
Lecture 2: Big O and Stable
Matchings

Sam McCauley

February 10, 2025

Welcome Back!

• Reminder: problem set due Wednesday; daily homeworks starting today

• TA hours on website

• TA hours and office hours in common room for now

• Names today! :)

• Handout on tips for big-O and log rules posted after class

• Any questions before we start?

Correctness Continued

Example 0: Finding Maximum

1 indexOfLargest = 0
2 for j = 1 to i:
3 if A[j] > A[indexOfLargest]
4 indexOfLargest = j

• What does this code do?

• Intuitively, in 1-2 sentences, why?

• What Invariant does it satisfy?

• One answer: after k iterations, indexOfLargest contains the index of the
largest element in A[0] . . .A[k].

Example 0: Finding Maximum

1 indexOfLargest = 0
2 for j = 1 to i:
3 if A[j] > A[indexOfLargest]
4 indexOfLargest = j

Proof.

I.H.: After k iterations (for some j ∈ {1, . . . , i − 1}), indexOfLargest contains the

index of the largest element in A[0] . . .A[k].

Base case: after 0 iterations, indexOfLargest is 0; A[0] is the largest element

in A[0] . . .A[0].

Inductive Step: (contd. next slide)

Example 1: Finding Maximum

1 findMax(A, i):
2 indexOfLargest = 0
3 for j = 1 to i:
4 if A[j] > A[indexOfLargest]
5 indexOfLargest = j

Proof.

I.H.: After k iterations (for some j ∈ {1, . . . , i − 1}), indexOfLargest contains the

index of the largest element in A[0] . . .A[k].

Induc. Step: Assume I.H. is true for some k.

After k + 1st iteration, if A[k + 1] > A[indexOfLargest], then

indexOfLargest = k + 1, and the I.H is true for k + 1 since A[k + 1] is the largest

element in A[0] . . .A[k + 1].

Otherwise, indexOfLargest remains the same, and the I.H. is true for k+ 1 since

A[indexOfLargest] is the largest element in A[0] . . .A[k + 1].

Example 1: Selection Sort

1 selectionSort(A):
2 for i = |A|-1 to 0:
3 indexOfLargest = 0
4 for j = 1 to i:
5 if A[j] > A[indexOfLargest]
6 indexOfLargest = j
7 swap(A, i, indexOfLargest)
8
9 swap(A, i, j): // swaps A[i] and A[j]

10 temp = A[i]
11 A[i] = A[j]
12 A[j] = temp

• What does the inner loop of selection sort do?

• Intuitively, in 1-2 sentences, why is this algorithm correct?

• How can we turn this into an inductive proof?

Example 1: Selection Sort

1 selectionSort(A):
2 for i = |A|-1 to 0:
3 indexOfLargest = 0
4 for j = 1 to i:
5 if A[j] > A[indexOfLargest]
6 indexOfLargest = j
7 swap(A, i, indexOfLargest)
8
9 swap(A, i, j): // swaps A[i] and A[j]

10 temp = A[i]
11 A[i] = A[j]
12 A[j] = temp

• Invariant: after k iterations of the outer loop, the last k positions in A contain

the k largest elements in sorted order.

• How could we turn this into an inductive proof? What is the inductive

hypothesis?

Proofs in CS 256

• Proofs are a language for you to communicate with me

• Level of detail?

• Pretend you are explaining to a skeptical classmate.

• Practice your explanation on a skeptical rubber duck

• When in doubt: write anything you assume.

Example 2: Insertion Sort

1 insertionSort(A):
2 for i = 0 to |A| - 1:
3 j = i
4 while j > 0 and A[j] < A[j-1]:
5 swap(A[j-1], A[j]) # swaps A[j-1] and A[j]
6 j = j - 1

• What invariant can we guarantee after the outer loop executes i times?
• Does the selection sort invariant work?
• No! The largest element isn’t in the correct place after one loop; nor is the

smallest.
• Idea: Items in A[0] through A[i] are in increasing order

• Intuitively, in 1-2 sentences, why is this algorithm correct?
• How can we turn this into an inductive proof?

• Good at-home exercise. For the sake of time (and reference), I have a proof in
the slides.

Insertion Sort 3-sentence Explanation of Correctness

The algorithm maintains the invariant that after k iterations of the outer loop, items

in A[0] through A[k] are in increasing order.

This is maintained because on the k + 1st iteration, the inner loop repeatedly

swaps the element e that began in A[k+ 1] with the previous element if e is smaller

than the previous element.

The inner loop therefore maintains that A[0] through A[k] are in the same order,

and it places the e in the correct position; therefore, A[0] through A[k + 1] are in

increasing order.

Insertion Sort Inductive Proof of Correctness

Theorem

After k iterations of the outer loop, the items in A[0] through A[k − 1] are in

increasing order.

Proof: By induction. Base case: for k = 1, A[0] is always in increasing order.

Inductive step: Assume true for some k ≥ 1. During the k + 1st iteration of the

outer loop, the inner loop maintains that for any j: all items from A[j] to A[k] are in

increasing order.

After the inner loop completes, all items from A[0] to A[j − 1] are in increasing

order (by the I.H. since they were unchanged), and are less than A[j] (otherwise the

loop would not stop). Thus, when the k + 1st iteration of the outer loop completes,

all items from A[0] through A[k] are in increasing order.

Power of Invariants

• Can help figure out why algorithms work

• Or don’t work! Great for bug finding

• No universal rule for finding invariants. Some tips:

• Try small examples, see what happens

• What are we trying to solve? What kind of partial work is helpful?

• What internal state would make the algorithm wrong? Can this happen?

Correctness in CS 256

• I will frequently ask you to explain correctness

• I will only occasionally ask you to prove correctness

Questions about Correctness?

Running Time

Two Broad Questions about Algorithms

• Correctness: does this algorithm work?

• Running time: how fast is this algorithm?

What do we want out of a running time guarantee?

• Is a guarantee (is always as fast as we say)

• Platform-independent

What do we want out of a running time guarantee?

• Is a guarantee (is always as fast as we say)

• Platform-independent

• Analyze as data becomes large

Big-O notation

• Ignore constants (they are platform-dependent)

• Analyze performance as input size n becomes large

Definition: f(n) is O(g(n)) if there exist constants c and n0 such that:

∀n > n0, f(n) ≤ c · g(n)

Big-O notation

• Ignore constants (they are platform-dependent)

• Analyze performance as input size n becomes large

Definition: f(n) is O(g(n)) if there exist constants c and n0 such that:

∀n > n0︸ ︷︷ ︸
large n

, f(n) ≤ c · g(n)︸ ︷︷ ︸
ignore constants

I will not ask you to formally prove functions are

big-O of others in this class. But I may ask you if

one is big-O of another (without proof).

Big-O Discussion

• In the past, you’ve used big-O to talk about running time

• But really it’s just a way to compare if a function is at least as big as another

• Can be bigger!

• You can say “this algorithm takes O(n2) time”

• More formally, what you mean is: “the function of the total number of

operations taken by this algorithm in the worst case is bounded by O(n2)”

• You can say big O for things other than running time! You ignore constants

and assume n is large.

• In pairs: Let’s say a graph has n vertices. In big-O notation, how many edges

does it have?

(Hint: there can be at most one edge for each pair of vertices in a graph.)

Big-O Notation: Some Useful Assumptions

In this class you can assume:

• If the function is a polynomial, can just take the element with the largest
exponent

• Example: .3n5 + 1000n2 + 2n = O(n5)

• Logs are smaller than any polynomial

• Example: log n = O(n.01)

• Exponents are larger than any polynomial

• Example: n100 = O(2n)

• O(1) is any constant independent of n

• Example: 2000 = O(1) or .01 = O(1).

Running time example 1: Selection Sort

1 selectionSort(A):
2 for i = |A|-1 to 0:
3 indexOfLargest = 0
4 for j = 1 to i:
5 if A[j] > A[indexOfLargest]
6 indexOfLargest = j
7 swap(A[i], A[indexOfLargest])

Running time example 1: Selection Sort

1 selectionSort(A):
2 for i = |A|-1 to 0: # c1 time (per loop)
3 indexOfLargest = 0 # c2 time
4 for j = 1 to i: # c3 time (per loop)
5 if A[j] > A[indexOfLargest] # c4 time
6 indexOfLargest = j # c5 time
7 swap(A[i], A[indexOfLargest]) # c6 time

Total running time? [On Board #1]

O(n2) time

Simplifying running time

• We always use big-O for running time in this class

• So no need to track constants!

• Assume all basic operations take time 1 (or any c basic operations)

• Aside: Formally, we work in the “Word RAM Model.”

• Access array items, manipulate numbers, execute instructions in time 1

• We won’t use this model formally in this class

Selection Sort Simplified

1 selectionSort(A):
2 for i = |A|-1 to 0:
3 indexOfLargest = 0
4 for j = 1 to i:
5 if A[j] > A[indexOfLargest]
6 indexOfLargest = j
7 swap(A[i], A[indexOfLargest])

Running time for n = |A|:

0∑
i=n−1

1 +
i∑

j=0

1

 =
0∑

i=n−1

i + 1 =
n∑
j=1

j = n(n+ 1)/2 = O(n2).

This is how we will analyze running time in this class.

Running Time

• Running time of for loops is usually straightforward since we know how many

times they run.

• For while loops, we need to account for time more carefully.

Example 2: Insertion Sort

1 insertionSort(A):
2 for i = 0 to |A| - 1:
3 j = i
4 while j > 0 and A[j] < A[j-1]:
5 swap(A[j-1], A[j]) # swaps A[j-1] and A[j]
6 j = j - 1

• How many steps is the inner loop at most?

• O(i). (O(n) is also an OK answer here)

• What is the final running time?

• O(n2)

Ignoring Constants Motivation

Gale-Shapley Stable Matching

Perfect Stable Matching: Problem Setup

• Medical students need to be matched to residencies

• n students, n hospital openings

• Each student ranks what hospital they want to go to

• Orders all n hospitals

• Each hospital ranks all students

Perfect Stable Matching Example

1st 2nd 3rd

OH Chris Aamir Beth

NH Aamir Chris Beth

MA Aamir Chris Beth

1st 2nd 3rd

Aamir NH MA OH

Beth MA OH NH

Chris MA NH OH

• Definition of perfect matching: every student is matched to every hospital

• What is an easy algorithm to create a perfect matching? [On Board #2]

• Question: what qualities might we want to see out of a good matching?

Unstable Pairs

• A matching is unstable if there exists a (student, hospital) pair that would

rather have each other than their current match

• Such a pair wants to ignore our system, and match each other (maybe leaving

others unmatched!)

• Let’s say Chris is matched to MA, Beth is matched to New Hampshire, and

Aamir is matched to Ohio. [On Board #3]

• Who wants to leave the algorithm? What is the unstable pair?

• Answer: Aamir and Massachusetts. Aamir would rather have Massachusetts

than Ohio; Massachusetts would rather have Aamir than Chris.

Stable Matching

• In stable matching: If a student s is matched to a hospital h, then for any

hospital h′ that s prefers to h, h′ is already matched to someone they prefer to

s

• And the reverse: if a hospital h is matched to a student s, any student s′ that h

prefers is matched to a hospital that s′ prefers to h

• Intuitively: if a student calls up a hospital trying to improve their match, the

hospital will always respond that they already are matched to a student they

prefer

	Correctness Continued
	Running Time
	Gale-Shapley Stable Matching

