Lecture 1: Introduction and
Proofs of Correctness

Sam McCauley
February 5, 2025

Welcome!

e I'm Sam
e Call me Sam :); he pronouns

e This is algorithms (CS 256)

e Dialogue is encouraged! Please let me know if you have questions or
comments.

What is This Course?

Day to day of Algorithms

e No coding in this class

e Focus is on high-level strategies (a.k.a. algorithms)

e English descriptions, proofs, short answers/counterexamples

Question for the class: Why are you taking the course?

Two Broad Questions about Algorithms

P 100%

z N3
i] GUARANTEE (i
B

A

e Correctness: does this algorithm work?

e Running time: how fast is this algorithm?

What We’ll Look at in This Class

1. Given a piece of code, or high-level strategy, does it work?

N

. Does it always work?

3. Or: what does it do?

. Is it fast?

N

5. If we move to another domain, will it still be fast?

Why Algorithms?

e It’s a different way of thinking about computer science

e Some of you may use it a lot

e All of you (in my opinion) will benefit from having seen it

Proofs

You and I will largely communicate via proofs

Proofs: structure on top of intuition

Remove

Strengthens intuition

How I View This Course

Algorithms is (kind of) a writing course

Specifically:

You can’t just (say) run your program to know if it's correct

There are often multiple right answers

An answer may get full points, but may still have room for significant
improvements in clarity

Best way to get better is to practice!

Takeaways from this

e We'll spend lots of time in class practicing how to evaluate proofs

e Goal: give you the tools to know going in if a proof is correct or not

e It's OK to struggle with some topics!

e Come to office hours!

e You can have strong performance in the class without feeling like an expert

Course Resources and Overview

Tools We’ll Use

e Course website

e Overleaf/latex

e Gradescope

What are LLMs (ChatGPT, etc) good at?
What are they OK at?
What are they bad at?

LLMs (my opinion)

What are some things LLMs are good at?

Writing effectively

Using APIs

Interpreting “human” input

Regurgitating very well-known concepts (and code); simple refactoring

LLMs

What are some things LLMs are OK at?

e Giving answers to factual questions

e The answers are usually phrased quite well

e Oftentimes it's right. But reasonably often it's not. (Does not affect its
confidence)

e Can be a good tool if these caveats are kept in mind

e Along similar lines: giving proofs/explanations/pseudocode of well-known
algorithms

e Fingers

LLMs

What are some things LLMs are bad at?

e Computation and calculation

@ 123 * 4567 = 562,641.

a

%

123 * 4567 =

561741

AC

what is 123 * 4567

LLMs

What are some things LLMs are bad at?

e Computation and calculation

e Algorithms and proofs

o It will look very confident
e The answers are very wrong

o We’'ll use this in class sometimes

Questions about course resources?

Plan for Rest of Today

Intro/review: reading pseudocode, expectations for proofs, etc.

Use some likely-familiar algorithms as examples
e And some algorithms that, probably, none of you have seen before

Goal: Good foundation to get you started

On Monday we’ll move to the “Stable Matching” problem

Pseudocode

Pseudocode

We will give algorithms in two ways in this course:

e English descriptions, and

e Pseudocode

Code is a way for humans to unambiguously give computers instructions

Pseudocode is a way for humans to communicate with each other

o Keeps the structure of code

e Does not rely on language-specific knowledge

You will not need to write pseudocode in this course

Writing Pseudocode

e [ooks very much like simple Python
e Basic keywords: if, else, while, etc.

e Basic arithmetic operations + - * / %, use superscripts for exponents, write
log

e Assume 0-indexed arrays, inclusive for loops
e Explain any non-trivial steps in English

e Idea: make it as clear as possible!

Pseudocode Example 1

function findElement(A):
minSoFar = A[0]
for i = 1 to n-1:
if A[i] < minSoFar:
minSoFar = A[i] # we found a new smallest
return minSoFar

Pseudocode Example 2

It's OK to use sets in pseudocode. Instead of library functions, write in English (if
unambiguous!).

function findEven(A):
B=10
for xe€A:
if x % 2 == 0:
B=BU{x}.
Sort B using Merge Sort // O(n log n) time
return B

(Recall:) Two Questions about Algorithms

100%

o
i‘ GUARANTEE Ti
1 —,-T A

- "
TNANY

e Correctness: does this algorithm work?

e Running time: how fast is this algorithm?

Let’s start with (a very simple example of) correctness!

Algorithm Correctness

Correctness today

e We'll prove, in detail, that some algorithms are correct

e Some (but not all) review
e Correctness can be obvious, and is often omitted

e For practice, we'll start with some cases where correctness is not so interesting.
The focus will be on transfer from discrete math to CS

o We'll talk about how short English explanations can be an effective alternative to
formal proofs

e We’'ll soon get to some non-obvious proofs

Algorithmic Invariants

Definition (Invariant)

If we stop an algorithm in the middle of its execution, what can we guarantee
about its state?

Heart of all algorithms

When looking at an algorithm for the first time, ask yourself what invariants it
satisfies

Loops are often key. What is the code doing each time a loop runs from top to

bottom?

A proof by induction is a formal way of analyzing an invariant

Example 0: Finding Maximum

indexOfLargest = 0
for j = 1 to 1:
if A[j] > A[indexOfLargest]
indexOfLargest = j

What does this code do?

Intuitively, in 1-2 sentences, why?

What Invariant does it satisfy? (What happens each time the for loop runs?)

e One answer: after k iterations, indexOfLargest contains the index of the
largest element in A[®] ... A[K].

In pairs: how can we formalize this with an inductive proof? (What are the
pieces of an inductive proof?)

Example 0: Finding Maximum

indexOfLargest = 0
for j = 1 to 1:
if A[j] > A[indexOfLargest]
indexOfLargest = j

I.H.: After k iterations, indexOfLargest contains the index of the largest
element in A[®]...A[k].

Base case: after O iterations, indexOfLargest is O; A[Q] is the largest element
in A[]...A[8].

Inductive Step: (contd. next slide) O

Example 0: Finding Maximum

findMax (A, 1i):
indexOfLargest = 0
for j = 1 to 1:
if A[j] > A[indexOfLargest]
indexOfLargest = j

I.H.: After k iterations, indexOfLargest contains the index of the largest
element in A[®] ... A[k].

Induc. Step: Assume I.H. is true for some k.

During the k + 1st iteration, if A[k + 1] > A[indexOfLargest], then by the I.H.

Ak 4 1] is the largest element in A[®] ... Ak + 1]. After the k + 1st iteration,
indexOfLargest = k + 1, and the L.H. is true for k + 1.

Otherwise, indexOfLargest remains the same, and the I.H. is true for k + 1 since
A[indexOfLargest] is the largest element in A[®] ... A[k + 1]. O

Example 1: Selection Sort

selectionSort(A):
for i = |A|-1 to O:
indexOfLargest = 0
for j = 1 to 1:
if A[j] > A[indexOfLargest]
indexOflLargest = j
swap (A, i, indexOfLargest)

swap(A, i, j): // swaps A[i] and A[j]

temp = A[1]
A[i] = A[]]
A[j] = temp

e What does the inner loop of selection sort do?

e Intuitively, in 1-2 sentences, why is this algorithm correct?

Proofs in CS 256

Proofs are a language for you to communicate with me

Level of detail: judgment call

Rule of thumb: imagine you're explaining to a skeptical classmate

e They are trying to understand you; are willing to fill in details

e But they are always asking questions

Skeptical rubber duck explanation

Example 2: Insertion Sort

insertionSort(A):
for i = 0 to |A] - 1:
j o=
while j > 0 and A[j-1] > A[j]:
swap(A[-11, A[j]1) # swaps A[j-1] and A[]]
j=3-1

e What invariant can we guarantee after the outer loop executes 7 times?

e Intuitively, in 1-2 sentences, why is this algorithm correct?

Insertion Sort 2-sentence Explanation of Correctness

e Invariant: after k iterations of the outer loop, items in A[®] through A[k] are in
sorted order.

e So after n — 1 iterations, A[®] through A[n — 1] are in sorted order—the array is
sorted!

e This invariant maintained because on the k + 1st iteration of the outer loop, the
inner loop swaps A[k + 1] with each larger element among the first k elements.

e How could we turn this into a proof by induction?

Power of Invariants

e Can help figure out why algorithms work

e Or don’t work! Great for bug finding
e No universal rule for finding invariants. Some tips:

e Try small examples, see what happens
e What are we trying to solve? What kind of partial work is helpful?

e What internal state would make the algorithm wrong? Can this happen?

Correctness in CS 256

o I will frequently ask you to explain correctness

¢ I will occasionally ask you to prove correctness

e Level of detail is a judgment call.

o We'll practice

Skeptical rubber duck

Questions about Correctness?

	What is This Course?
	How I View This Course
	Course Resources and Overview
	Pseudocode
	Algorithm Correctness

