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Parts of a Dynamic Program

Let’s go through the parts of a dynamic program, and look at some tips on how to fill in each.

Subproblem Definition: The subproblem definition is what the entries in your dynamic program-
ming table mean. In other words, if you fill in an entry like M [2] = 5, the subproblem definition
says what that 5 represents. Perhaps something like “the best solution using just the first two items
has cost 5”. The subproblem definition is o�en useful to help cross-check your work (we’ll mention it
many times later in this document).

First, let’s talk about rules and some common pitfalls. The subproblem definition should always be
a number—you should not store extra information in your dynamic programming table like “what
set did I use” or “what was the last item I used” or anything along those lines.1 Furthermore, the
subproblem definition should always be an value representing optimal cost of some solution to the
problem—if we want the longest increasing subsequence, we’ll be storing a subsequence length; if we
want the largest value subset of items we’ll be storing a total value of a subset of items.

Now, let’s talk about how to come up with a subproblem definition for a new problem. The first thing
to try is to just have the ith subproblem be solving the exact same problem we’re trying to solve, but
limited to first i elements of the input. If that does not work, try making changes. Should we insist
that the solution ends at the ith element, or that it includes the ith element? Should we add an extra
variable to the subproblem?

Bear in mind the goal of the subproblem definition. Dynamic programming is ultimately a recursive
technique: we “build up” solutions to larger problems based on solutions we already calculated for
smaller problems. The subproblem definition states what problems we are solving—and, in general,
says how we “build up” the solution over time.

Recurrence: The recurrence is the heart of a dynamic program: usually if you have this, the remain-
ing parts can be filled out relatively quickly.

1You may want to store extra information in a separate table, like when doing backtracking to find the optimal solution.
But this extra information should not be a part of the recurrence.
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The recurrence states how to fill out an entry in your dynamic programming table, using information
from the input or other dynamic programming table entries. Let’s look at two example recurrences
that we’ve seen already in the class.

OPT (i) = max{OPT (i− 1), vi + OPT (p(i))}

M [i, j] = min
1≤i′≤i

max

M [i′, j − 1],
i∑

t=i′+1
st


In these examples, we have on the le� an entry of the dynamic programming table we want to fill out.
On the right, we have a way to compute the value of that entry using previous dynamic programming
table entries and the input.

Before filling out a recurrence, double check your subproblem definition. Make sure that you under-
stand exactly what this number represents.

Now, let’s talk about how to come up with a recurrence. I o�en recommend splitting into cases. The
idea is that while we don’t (yet) know what the optimal solution looks like, we can split our analysis
of the optimal solution into a few simple cases, calculate the cost of each, and find whichever has the
best cost.

Example. Recall that in the weighted interval scheduling problem, I want to find the highest-
value set of n nonoverlapping intervals. Subproblem i is the cost of the highest-value subset of
the first i intervals.

There are two cases for the optimal solution of the first i intervals: either the ith interval is in the
solution, or it is not.

If the ith interval is in the solution, then OPT (i) consists of two parts: first, the ith interval (with
value vi), and then, the best way to schedule the remaining intervals. Since i is in the solution, all
other intervals in the solution cannot overlap with i; so the best way to schedule all remaining in-
tervals costs OPT (p(i)); where p(i) is the latest interval that does not overlap with i. Therefore,
if the ith interval is in the solution, OPT (i) = vi + OPT (p(i)).

If the ith interval is not in the solution, then the best solution to OPT (i) is the same as the best
solution to OPT (i− 1); therefore, OPT (i) = OPT (i− 1).

We want the highest-value subset, so we take whichever of these cases gives us a larger value:

OPT (i) = max{OPT (i− 1), vi + OPT (p(i))}.

When looking for cases, you are generally looking to truncate the optimal solution. Can you cut a piece
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o� the optimal solution, and split into cases about what it might look like? This o�en takes the form
of something along the lines of:

• Is the last item in, or not in, the optimal solution?

• What is the second-to-last item in the optimal solution?

• Where is the last item in the solution from? (For example, in edit distance, we had multiple
cases based on if the last column in the alignment had a character from string 1, string 2, or
both strings.)

Base Case: The base cases are the values for small problems that you can solvewithout using recur-
sion. You should state specifically how these values should be filled in.

This is in fact the best way to check that you have covered all base cases: you should look at your
recursion. Any entry in your table that is not covered by a base case should have a “valid” recursion—
in particular, no out of bounds table entries. You should cross-reference your subproblem definition
to see what the bounds are of the table, and the evaluation order to see the order in which table entries
are filled in.

Example. Let’s say that my recursion is

M [i] = vi + max{M [i− 2], M [i− 3]}.

I look at my subproblem definition and see that M [i] is the value of the optimal solution for the
first i vertices, including vertex i. This means that i ranges from 1 to n.

I also see that the evaluation order is in increasing order of i, from 1 to n.

Immediately, I have that I need M [1] as a base case, since it’s the first table entry we fill in. Then I
also need M [2] as a base case (otherwise it would access M [0] and M [−1]; both out of bounds),
and M [3] as a base case (it accesses M [0]).

Memoization Structure: This one is usually straightforward; state if the table is one or two dimen-
sional, and exactly how many rows/columns it has.

Evaluation Order: This is almost always in increasing order of i for one-dimensional tables, but
for two-dimensional tables it is important to specify the order (usually row-major or column-major
order).
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The key here is to check the recursion. You want to ensure that when you are filling out a table entry,
each entry you look up has already been filled in.2

Final Solution: Once you are done filling in the table, how can you obtain the solution to the prob-
lem we are trying to solve? The final solution is very closely tied to the subproblem definition; be sure
to look it over carefully before filling this in.

Usually, the final solution is of one of two forms.

If the subproblem definition was extremely similar to the original problem—especially if it is along the
lines of “solve exactly the same problem on the first i elements of the input”—the solution to the final
subproblem is usually just a single entry in the table.

In some cases, the subproblem definition is slightly di�erent from the original problem. In this case,
you may need to search the table—perhaps you want to find the largest entry, or (perhaps) find the
smallest entry in the last column.

Time and Space Analysis: The space is just the total space taken: usually this is just the number
of entries in the dynamic programming table. (If you stored any other tables, those would also count
towards the space.)

For the time taken, I strongly recommend starting by looking at the time spent to fill in a single entry in
the table. What calculations do we need to do to fill in (say) M [i, j]? Then, sum this up over all entries
in the table to obtain the total time.

It can (on relatively rare occasions) be useful to group cells when analyzing costs: in analyzing the
Bellman-Ford algorithm, we showed that all cells in a given column take O(m) time in total to calcu-
late. Summing over the n columns gave us O(nm) running time.

Finding the Solution Itself

The above techniques give us the value of the best possible solution to a problem. With only very rare
exceptions, we can backtrack to get the solution itself.

In this class, we focus mostly on obtaining the value; please bear in mind that for problems in this
class, you do not need to find the solution itself using the techniques explained below unless you
are asked to explicitly.

The key idea of backtracking is that when we did our recurrence, we took the best of several “cases”
for what the optimal solution might look like. If we look at the value of the recurrence—which case

2In particular, you don’t want to “recurse” to fill in that table entry as well.
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led to the best cost—we immediately know what the final portion of the optimal solution looked like.
Doing this recursively gives us the final solution.

Example. Consider the bookshelf problem discussed in class. Our recurrence was

M [i, j] = min
1≤i′≤i

max

M [i′, j − 1],
i∑

t=i′+1
st


Recall that when we discussed this recurrence, we said that i′+1 is the first book assigned to the
last worker.

Let’s consider a relatively small instance, with 8 books and 3 workers. The number of pages in the
books are (in order): 81, 99, 9, 81, 24, 45, 16, 73. The dynamic programming table is as follows:

i (books) M[i][1] M[i][2] M[i][3]
1 81 81 81
2 180 99 99
3 189 108 99
4 270 180 108
5 294 180 114
6 339 180 150
7 355 180 159
8 428 239 180

The optimal cost is M [8][3] = 180. Let’s backtrack to get the optimal solution. We can
see that the recurrence for M [8][3] obtained its optimal value at i′ = 4.a (Namely,
M [8][3] = max{M [4, 2], 158} = 180). This means that books 5 through 8 are assigned
to worker 3; the remaining 4 books are assigned to workers 1 and 2. So we recurse on M [4, 2].

We see that M [4, 2] takes its optimal value at i′ = 2. (Namely, M [4][2] = max{M [2, 1], 90}).
This means that books 3 and 4 are assigned to worker 2; the remaining 2 books are assigned to
worker 1.

We are done! Worker 1 gets books 1 and 2 (180 pages); worker 2 gets books 3 and 4 (90 pages);
worker 3 gets books 5 through 8 (158 pages). We can double check that the cost of this solution
matches the cost from the DP table: the most-overworked worker gets assigned 180 pages, and
this does indeed match.
aThere is actually a tie! We can choose any of i′ = 4, 5, 6, 7. Looking ahead to the final solution, we see that any of

these solutions work: for example, if we move books 5, 6, and 7 to worker 2, we still obtain the same final cost.
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In some cases, it may be useful to, when filling out the dynamic programming table, keep track of
what the minimum was. This saves you extra work later (a�er all, figuring out what i′ was best in the
table in the example was a bit of a pain).
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