implicitly in an array (do not need pointers!)

• Extract min, or insert a new item, in O(log n) time

• Fun fact: Can build a heap (even on unsorted data) in O(n) time (!)

Implementing Dijkstra’s Algorithm: Revisit

• Notice: we don’t need to keep track of which vertices are “finished”. We mark

a vertex as finished exactly when we fill in the array d. So we start with

d[v] =∞ for all v, and the finished vertices are those with d[v] ≤ ∞.

• How do we keep track of the fringe? How do we find the fringe vertex with

smallest path length?

• We keep the fringe in a priority queue

• Insert a new path to a vertex into the fringe

• Remove the smallest-path-length vertex from the fringe

Dijkstra’s Algorithm

We want to get the distance to every vertex; we’ll store the distances in an array

d[]. All finished vertices v will have d[v] ≤ ∞. Then:

1. We store a priority queue fringe consists of all (unfinished) neighbors of all

finished vertices

2. We use RemoveMin() to find the fringe vertex v with smallest path length

• If v has d[v] <∞ we ignore it

• Otherwise: this path length is the distance to v. Store that distance in d[v].

• We add v to the finished vertices, and add all neighbors v′ of v to the priority
queue, with priority d[v] + w(v, v′).

3. Repeat the above until the fringe is empty

Dijkstra’s Algorithm Analysis

• Each vertex is finished once

• Each time a vertex is finished, we add all of its unfinished neighbors to the

fringe

• How large can the fringe get?

• O(m): a vertex with dv neighbors is in the fringe ≤ dv times

• Time per vertex: O(logm+ dv logm)

• Summing over all vertices: O(n logm+m logm) = O(m log n) Substitution:

m ≥ n− 1 because the graph is connected; m ≤ n2 in all graphs

Improving Dijkstra’s Algorithm

• We are being wasteful with our edge storage!

• Only need to store one edge to each fringe node

• Only need a priority queue of n items!
• But: what happens when we find a new edge to a vertex that was already in the

fringe (i.e. in the priority queue)?
• Need to update the best path length to the vertex
• Must modify the priority priority queue! How can we update the weight of a

vertex in a heap?
• Just sift up; O(log n) time

• In practice: queue is usually much smaller than n; runs quite quickly
• In theory: using a Fibonacci heap can insert and decrease key in O(1); extract

minimum in O(log n)
• Gives O(m+ n log n) running time for Dijkstra’s algorithm
• Can we do better? Open problem. (?)
• If edge weights are integers can get O(m) running time

Dijkstra’s Algorithm Implementation Pseudocode

1 function Dijkstra(Graph, source):
2 for all v:
3 initialize dist[v] ←∞ and prev[v] ← 0
4 dist[source] ← 0
5 add source to Q
6 while Q is not empty:
7 remove u with minimum priority from Q
8 dist[u] ← priority of u in Q
9 for each neighbor v of u with dist[v] =∞:

10 alt ← dist[u] + Graph.Edges(u, v)
11 if v is in Q:
12 if alt < current priority of v:
13 reduce priority of v in Q to alt
14 prev[v] ← u
15 if v is not in Q:
16 add v to Q with priority alt
17 prev[v] ← u
18 return dist[], prev[]

Negative Edge Weights

• Why doesn’t Dijkstra’s algorithm work if edge weights are negative?

• Definitely can’t have any cycles whose total weight is negative. (Why is that?)

• Let’s look at the proof to give us a hint

Reminder: Dijkstra’s Algorithm Inductive Step

• Assume: after k vertices are finished, for all finished vertices w, d[w] = d(s,w)

• We find the edge e = (u, v) with u finished and v unfinished that minimizes

d[u] + we; mark v finished; set d[v] = d[u] + we. To show: d[v] = d(s, v)

• Now: there cannot be a path p′ to v with length less than d[u] + we

• Assume contrary. Let y be the first vertex in p′ not finished, and let e′ = (x, y) be
the edge to y in p′. Then the length of p′ is at least d(s, x) + we′ + d(y, v).

• We have d(s, x) = d[x] by I.H., and d[x] + we′ ≥ d[u] + we by definition of
Dijkstra’s

• d(y, v) ≥ 0 since all edge weights are positive

• So length of p′ is:

d(s, x) + we′ + d(y, v) ≥ d[x] + we′ ≥ d[u] + we.

Negative Edge Weights

• Why doesn’t Dijkstra’s algorithm work if edge weights are negative?

• Definitely can’t have any cycles whose total weight is negative. (Why is that?)

• If there are negative edge weights, then the alternate path might be better!

Take a larger cost to get to the fringe, then a negative path to recover that

cost to get to our vertex

• Let’s try to draw an example In pairs (if we have time) then [Blackboard]

	Dijkstra's Algorithm
	Priority Queues

