
Greedy Algorithms

Sam McCauley

February 24, 2025

Welcome Back!

• No announcements today

• Any questions?

Quick Fact

1

2 3

4 5

1 2

3 4

• Any tree has n vertices and n− 1

edges.

• Any connected graph with n− 1

edges and n vertices is a tree.

• (Classic proof by induction to

formalize.)

Topological Ordering

Topological Ordering

• Goal: Order the vertices of a graph so that for any edge (u, v), u comes before

v in the final order

• Example: find a sequence of all courses satisfying prerequisites

Topological Ordering (a.k.a. Topological Sort)

Source: https://medium.com/@konduruharish/topological-sort-in-typescript-and-c-6d5ecc4bad95

https://medium.com/@konduruharish/topological-sort-in-typescript-and-c-6d5ecc4bad95

DAGs and Toplogical Ordering

We want to show that:

Theorem
A graph G has a topological ordering if and only if G is acyclic.

To prove this we showed (last class):

Lemma
Every DAG has a vertex with indegree 0.

Let’s review the algorithm we saw last class based on this lemma.

Topological Ordering: Simple Algorithm

1 while L has length less than n:
2 find a vertex v with indegree 0
3 if no such vertex exists:
4 return that the graph has a cycle
5 add v to the end of L
6 remove v and its outgoing edges from G

• Running time?

• How can we store vertices with indegree 0?

• Use a stack of vertices with indegree 0, and an array storing indegree of all
vertices

• Initialize array by examining edges one by one

• Time to remove vertex and edges with adjacency list?

• Overall: O(n+m) time

DAGs and Toplogical Ordering

We’re ready to prove our theorem (and show that the algorithm is correct).

Theorem
A graph G has a topological ordering, and the algorithm finds it, if and only if G is

acyclic.

Proof.
If G is acyclic, then by the lemma our algorithm always finds a vertex of degree 0,

so it returns a list L containing all n vertices. We are left to show that L is a

topological ordering. Consider a vertex v in L. Since v has indegree 0 in G when it

is added to L, for any edge (v′, v) in the original graph, v′ must have already been

placed in L.

Now consider the case where G has a cycle C. Assume by contradiction that the

algorithm does not return that G has a cycle. In this case, the algorithm must add

all vertices to L. Let v be the first vertex in C added to L by the algorithm. But v

must have an incoming edge in C, which is placed later in L.

Finding Topological Ordering with DFS

1 DFS-Cycle(s):
2 mark s as active
3 for each neighbor v of s:
4 if v is active:
5 report that there is a cycle
6 if v is not finished:
7 DFS-Cycle(v)
8 mark s as finished
9 add s to the front of L

• Running time?

• O(n+m)

• Why does this work?

• What does it mean for a vertex to be active? Let’s do an example on the board

Finding Topological Ordering with DFS

1 DFS-Cycle(s):
2 mark s as active
3 for each neighbor v of s:
4 if v is active:
5 report that there is a cycle
6 if v is not finished:
7 DFS-Cycle(v)
8 mark s as finished
9 add s to the front of L

Claim: Vertex v is active if and only if DFS-Cycle(v) was called, but has not yet

finished.

Short proof: We mark v as active only when DFS-Cycle(v) is called; we mark v as

finished when DFS-Cycle(v) finishes

Finding Topological Ordering with DFS

1 DFS-Cycle(s):
2 mark s as active
3 for each neighbor v of s:
4 if v is active:
5 report that there is a cycle
6 else if v is not finished:
7 DFS-Cycle(v)
8 mark s as finished
9 add s to the front of L

In pairs: Let’s say the algorithm returns that there is a cycle. Can you write a short

proof for why it is correct?

Proof: Since v is active, DFS(v) has called but has not yet finished. Then there is a

path from s to DFS(v) in the DFS tree; combining with the edge (v, s) gives a cycle.

Finding Topological Ordering with DFS

1 DFS-Cycle(s):
2 mark s as active
3 for each neighbor v of s:
4 mark s as finished
5 if v is active:
6 report that there is a cycle
7 else if v is not finished:
8 DFS-Cycle(v)
9 add s to the front of L

Other direction: Let’s prove that if there is a cycle, the algorithm finds it.

Let v be the first vertex in the graph explored by DFS that is in a cycle; let C be that

cycle and let v′ be the vertex before v in C.

By our observation from last class, DFS-Cycle(v) explores all unmarked vertices

reachable from v before completing. So DFS-Cycle(v′) will be called while v is

active; and the algorithm will return that there is a cycle.

Greedy Algorithms

Algorithmic Design Paradigms

We will look at the following algorithmic paradigms in this class.

• Greedy Algorithms

• Divide and Conquer

• Dynamic Programming

• Network Flow

Algorithmic Design Paradigms

• Greedy Algorithms ⇐ we are here!

• Divide and Conquer

• Dynamic Programming

• Network Flow

Making Change Optimally

• What are the fewest number of coins and bills to make $x?

• Anyone have an algorithm?

• Does this always work? Yes. But it’s not obvious!

Change Cannot Always be Made Greedily

The old British system had (among others) the following coins:

Coin: penny threepence sixpence shilling florin half-crown

Value: 1 3 6 12 24 30

• Can you come up with an amount for which the greedy algorithm does not use

the correct number of coins?

• One example: 48. The greedy algorithm gives three coins: 30 + 12 + 6. But we

can do it with two florins (24 + 24)

Greedy Algorithms

• Greedy algorithms make simple local decisions to obtain an optimal solution

• Are almost always fast!

• Question: can you show that your greedy algorithm is always correct for the

given problem?

Filling Up on Gas Electricity

• You are driving an EV with a range of 200 miles

• Charging stations along route at distance d1, d2, . . . ,dn from start

• Goal: find the minimum number of charging stops to complete the trip

Filling Up on Gas Electricity

• Given sorted list of stops d0 = 0, d1, d2, . . . ,dn, dn+1

• d0 is the start and dn+1 is the destination

• Find the smallest set of stops, including d0 and dn+1, that differ by at most

200 miles

• Greedy algorithm: Start with d0. Repeatedly do the following: take the

farthest-away stop that is less than 200 miles away

• Running time? O(n)

• The hard part is showing that this algorithm is correct!

Proof of Correctness

• We’ll prove the following invariant: let’s say greedy arrives at stop di after

exactly k stops. Then for any other route that arrives at dj in exactly k stops, we

have j ≤ i.

Proof of Correctness

• Maintain the following invariant: let’s say greedy arrives at stop di after exactly

k stops. Then for any other route that arrives at dj in exactly k stops, we have

j ≤ i.
• If this invariant is satisfied, we are optimal. (Why?)

• Let greedy have cost C. No algorithm is “past” greedy after C− 1 stops, so no
algorithm reaches the end in ≤ C− 1 stops.

• Greedy stays ahead proof strategy

Proof of Correctness

Lemma
If greedy arrives at stop di after exactly k stops, then for any other route that

arrives at dj in exactly k stops, we have j ≤ i.

Proof: By induction. (I.H. is the lemma). Base case: greedy reaches d0 after 0

stops; all other algorithms must also be at d0 after 0 stops.

Inductive step: assume the I.H. for some k. Assume the contrary for k + 1: greedy

reaches some stop dI, whereas some other algorithm A reaches stop dJ with J > I.

Let dj be the previous stop reached by A, and di be the previous stop reached by

greedy. (Diagram [on blackboard]) We have dJ − dj < 200. And by the I.H., j ≤ i.

But then dJ − di < 200, so greedy could also have reached dJ! This contradicts the

definition of greedy: it would have chosen dJ rather than dI.

Proof of Correctness

• Shown: If greedy reaches stop di after k stops, then for any other route that

gets to dj in k stops, we have j ≤ i.

• Questions about this problem, or the greedy stays ahead proof strategy?

Class Scheduling (Interval Scheduling)

From Erikson Algorithms textbook

• Set of classes with start times s1 . . . sn and finish times f1 . . . fn
• I’ll also call them jobs

• What is the maximum number of non-conflicting classes that can be

scheduled?

Class Scheduling (Interval Scheduling)

From Erikson Algorithms textbook

• Can be solved recursively (see Erikson textbook)—correct but slow

• Today: faster algorithm using greedy!

Class Scheduling (Interval Scheduling)

From Erikson Algorithms textbook

• [on blackboard] Ideas for greedy algorithms for this problem?

• Not all of these will work! But I want to brainstorm different ways to be greedy.
• Then we’ll talk about counterexamples to some of these ideas

Idea 1: Greedily Choose by Start Time

• Repeatedly pick conflict-free job with earliest start time

• Counterexample: a very long job starts first

• [on blackboard]

Idea 2: Shortest Jobs First

• Repeatedly pick shortest remaining conflict-free job

• Counterexample: a very short job overlaps two jobs

• [on blackboard]

Idea 3: Fewest Conflicts First

• Repeatedly pick the conflict-free job that overlaps the fewest jobs

• Counterexample: [on blackboard]

Idea 4: Earliest Finish Time First

• Repeatedly pick the conflict-free job that ends first

• Counterexample?

• Believe it or not, this actually works

• Brief intuition: if we pick the course that ends earliest, that “frees us up” the
soonest

• Never make a bad decision: if another algorithm picked a later-ending job first,
we can still take the rest of its schedule! [on blackboard]

Earliest Finish Time First Proof Idea

• Let’s say greedy gets some set of jobs G

• The optimal algorithm has some set of jobs O; assume by contradiction that O

has a strictly better cost than G

• Proof idea: transform O into G one step at a time while keeping the same cost

• More formally: let’s say O has C jobs, and O schedules k jobs that G does not

(so |O \ G| = k), then there exists a schedule O′ of C jobs that schedules k − 1

jobs that G does not

• Applying the above repeatedly means that G is optimal! (Contradiction)

O same cost−−−−−−→ O′ same cost−−−−−−→ O′′ same cost−−−−−−→ O′′ same cost−−−−−−→ O′′′ . . . same cost−−−−−−→ G

Earliest Finish Time First Proof Idea

• Let’s say greedy gets some set of jobs G

• The optimal algorithm has some set of jobs O

• Proof idea: transform O into G one step at a time while keeping the same cost

• More formally: if O schedules k jobs that G does not, then there exists a

schedule O′ with the same cost as O that schedules k− 1 jobs that G does not

• Applying the above repeatedly means that G is optimal!

O same cost−−−−−−→ O′ same cost−−−−−−→ O′′ same cost−−−−−−→ O′′ same cost−−−−−−→ O′′′ . . . same cost−−−−−−→︸ ︷︷ ︸
k iterations

G

Earliest Finish Time Proof
Lemma
If some schedule O schedules k ≥ 1 jobs that G does not, then there exists a

schedule O′ with the same cost as O that schedules k − 1 jobs that G does not

Proof: Let’s write each schedule out in order of finish time:

• O = o1, o2, . . . , om
• G = g1, g2, . . . ,g`

Let j be the first index where O schedules a job that G does not. That means we

can rewrite O = g1, g2, . . . , gj−1, oj, oj+1, . . . , om.

Then we define O′ by replacing oj with gj (why must gj exist?), as follows:

O′ = g1, g2, . . . ,gj−1, gj, oj+1, . . . , om.

Clearly, we have that O′ only schedules k − 1 jobs that G does not.

TODO: We need to show that O′ is a legal schedule.

Earliest Finish Time Proof

Lemma
If some schedule O schedules k ≥ 1 jobs that G does not, then there exists a

schedule O′ with the same cost as O that schedules k − 1 jobs that G does not

Proof: We define O′ by replacing oj with gj, as follows:

O′ = g1, g2, . . . , gj−1, gj, oj+1, . . . , om. We need to show that O′ is a legal schedule.

We only need to show that gj does not conflict with any other job in O′ (why?)

(Answer: because O had no conflicts)

By definition of greedy, gj cannot conflict with g1, . . . ,gj−1.

Since O is a legal schedule, oj finishes before any job in oj+1, . . . , om starts. By

definition of greedy, gj finishes before oj. So gj does not conflict with oj+1 . . . , om.

Earliest Finish Time Algorithm

1 greedySchedule(J):
2 sort J by finish time
3 create empty list G
4 for each job j in J:
5 if j starts after last entry in G ends:
6 add j to G
7 return G

• We showed that this gives an optimal schedule!

• Running time?

• O(n log n) on n jobs

Earliest Finish Time Proof

• This is called an Exchange Argument: we repeatedly alter (exchange) an

optimal solution, without increasing cost, until we get the greedy solution

• Proves that greedy is one of the optimal solutions!

• Let’s do an example of how this proof works [on blackboard]

Greedy Proof Techniques

1. Greedy stays ahead

2. Exchange argument

Both are good ways to analyze a greedy algorithm! Oftentimes, both actually

work—but sometimes one is easier than the other.

• If one is proving very difficult, try the other

• Can look quite similar

What if jobs are weighted?

Challenge question

• Suppose each job has a positive weight

• Goal: schedule the jobs with maximum weight that have no conflict

• [on blackboard] Can you come up with a counterexample where earliest

deadline first does not work?

Greedy Algorithms Takeaway

• Greedy algorithms are a sometimes thing

• Usually fast; Correctness is the main question!
• Only use a greedy algorithm when you can show that it is correct

• Starting in March we’ll look at more sophisticated problem-solving techniques

	Topological Ordering
	Greedy Algorithms

