
Lecture 4: BFS, Graph
Representations, DFS

Sam McCauley

February 17, 2025

Welcome Back!

• Problem set 0 should be back tomorrow

• New homework out; current homework in at end of class

• TA hours and office hours new rooms! (Posted on website.)

• Tips on how to approach proofs handout posted tonight

• Let me know if you have questions or comments

Breadth-First Search

Breadth-First Search (BFS)

• We’ll refer to as BFS

• Idea: start with some node s

• Slowly explore outwards from s

• “peeling one layer after another”

BFS Definition: Very High Level Intuition

• We start with some vertex s

• Then we explore the neighbors of s

• Then the neighbors of the neighbors of s

• Then the neighbors of the neighbors of the neighbors of s

• And so on until there are no new neighbors to explore

BFS Definition: Intuition

We define BFS using a sequence of layers

• Initialize L0 = {s}, i = 0; mark s as visited

• if there exists a node in Li with an unvisited neighbor:

• Set Li+1 to be all unvisited neighbors of nodes in Li ; mark all nodes in Li+1 as
visited; set i = i + 1

Let’s do an example [On Board #1]

Any questions about this algorithm? We’ll look at pseudocode for this

algorithm later today

What does BFS Do?

• Keeps exploring until run out of nodes to explore

• Question: can you give an example of a graph (and a starting vertex s in the

graph) where BFS does not visit all nodes?

A

B

F

C

D

E V = {A,B,C,D,E}

E = {(A,B), (A, F), (B, F),
(C,D), (C,E), (D,E)}

If the graph is not connected, BFS will not visit all nodes.

Properties of BFS

• We saw with Gale Shapley: analyzing an algorithm can tell you something

about the problem itself

• Let’s look at two properties of BFS

• You will need to use these on your problem sets and on midterm 1

• They are useful for:

• analyzing BFS
• creating new algorithms
• analyzing the structure of graphs in general!

First key BFS Property

Idea: For any edge (x, y) in an undirected graph, x and y are stored in the same

level, or adjacent levels.

Theorem

For any undirected graph G, if (x, y) ∈ E, and x ∈ Li and y ∈ Lj for a BFS starting at

some node s, then i and j differ by at most 1 (that is to say: |i − j| ≤ 1).

Proof: Assume the contrary, that i − j ≥ 2 or j − i ≥ 2.

First, let’s say i ≥ j + 2. Since y ∈ Lj, all unvisited neighbors of y are added to Lj+1.

Since x is not in level Lj′ for j′ ≤ j, x is unvisited, so x is added to Lj+1, a

contradiction.

Second, let’s say j ≥ i + 2. (This case is basically identical.) Since x ∈ Li , all

unvisited neighbors of x are added to Li+1. Since y is not in level Li′ for i′ ≤ i, y is

unvisited, so y is added to Li+1, a contradiction.

BFS and Connected Graphs

Lemma
In any connected undirected graph G, BFS starting at vertex s will visit every vertex.

Can we prove this using the BFS property we showed?

Consider some vertex v; we show that BFS visits v. Since G is connected there is a

path from s to v; call this path p = s, v1, v2, . . . , vk, v.

Idea: We have that s ∈ L0. Since v1 is a neighbor of s, v1 ∈ L1. Let’s generalize to all

vi using an induction.

Proof by induction: vi is in level Lj for some j ≤ i. Base case: i = 1 by above.

Assume true for some i. Since vi+1 is a neighbor of vi , then vi+1 must be in level Lj′

where |j − j′| ≤ 1. Since j ≤ i, we must have j′ ≤ i + 1.

Running BFS

• On disconnected graphs: if we run out of vertices, start again from a new

unvisited vertex

• Cost for BFS to explore a node v with dv neighbors?

• Answer: O(1 + dv)

• Total running time:

∑
v∈V

O(1 + dv) = O

(
n+

∑
v∈V

dv

)
= O(n+ 2m) = O(n+m)

Recall that since each edge is adjacent to two vertices,
∑

dv = 2|E|.

The BFS Tree

• The levels explored by the BFS are the levels of a tree (i.e. the nodes at a

particular height)

• If v′ is a neighbor of v that we add to some level, then v is the parent of v′.

• Let’s do an example together [On Board #2]

• The vertices at level d of the BFS tree are exactly the vertices in layer Ld

• We can calculate the BFS tree while doing the BFS in O(n+m) time

• Useful for some applications!

• And some Problem Sets

Application: Maze Solving

• BFS can find if a maze is solvable!

• Turn the maze into a graph: node for each square; edge if can get from one

square to another

• How can we prove that BFS always solves the maze if possible?

• Animation: https://youtu.be/zMy5MwQWwss?si=VRNW3sgRgMeK7aVd&t=129

https://youtu.be/zMy5MwQWwss?si=VRNW3sgRgMeK7aVd&t=129

Application: Maze Solving

• How do we get the path from start to end of the maze?

• One answer: use the BFS tree!

• Path from s to e in the tree is a path from s to e in the maze

Second Key Property: BFS to find Shortest Path

• BFS gives the shortest path between the initial vertex s and any other vertex v
in the graph

• We call the length of the shortest path between two vertices u and v the distance
betwen u and v

• How can we formalize?

Theorem
For any vertex v in any graph G (directed or undirected), if v is at height d of the

BFS tree rooted at s (in other words, if v is in Ld), then the shortest path from s to v

has length d.

Building Intuition on BFS for Shortest Path

• We start with some vertex s

• Then we explore the neighbors of s (each has distance 1)

• Then any unexplored neighbors of the neighbors of s (each has distance 2)

• Then the unexplored neighbors of the neighbors of the neighbors of s (each

has distance 3)

• And so on until there are no new neighbors to explore

BFS to find Shortest Path: Proof

Theorem
For any vertex v in any graph G, v is at depth d of the BFS tree rooted at s if and

only if the shortest path from s to v has length d.

Let’s discuss. What will this proof look like?

• We’ll proceed by strong induction on d.

• I see “if and only if”. That means we need to prove two directions:

• If v is in Ld, its distance from s is d; and

• if v has distance d from s, it is in Ld.

BFS to find Shortest Path: Proof

Theorem
For any vertex v in any graph G, v is in Ld if and only if the shortest path from s to v

has length d.

Proof: By strong induction on d. Base case: for d = 0, the only vertex with a

shortest path of length 0 from s is s; we have that L0 = {s} by definition of BFS.

Now, assume that for some d, for all 1 ≤ k ≤ d, Lk consists of all vertices whose

shortest path from s has length k. (Goal: show that Ld+1 consists of all vertices w/

shortest path length d + 1.)

First, we show that if a vertex v is in Ld+1, its shortest path from s has length d + 1.

We break this into two parts: first we show that there exists a path of length d + 1;

then we show that no path has length < d + 1.

BFS to find Shortest Path

Proof: (Recall:) Now, assume that for some d, for all 1 ≤ k ≤ d, Lk consists of all

vertices whose shortest path from s has length k. (Goal: show that Ld+1 consists of

all vertices w/ shortest path length d + 1.)

First, we show that if a vertex v is in Ld+1, its shortest path from s has length d + 1.

We break this into two parts: first we show that there exists a path of length d + 1;

then we show that no path has length < d + 1.

Moving forward: Since v ∈ Ld+1, v has a neighbor v′ ∈ Ld. By the I.H., the shortest

path from s to v′ has length d. Therefore, there is a path from s to v of length d + 1,

so the shortest path from s to v has length at most d + 1.

Now, we show that no path from s to v has length < d + 1. Consider a path of

length k, p = s, v1, . . . , vk−1, v for k < d+ 1. By the I.H., vk−1 is in level Lk−1; but since

there is an edge from vk−1 to v, v must be in Lk or earlier, contradicting our

assumption that v ∈ Ld+1.

BFS to find Shortest Path

Proof: Recall: Proof by strong induction on d. Let’s do the other direction.

Now, assume that for some d, for all 1 ≤ k ≤ d, Lk consists of all vertices whose

shortest path from s has length k. (Goal: show that Ld+1 consists of all vertices w/

shortest path length d + 1.)

Now, we show that if the shortest path from s to v has length d + 1, then v ∈ Ld+1.

By I.H., v /∈ Lj for j < d + 1.

Let p = s, v1, . . . , vd, v be a path of length d + 1 from s to v. By the I.H., vd ∈ Ld.

When we explore the neighbors of vd, we cannot have already explored v since

v /∈ Lj for j < d + 1; thus v ∈ Ld+1

BFS to find Shortest Path (wrapup)

Theorem
For any vertex v in any graph G, v is at depth d of the BFS tree rooted at s if and

only if the shortest path from s to v has length d.

Proof: By strong induction on d. Base case: for d = 0, the only vertex with a

shortest path of length 0 from s is s; we have that L0 = {s} by definition of BFS.

Summary: We have shown that assuming the I.H. for all 1 ≤ k ≤ d, if v ∈ Ld+1, then

the shortest path from s to v has length d+ 1; furthermore, if the shortest path from

s to v has length d + 1, then v ∈ Ld+1. Therefore the inductive step is complete.

BFS Properties (Review/reference)

Useful shorthand: if x ∈ Li , we also write i = L[x].

Lemma

For any undirected graph G, if (x, y) ∈ E, then for any BFS tree on G,

|L[x]− L[y]| ≤ 1.

Theorem
In a connected undirected graph G, BFS starting at any vertex s will visit every

vertex.

Theorem

In any graph G, for any vertex v explored using BFS, L[v] is the distance from s to v.

Theorem

BFS runs in O(n+m) time on any graph with n vertices and m edges.

BFS Properties Summary

• Starts at some node s

• Partitions vertices into levels L0, L1, . . .

• Gives a BFS tree T ; a vertex at height h in the tree is in Lh

• If (x, y) ∈ E, the level of x and y differ by ≤ 1

• A vertex is at height h in T if and only if its shortest path from s has distance h

Implementing BFS

Implementing BFS

• Can we be more specific about how BFS works?

• Maybe give pseudocode?

• Do we need to store the levels explicitly? How should we store them?

• Key insight: we can explore the nodes in level Li in the same order they were

added to Li . (And note that each was added before any node in Li+1)

• So: explore nodes in the same order they were visited! Don’t need to keep

track of the level

BFS Pseudocode

1 BFS(G, s):
2 Put s in a queue Q
3 while Q is not empty:
4 v = Q.dequeue() # take the first vertex from Q
5 if v is not marked as visited:
6 mark v as visited
7 for each edge (v,w):
8 Q.enqueue(w) # add w to Q

Note: this algorithm only works if at start all vertices in G are not marked as visited!

• Question: How can we calculate the BFS tree T?

• Can we guarantee that this is equivalent to the level-by-level version of BFS?

Proof that BFS Algorithms are Equivalent

Theorem

In BFS(G, s), all nodes in level Li are explored (removed from the queue) before

any node in level Li+1

We’ll use the following invariant: if at any time the first instance of the univisted

nodes in the queue are in order v1, v2, . . . , vk, then

L[v1] ≤ L[v2] ≤ · · · ≤ L[vk] ≤ L[v1] + 1.

If this invariant holds, then the theorem is true.

Some intuition: can we rephrase this equation in English?

Proof that BFS Algorithms are Equivalent
Inductive Hypothesis: if after x iterations of the while loop, the order

of the first instance of univisted nodes in the queue v1, v2, . . . , vk,

then L[v1] ≤ L[v2] ≤ · · · ≤ L[vk] ≤ L[v1] + 1.

Base Case: For x = 0, the queue only contains s.

Inductive Step: Assume I.H. after some x ≥ 0 iterations of the while loop. During

(x + 1)st iteration, v1 is removed from the queue and its neighbors are added to the

queue; let u1, . . . , ur be the unvisited neighbors that are not already in the queue.

We have that L[u1] = L[u2] = · · · = L[ur] = L[v1] + 1.

The queue now contains v2, v3, . . . , vk, u1, u2, . . . , ur . By I.H. and the above,

L[v2] ≤ L[v3] ≤ · · · ≤ L[vk] ≤ L[u1] ≤ · · · ≤ L[ur] ≤ L[v1] + 1

Since we also had L[v1] ≤ L[v2] from I.H., we are done:

L[v2] ≤ L[v3] ≤ · · · ≤ L[vk] ≤ L[u1] ≤ · · · ≤ L[ur] ≤ L[v2] + 1

Last BFS Application: Bipartite Testing

• Bipartite graph: graph G whose vertices can be partitioned into V1,V2 where

every edge e has one endpoint in V1 and one endpoint in V2.

Last BFS Application: Bipartite Testing

• How can we test if a given undirected graph is bipartite?

• Maybe greedily assign vertices to one set or the other? Does this always work?

• Today: use BFS

• Run BFS from any start vertex. If there is an edge between two vertices at the
same level, return “not bipartite.” Otherwise, return “bipartite.”

Bipartite Testing

Theorem
The BFS bipartite testing algorithm is correct.

Proof (part 1: correct if returns “bipartite”): If the algorithm returns “bipartite,”

then G is bipartite.

Let V1 be all vertices at even levels, and V2 be all vertices at odd levels. We must

show that every edge is between a vertex in V1 and a vertex in V2.

Consider an edge e = (u, v). We must have that |L[u]− L[v]| ≤ 1 by BFS property.

We cannot have L[u] = L[v], so |L[u]− L[v]| = 1. But then u ∈ V1 and v ∈ V2 (or vice

versa).

Bipartite Testing

Theorem
The BFS bipartite testing algorithm is correct.

Proof (part 2: correct if returns “not bipartite”): If the algorithm returns “not

bipartite,” there is an edge e between two vertices v1 and v2 at the same level k (for

some k). Assume by contradiction that G is bipartite. Then v1 and v2 are in different

partitions; let’s say v1 ∈ V1 and v2 ∈ V2.

Let p1 be the path from s to v1 in the BFS tree T , and let p2 be the path from v2 to s

in T . Both p1 and p2 have length k.

Let p1 = (s = u0, u1, u2, . . . , uk = v1). We know that uk ∈ V1, so uk−1 ∈ V2; and so on.

So if k is odd, s ∈ V2; if k is even then s ∈ V1.

Let p2 = (v2 = w0,w2, . . . ,wk = s). We know that w1 ∈ V2, so w2 ∈ V1; and so on. So

if k is odd, s ∈ V1; if k is even then s ∈ V2. In either case (k odd or even) we have a

contradiction.

BFS is a simple algorithm, but—with careful analysis—it
can accomplish quite a lot!

	Breadth-First Search
	Implementing BFS

