
Lecture 1: Introduction and
Proofs of Correctness

Sam McCauley

February 5, 2025

Welcome!

• I’m Sam

• Call me Sam :); he pronouns

• This is algorithms (CS 256)

• Dialogue is encouraged! Please let me know if you have questions or

comments.

What is This Course?

Day to day of Algorithms

• No coding in this class

• Focus is on high-level strategies (a.k.a. algorithms)

• English descriptions, proofs, short answers/counterexamples

Question for the class: Why are you taking the course?

Two Broad Questions about Algorithms

• Correctness: does this algorithm work?

• Running time: how fast is this algorithm?

What We’ll Look at in This Class

1. Given a piece of code, or high-level strategy, does it work?

2. Does it always work?

3. Or: what does it do?

4. Is it fast?

5. If we move to another domain, will it still be fast?

Why Algorithms?

• It’s a different way of thinking about computer science

• Some of you may use it a lot

• All of you (in my opinion) will benefit from having seen it

Proofs

• You and I will largely communicate via proofs

• Proofs: structure on top of intuition

• Remove ambiguity

• Strengthens intuition

How I View This Course

Algorithms is (kind of) a writing course

Specifically:

• You can’t just (say) run your program to know if it’s correct

• There are often multiple right answers

• An answer may get full points, but may still have room for significant

improvements in clarity

• Best way to get better is to practice!

Takeaways from this

• We’ll spend lots of time in class practicing how to evaluate proofs

• Goal: give you the tools to know going in if a proof is correct or not

• It’s OK to struggle with some topics!

• Come to office hours!

• You can have strong performance in the class without feeling like an expert

Course Resources and Overview

Tools We’ll Use

• Course website

• Overleaf/latex

• Gradescope

What are LLMs (ChatGPT, etc) good at?

What are they OK at?

What are they bad at?

LLMs (my opinion)

What are some things LLMs are good at?

• Writing effectively

• Using APIs

• Interpreting “human” input

• Regurgitating very well-known concepts (and code); simple refactoring

LLMs

What are some things LLMs are OK at?

• Giving answers to factual questions

• The answers are usually phrased quite well

• Oftentimes it’s right. But reasonably often it’s not. (Does not affect its
confidence)

• Can be a good tool if these caveats are kept in mind

• Along similar lines: giving proofs/explanations/pseudocode of well-known

algorithms

• Fingers

LLMs

What are some things LLMs are bad at?

• Computation and calculation

LLMs

What are some things LLMs are bad at?

• Computation and calculation

• Algorithms and proofs

• It will look very confident

• The answers are very wrong

• We’ll use this in class sometimes

Questions about course resources?

Plan for Rest of Today

• Intro/review: reading pseudocode, expectations for proofs, etc.

• Use some likely-familiar algorithms as examples

• And some algorithms that, probably, none of you have seen before

• Goal: Good foundation to get you started

• On Monday we’ll move to the “Stable Matching” problem

Pseudocode

Pseudocode

• We will give algorithms in two ways in this course:

• English descriptions, and

• Pseudocode

• Code is a way for humans to unambiguously give computers instructions

• Pseudocode is a way for humans to communicate with each other

• Keeps the structure of code

• Does not rely on language-specific knowledge

• You will not need to write pseudocode in this course

Writing Pseudocode

• Looks very much like simple Python

• Basic keywords: if, else, while, etc.

• Basic arithmetic operations + - * / %, use superscripts for exponents, write

log

• Assume 0-indexed arrays, inclusive for loops

• Explain any non-trivial steps in English

• Idea: make it as clear as possible!

Pseudocode Example 1

1 function findElement(A):
2 minSoFar = A[0]
3 for i = 1 to n-1:
4 if A[i] < minSoFar:
5 minSoFar = A[i] # we found a new smallest
6 return minSoFar

Pseudocode Example 2

It’s OK to use sets in pseudocode. Instead of library functions, write in English (if

unambiguous!).

1 function findEven(A):
2 B = ∅
3 for x ∈ A:
4 if x % 2 == 0:
5 B = B ∪ {x}.
6 Sort B using Merge Sort // O(n log n) time
7 return B

(Recall:) Two Questions about Algorithms

• Correctness: does this algorithm work?

• Running time: how fast is this algorithm?

Let’s start with (a very simple example of) correctness!

Algorithm Correctness

Correctness today

• We’ll prove, in detail, that some algorithms are correct

• Some (but not all) review

• Correctness can be obvious, and is often omitted

• For practice, we’ll start with some cases where correctness is not so interesting.
The focus will be on transfer from discrete math to CS

• We’ll talk about how short English explanations can be an effective alternative to
formal proofs

• We’ll soon get to some non-obvious proofs

Algorithmic Invariants

Definition (Invariant)

If we stop an algorithm in the middle of its execution, what can we guarantee

about its state?

• Heart of all algorithms

• When looking at an algorithm for the first time, ask yourself what invariants it

satisfies

• Loops are often key. What is the code doing each time a loop runs from top to

bottom?

• A proof by induction is a formal way of analyzing an invariant

Example 0: Finding Maximum

1 indexOfLargest = 0
2 for j = 1 to i:
3 if A[j] > A[indexOfLargest]
4 indexOfLargest = j

• What does this code do?

• Intuitively, in 1-2 sentences, why?

• What Invariant does it satisfy? (What happens each time the for loop runs?)

• One answer: after k iterations, indexOfLargest contains the index of the
largest element in A[0] . . .A[k].

• In pairs: how can we formalize this with an inductive proof? (What are the

pieces of an inductive proof?)

Example 0: Finding Maximum

1 indexOfLargest = 0
2 for j = 1 to i:
3 if A[j] > A[indexOfLargest]
4 indexOfLargest = j

Proof.
I.H.: After k iterations, indexOfLargest contains the index of the largest

element in A[0] . . .A[k].

Base case: after 0 iterations, indexOfLargest is 0; A[0] is the largest element

in A[0] . . .A[0].

Inductive Step: (contd. next slide)

Example 0: Finding Maximum

1 findMax(A, i):
2 indexOfLargest = 0
3 for j = 1 to i:
4 if A[j] > A[indexOfLargest]
5 indexOfLargest = j

Proof.
I.H.: After k iterations, indexOfLargest contains the index of the largest

element in A[0] . . .A[k].

Induc. Step: Assume I.H. is true for some k.

During the k + 1st iteration, if A[k + 1] > A[indexOfLargest], then by the I.H.

A[k + 1] is the largest element in A[0] . . .A[k + 1]. After the k + 1st iteration,

indexOfLargest = k + 1, and the I.H. is true for k + 1.

Otherwise, indexOfLargest remains the same, and the I.H. is true for k+ 1 since

A[indexOfLargest] is the largest element in A[0] . . .A[k + 1].

Example 1: Selection Sort

1 selectionSort(A):
2 for i = |A|-1 to 0:
3 indexOfLargest = 0
4 for j = 1 to i:
5 if A[j] > A[indexOfLargest]
6 indexOfLargest = j
7 swap(A, i, indexOfLargest)
8
9 swap(A, i, j): // swaps A[i] and A[j]

10 temp = A[i]
11 A[i] = A[j]
12 A[j] = temp

• What does the inner loop of selection sort do?

• Intuitively, in 1-2 sentences, why is this algorithm correct?

Proofs in CS 256

• Proofs are a language for you to communicate with me

• Level of detail: judgment call

• Rule of thumb: imagine you’re explaining to a skeptical classmate

• They are trying to understand you; are willing to fill in details

• But they are always asking questions

• Skeptical rubber duck explanation

Example 2: Insertion Sort

1 insertionSort(A):
2 for i = 0 to |A| - 1:
3 j = i
4 while j > 0 and A[j-1] > A[j]:
5 swap(A[j-1], A[j]) # swaps A[j-1] and A[j]
6 j = j - 1

• What invariant can we guarantee after the outer loop executes i times?

• Intuitively, in 1-2 sentences, why is this algorithm correct?

Insertion Sort 2-sentence Explanation of Correctness

• Invariant: after k iterations of the outer loop, items in A[0] through A[k] are in

sorted order.

• So after n− 1 iterations, A[0] through A[n− 1] are in sorted order—the array is

sorted!

• This invariant maintained because on the k+ 1st iteration of the outer loop, the

inner loop swaps A[k+ 1] with each larger element among the first k elements.

• How could we turn this into a proof by induction?

Power of Invariants

• Can help figure out why algorithms work

• Or don’t work! Great for bug finding

• No universal rule for finding invariants. Some tips:

• Try small examples, see what happens

• What are we trying to solve? What kind of partial work is helpful?

• What internal state would make the algorithm wrong? Can this happen?

Correctness in CS 256

• I will frequently ask you to explain correctness

• I will occasionally ask you to prove correctness

• Level of detail is a judgment call.

• We’ll practice

Skeptical rubber duck

Questions about Correctness?

	What is This Course?
	How I View This Course
	Course Resources and Overview
	Pseudocode
	Algorithm Correctness

