
Lecture 3: Stable Matchings,
Intro to Graphs

Sam McCauley

February 13, 2025

Welcome Back!

• Problem Set 1 released

• Previous homework in at end of class, new homework on the table

• Problem Set 1 partner assignments on GLOW!

• “Tips on proofs” handout posted

• 1st CS Movie night tonight at 6:30 in Wege! You are all invited! Movie: The

Matrix

• Any questions before we start?

Perfect Stable Matching: Problem Setup

• Medical students need to be matched to residencies

• n students, n hospital openings

• Each student ranks what hospital they want to go to

• Orders all n hospitals

• Each hospital ranks all students

Perfect Stable Matching Example

1st 2nd 3rd

OH Chris Aamir Beth

NH Aamir Chris Beth

MA Aamir Chris Beth

1st 2nd 3rd

Aamir NH MA OH

Beth MA OH NH

Chris MA NH OH

• Definition of perfect matching: every student is matched to every hospital

• What is an easy algorithm to create a perfect matching? [On Board #1]

• Question: what qualities might we want to see out of a good matching?

Unstable Pairs

• A matching is unstable if there exists a (student, hospital) pair that would

rather have each other than their current match

• Such a pair wants to ignore our system, and match each other (maybe leaving

others unmatched!)

• Let’s say Chris is matched to MA, Beth is matched to New Hampshire, and

Aamir is matched to Ohio. [On Board #2]

• Who wants to leave the algorithm? What is the unstable pair?

• Answer: Aamir and Massachusetts. Aamir would rather have Massachusetts

than Ohio; Massachusetts would rather have Aamir than Chris.

Stable Matching

• In stable matching: If a student s is matched to a hospital h, then for any

hospital h′ that s prefers to h, h′ is already matched to someone they prefer to

s

• And the reverse: if a hospital h is matched to a student s, any student s′ that h

prefers is matched to a hospital that s′ prefers to h

• Intuitively: if a student calls up a hospital trying to improve their match, the

hospital will always respond that they already are matched to a student they

prefer

Stable Matching Example

[On Board #3]

I claim that I made a stable matching on the board. How can we check this?

Does a stable matching always exist?

• Not obvious!

• How can we prove this?

• Our plan: create an algorithm to find a stable matching. Prove that it works.

Stable Matching: First Attempt

Question: how would you match students to hospitals in practice? This looks a

little like undergraduate admissions. . .

• Proceed in rounds

• Each unmatched hospital makes offer to its top unmatched candidate

• Each student accepts the top offer and rejects others

Let’s try it with our example [On Board #4] and see if it works

It does not work. (Chris, MA) is an unstable pair! (Chris prefers MA to OH; MA

prefers Chris to Beth.)

What went wrong?

• In a single round, MA offered to Aamir and OH offered to Chris

• Chris took OH since it was the best offer in that round

• But Aamir rejected MA! MA was free, but Chris never saw the offer.

• The issue with this algorithm is that if a hospital is rejected by a student, it

might not be considered “on the market” by other students

• Solution: do not permanently commit to our matchings, allow students to trade

up

Gale-Shapley Stable Matching Algorithm

We keep track of “matched” pairs, but do not permanently match

them until the end.

• They’re “engaged” rather than matched

• Each unmatched hospital offers to its top choice that it has not offered to yet

• Each student matches to top offer

• If a student gets a better offer, it rejects current offer and matches to best new

offer

• Implementation detail: we’ll actually have hospitals go one at a time rather

than rounds

Gale-Shapley Pseudocode

1 To begin, all students and hospitals are unmatched
2 while ∃ unmatched hospital who has not proposed to every

student:
3 Let h be such a hospital
4 Let s be highest-ranked student on h’s list that h has not

proposed to
5 if s is unmatched:
6 s and h become matched
7 else:
8 let h′ be the hospital s is currently matched to
9 if s prefers h to h′:

10 s and h become matched
11 h′ becomes unmatched
12 return All matches

Let’s do this out. [On Board #5]

Gale-Shapley Running Time

1 To begin, all students and hospitals are unmatched
2 while ∃ unmatched hospital who has not proposed to every

student:
3 Let h be such a hospital
4 Let s be highest-ranked student on h’s list that h has not

proposed to
5 if s is unmatched:
6 s and h become matched
7 else:
8 let h′ be the hospital s is currently matched to
9 if s prefers h to h′:

10 s and h become matched
11 h′ becomes unmatched
12 return All matches

In pairs: how can you find the next unmatched hospital? First: an O(n) solution.

Can you do it in O(1) time?

Gale-Shapley Running Time

• How long does it take to find an unmatched hospital?

• Can you come up with an O(1) time solution?

• Store unmatched hospitals in a queue (implemented with a doubly-linked list).
Both of the following take O(1) time: (1) find a new unmatched hospital and
remove it from the list (2) add a new unmatched hospital to the list

• How long does it take to find the next student the hospital has not proposed

to? Can you come up with an O(1) time solution?

• One Solution: Store students in a linked list (We always take the next

unproposed student: the first item from the linked list.)

Gale-Shapley Running Time

1 To begin, all students and hospitals are unmatched
2 while ∃ unmatched hospital who has not proposed to every

student:
3 Let h be such a hospital
4 Let s be highest-ranked student on h’s list that h has not

proposed to
5 if s is unmatched:
6 s and h become matched
7 else:
8 let h′ be the hospital s is currently matched to
9 if s prefers h to h′:

10 s and h become matched
11 h′ becomes unmatched
12 return All matches

• We showed: inner loop takes O(1) time

• How many times can the outer loop run?

• Answer: n2: each time a hospital proposes to a new student

Gale-Shapley Running Time

1 To begin, all students and hospitals are unmatched
2 while ∃ unmatched hospital who has not proposed to every

student:
3 Let h be such a hospital
4 Let s be highest-ranked student on h’s list that h has not

proposed to
5 if s is unmatched:
6 s and h become matched
7 else:
8 let h′ be the hospital s is currently matched to
9 if s prefers h to h′:

10 s and h become matched
11 h′ becomes unmatched
12 return All matches

• Outer loop runs n2 times, each time it runs takes O(1)

• Therefore: O(n2) running time

• Challenge question: why is this the best possible?

Gale-Shapley Correctness: Intuition

Need to show:

• The returned matching is perfect

• The returned matching is stable

First, let’s show the matching is perfect—all students are matched to some hospital

and vice versa.

• Invariant: Once a student is proposed to, they will always stay in a match;

furthermore they only swap if they get an offer from a hospital they prefer

• Claim: Every student eventually gets a match (intuitively why?)
• If a student s is unmatched, some hospital h is unmatched.
• h must not have proposed to s
• So h is an unmatched hospital that has not proposed to each student

Goal: Use the above observations to show that the matching is stable

Gale-Shapley Correctness

(Formal) Proof that returned matching is stable (contradiction):

Assume for returned matching M, ∃ (h, s) /∈ M such that (h, s′) ∈ M and (h′, s) ∈ M,

where h prefers s over s′, and s prefers h over h′.

h must have offered to s before s′. Since (h, s) /∈ M, either s broke the match to h,

or s rejected the offer from h.

• A student only breaks a match if it receives a better offer. So if s broke the

match to h, s must prefer h′ to h; contradiction.

• If s rejected the offer from h, it must have been matched to a hospital h′′

which it prefers to h. But again, then s must prefer h′ to h′′, and therefore

prefer h′ to h, a contradiction.

Stable Machings

• Since Gale-Shapley always finds a stable matching, that means a stable

matching must always exist!

• Interesting further questions: are there multiple stable matching? Who
benefits from this algorithm (do hospitals get their preference? Students?)
What happens if there are ties, or partial preferences, or an uneven number of
people?

• Gale-Shapley is used for real-world medical student residency matching
• Changed to student-proposing in 1997 due to classic algorithm favoring hospitals
• Discussed in Algorithmic Game Theory

Gale-Shapley Wrapup

• Nobel prize in economics for this algorithm

• Traditionally called “stable marriage” problem

More Asymptotic Notation

Big Ω

• One can think of big-O as way to say ≤ (ignoring constants and for large n)

• Some true but not useful statements:

• True: Insertion sort takes O(n10) worst-case time

• True: Finding the minimum element in an array using a linear scan takes O(2n)

time

• Big-Ω notation: like big-O, but for ≥

• True: Insertion sort takes Ω(n2) worst-case time

• True: Insertion sort takes Ω(n) worst-case time

• Wrong: Insertion sort takes Ω(n3) worst-cast time

Big Θ

• We have f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n))

• A version of “=” ignoring constants and for large n

• Big Θ is probably how you’ve used big-O up to now.

• Insertion sort takes Θ(n2) time

• True: Gale-Shapley takes O(n3) time

• Wrong: Gale-Shapley takes Θ(n log n) time

• True: Gale-Shapley takes Θ(n2) time

Questions about Running time and Correctness?

Graphs Review

Undirected Graph

A

B

C

D

E V = {A,B,C,D,E}

E = {(A,B), (A,D), (B,C),
(C,D), (C,E), (D,E)}

• Consists of a set of nodes (also called vertices) V and a set of edges E; each

edge consists of a pair of vertices

• Captures pairwise relationships between objects

• Use n = |V| and m = |E| in this class.

Undirected Graph Terminology

A

B

C

D

E V = {A,B,C,D,E}

E = {(A,B), (A,D), (B,C),
(C,D), (C,E), (D,E)}

• Two nodes are neighbors if they share an edge

• A path is a sequence of nodes u1, u2, . . . , uk such that every pair (ui−1, ui) ∈ E.

• A path is simple if all nodes in the path are distinct

Undirected Graph Terminology

A

B

C

D

E V = {A,B,C,D,E}

E = {(A,B), (A,D), (B,C),
(C,D), (C,E), (D,E)}

• The length of a path is the number of edges in the path

• A cycle is a path where u1 = uk

• A cycle is simple if all nodes other than u1 = uk are distinct

Undirected Graph Terminology

• A graph is connected if for any pair of nodes u and v there is a path from u to

v.

A

B

F

C

D

E V = {A,B,C,D,E}

E = {(A,B), (A, F), (B, F),
(C,D), (C,E), (D,E)}

Tree

A

B

C

D

E V = {A,B,C,D,E}

E = {(A,B), (B,C), (C,D), (C,E)}

• A graph is a tree if it is connected and does not contain a cycle

• A graph is a forest if it does not contain a cycle (a forest is a collection of

trees)

• A tree may have a root node. If so, we define the height of a node v in the tree

to be the number of edges in the path from the root node to v.

Graph Traversals

Graph Traversals

• Explore all the vertices and edges of a graph

• Goal: find out something useful about the graph

• Today we’ll find the shortest path between two vertices u and v

• The path with the smallest length that begins with u and ends with v

Graph Traversal Assumptions

• Today: assume that if a node has d neighbors, can find them in O(d) time

• Can “traverse” an edge in time 1

• Can “mark” a vertex as visited in time 1

• We’ll revisit these assumptions next lecture when we discuss adjacency list

representation

Breadth-First Search

Breadth-First Search (BFS)

• We’ll refer to as BFS

• Idea: start with some node s

• Slowly explore outwards from s

• “peeling one layer after another”

BFS Definition: Very High Level Intuition

• We start with some vertex s

• Then we explore the neighbors of s

• Then the neighbors of the neighbors of s

• Then the neighbors of the neighbors of the neighbors of s

• And so on until there are no new neighbors to explore

• Example: https://www.youtube.com/watch?v=N9gL2NOkOVg

https://www.youtube.com/watch?v=N9gL2NOkOVg

BFS Definition: Intuition

We define BFS using a sequence of layers

• Initialize L0 = {s}, i = 0; mark s as visited

• if there exists a node in Li with an unvisited neighbor:

• Set Li+1 to be all unvisited neighbors of nodes in Li ; mark all nodes in Li+1 as
visited; set i = i + 1

Let’s do an example [On Board #6]

Any questions about this algorithm? We’ll look at pseudocode for this

algorithm next lecture

What does BFS Do?

• Keeps exploring until run out of nodes to explore

• Question: can you give an example of a graph (and a starting vertex s in the

graph) where BFS does not visit all nodes?

A

B

F

C

D

E V = {A,B,C,D,E}

E = {(A,B), (A, F), (B, F),
(C,D), (C,E), (D,E)}

If the graph is not connected, BFS will not visit all nodes.

Properties of BFS

• We saw with Gale Shapley: analyzing an algorithm can tell you something

about the problem itself

• Let’s look at two properties of BFS

• You will need to use these on your problem sets and on midterm 1

• They are useful for:

• analyzing BFS
• creating new algorithms
• analyzing the structure of graphs in general!

First key BFS Property

Idea: For any edge (x, y), x and y are stored in the same level, or adjacent levels.

Theorem

If (x, y) ∈ E, and x ∈ Li and y ∈ Lj for a BFS starting at some node s, then i and j

differ by at most 1 (that is to say: |i − j| ≤ 1).

Proof: Assume the contrary, that i − j ≥ 2 or j − i ≥ 2.

First, let’s say i ≥ j + 2. Since y ∈ Lj, all unvisited neighbors of y are added to Lj+1.

Since x is not in level Lj′ for j′ ≤ j, x is unvisited, so x is added to Lj+1, a

contradiction.

Second, let’s say j ≥ i + 2. (This case is basically identical.) Since x ∈ Li , all

unvisited neighbors of x are added to Li+1. Since y is not in level Li′ for i′ ≤ i, y is

unvisited, so y is added to Li+1, a contradiction.

BFS and Connected Graphs

I claim: in a connected graph G, BFS starting at vertex s will visit every vertex. Can

we prove this using the BFS property we showed?

Consider some vertex v; we show that BFS visits v. Since G is connected there is a

path from s to v; call this path p = s, v1, v2, . . . , vk, v.

Idea: We have that s ∈ L0. Since v1 is a neighbor of s, v1 ∈ L1. Let’s generalize to all

vi using an induction.

Prove by induction: vi is in level Lj for some j ≤ i. Base case: i = 1 by above.

Assume true for some i. Since vi+1 is a neighbor of vi , then vi+1 must be in level Lj′

where |j − j′| ≤ 1. Since j ≤ i, we must have j′ ≤ i + 1.

Running BFS

• On disconnected graphs: if we run out of vertices, start again from a new

unvisited vertex

• Cost for BFS to explore a node v with dv neighbors?

• Answer: O(1 + dv)

• Total running time:

∑
v∈V

O(1 + dv) = O

(
n+

∑
v∈V

dv

)
= O(n+ 2m) = O(n+m)

Recall that since each edge is adjacent to two vertices,
∑

dv = 2|E|.

The BFS Tree

• The levels explored by the BFS are the levels of a tree (i.e. the nodes at a

particular height)

• If v′ is a neighbor of v that we add to some level, then v is the parent of v′.

• Let’s do an example [On Board #7]

• We can calculate the BFS tree while doing the BFS in O(n+m) time

• Useful for some applications!

• And some Problem Sets

Second Key Property: BFS to find Shortest Path

• BFS gives the shortest path between the initial vertex s and any other vertex v
in the graph

• We call the length of the shortest path between two vertices u and v the distance
betwen u and v

• How can we formalize?

Theorem
For any vertex v, if v is at height d of the BFS tree rooted at s, then the shortest

path from s to v has length d.

BFS to find Shortest Path

Theorem
For any vertex v, v is at depth d of the BFS tree rooted at s if and only if the

shortest path from s to v has length d.

Proof: By strong induction on d. Base case: for d = 0, the only vertex with a

shortest path of length 0 from s is s; we have that L0 = {s} by definition of BFS.

Now, assume that for some d, for all 1 ≤ k ≤ d, Lk consists of all vertices whose

shortest path from s has length k. (Goal: show that Ld+1 consists of all vertices w/

shortest path length d + 1.)

First, we show that if a vertex v is in Ld+1, its shortest path from s has length d + 1.

We break this into two parts: first we show that there exists a path of length d + 1;

then we show that no path has length < d + 1.

BFS to find Shortest Path

Proof: Now, assume that for some d, for all 1 ≤ k ≤ d, Lk consists of all vertices

whose shortest path from s has length k. (Goal: show that Ld+1 consists of all

vertices w/ shortest path length d + 1.)

First, we show that if a vertex v is in Ld+1, its shortest path from s has length d + 1.

We break this into two parts: first we show that there exists a path of length d + 1;

then we show that no path has length < d + 1.

Since v ∈ Ld+1, v has a neighbor v′ ∈ Ld. By the I.H., the shortest path from s to v′

has length d. Therefore, there is a path from s to v of length d + 1, so the shortest

path from s to v has length at most d + 1.

Now, we show that no path from s to v has length < d + 1. Consider a path of

length k, p = s, v1, . . . , vk−1, v for k < d+ 1. By the I.H., vk−1 is in level Lk−1; but since

there is an edge from vk−1 to v, v must be in Lk or earlier, contradicting our

assumption that v ∈ Ld+1.

BFS to find Shortest Path

Proof: Recall: Proof By strong induction on d.

Now, assume that for some d, for all 1 ≤ k ≤ d, Lk consists of all vertices whose

shortest path from s has length k. (Goal: show that Ld+1 consists of all vertices w/

shortest path length d + 1.)

Now, we show that if the shortest path from s to v has length d + 1, then v ∈ Ld+1.

By I.H., v /∈ Lj for j < d + 1.

Let p = s, v1, . . . , vd, v be a path of length d + 1 from s to v. By the I.H., vd ∈ Ld.

When we explore the neighbors of vd, we cannot have already explored v since

v /∈ Lj for j < d + 1; thus v ∈ Ld+1

BFS to find Shortest Path (wrapup)

Theorem
For any vertex v, v is at depth d of the BFS tree rooted at s if and only if the

shortest path from s to v has length d.

Proof: By strong induction on d. Base case: for d = 0, the only vertex with a

shortest path of length 0 from s is s; we have that L0 = {s} by definition of BFS.

Summary: We have shown that assuming the I.H. for all 1 ≤ k ≤ d, if v ∈ Ld+1, then

the shortest path from s to v has length d+ 1; furthermore, if the shortest path from

s to v has length d + 1, then v ∈ Ld+1. Therefore the inductive step is complete.

BFS Properties Summary

• Starts at some node s

• Partitions vertices into levels L0, L1, . . .

• Gives a BFS tree T ; a vertex at height h in the tree is in Lh

• If (x, y) ∈ E, the level of x and y differ by ≤ 1

• A vertex is at height h in T if and only if its shortest path from s has distance h

Implementing BFS

Implementing BFS

• Can we be more specific about how BFS works?

• Maybe give pseudocode?

• Do we need to store the levels explicitly? How should we store them?

• Key insight: we can explore the nodes in level Li+1 in the same order they were

added to Li+1. (And note that they were added before any node in Li+2)

• So: explore nodes in the same order they were visited!

BFS Pseudocode

1 BFS(G, s):
2 Put s in a queue Q
3 while Q is not empty:
4 v = Q.dequeue() # take the first vertex from Q
5 if v is not marked as visited:
6 mark v as visited
7 for each edge (v,w):
8 Q.enqueue(w) # add w to Q

Note: this algorithm only works if at the start all vertices in G are not marked as

visited!

Question: How can we calculate the BFS tree T? How can we alter this algorithm to

give the levels of each vertex?

Directed Graphs

Directed Graphs

A

B

C

D

E V = {A,B,C,D,E}

E = {(A,B), (B,A), (A,D), (B,C),
(D,C), (C,E), (D,E)}

• In a directed graph, edges have an ordering: an edge (u, v) is from u to v.

• Called directed edges (some call them arcs; I won’t however)

• Good for capturing some kinds of data (website links, etc.)

• Notion of a path, etc., is the same

• We’ll discuss connectivity of directed graphs next lecture

Storing a Graph

How to store a graph?

Goal: Use data structures we know to store a graph to allow things like traversals

• Adjacency List representation

• Adjacency Matrix representation

Adjacency List

• For each vertex, store all neighbor edges/vertices in a linked list

• Works well for:

• Can find all dv neighbors of v in O(1 + dv) time

• Only requires O(n+m) space (why?)

• Does not work well for:

• Given an edge e = (u, v), is e ∈ E?

• Must scan through neighbors of u; requires Ω(du) time.

Example [On Board #8]

Adjacency Matrix

• Store an n× n matrix

• Store a 1 in entry (i, j) if there is an edge from the ith to the jth vertex

• Works well for:

• Given an edge e = (u, v), is e ∈ E in O(1) time.

• Does not work well for:

• Requires Ω(n2) space

• Finding all dv neighbors of v takes Ω(n) time

• Used much less often

Example [On Board #9]

	More Asymptotic Notation
	Graphs Review
	Graph Traversals
	Breadth-First Search
	Implementing BFS
	Directed Graphs
	Storing a Graph

