
Logarithms and Big-O

Sam McCauley
Algorithms, Spring 2025

Logarithms

The definition of a logarithm is that if bx = y, then logb y = x.

Let’s recall some classic log rules:

Theorem 1. For any a, b, x, y > 0:

logb(xy) = logb x + logb y logb(x/y) = logb x− logb y

loga x = logb x

logb a
logb(xy) = y logb x

Sometimes in this course we may see some somewhat complicated expressions involving logarithms,
especially when there are logarithms in exponents. My recommendation to simplify them is to use the
above log rules to: (1) make all the logs base 2, and (2) put everything into the exponent with 2 as a
base.

Let’s see some an example of this idea in action.

Example. Let’s simplify n1/ log2 n.

Using the above idea, let’s make the equation into an exponent with 2 as the base. Substituting
n = 2log n, we have that n1/ log2 n = (2log n)1/ log2 n. From algebra, we know that (ab)c = abc, so
(2log2 n)1/ log2 n = 2(log2 n)/ log2 n = 2.

Therefore, n1/ log2 n = 2.

Sometimes, the “wrong” variable is in the base of the number. The following theorem is a black box
way to fix it, and its proof uses this same idea of putting everything into an exponent of 2.

Theorem 2. For any a, b, c > 0,
alogb c = clogb a.

Page 1

Logarithms and Big-O CS 256 Spring 2025

Proof. Let’s move everything into the base of 2.

alogb c = (2log2 a)(log2 c)/ log2 b = 2log2 a·log2 c/ log2 b.

Now, a similar sequence of steps get us to the right side of the equation from the theorem.

2log2 a·log2 c/ log2 b = (2log2 c)log2 a/ log2 b = clogb a.

Big O Notation

Big O is a way to talk about functions that is particularly useful for analyzing the running time of an
algorithm. In short: when analyzing the running time, we care about how the algorithm behaves on
large inputs—we do not care about lower-order terms, or multiplying by constants, or the behavior
when n is small.

In a formal sense, we compare two functions using big-O notation. O�entimes, f(n) represents the
number of steps an algorithm takes.

Definition 1. f(n) is O(g(n)) if there exist constants c and n0 such that:

∀n > n0, f(n) ≤ c · g(n)

You can use the following results without proof in this course.1

Theorem 3.

• If the function is a polynomial, it is big-O of the largest exponent.

– Example: .3n5 + 1000n2 + 2n = O(n5)

• Logs are big-O of any polynomial.

– Example: log n = O(n.01)

• Exponents are larger than any polynomial: a polynomial is big-O of any exponential func-

1You may have seen in the past that expressions like f(n) = O(g(n)) are strictly speaking incorrect: one ought to write
f(n) ∈ O(g(n)). Writing = is nonetheless standard practice.

Page 2

Logarithms and Big-O CS 256 Spring 2025

tion.

– Example: n100 = O(2n)

• Any constant independent of n can be represented with O(1)

– Example: 2000 = O(1) or .01 = O(1).

Bear in mind when using big-O is that it’s just an upper bound—even though we write =, you should
think of it as≤.

Example. The following statements are all true:

• n = O(n)

• n = O(n log n)

• n = O(n2)

• 100n = O(n2)

• log n = O(2n)

But all of these statements are false—for large n, the function on the le� is larger, even ignoring
constants:

• n log n = O(n)

• n2 = O(n)

• n2 = O(100n)

• 2n = O(log n)

One tricky part about big-O is that when we say we “do not care about constants,” we meanmultiply-
ing by a constant, like 100n vs n. We do care about the di�erence between 2n and (say) 6n.

Example. We have that 2n = O(6n); however, 6n 6= O(2n).

Proof. We have that 2n = O(6n) because 2n ≤ 6n for n ≥ 1 (so we can take c = 1 and n0 = 1 in
the definition of big-O).

Now, we show that 6n 6= O(2n). Assume the contrary: there exist constants c and n0 such that

Page 3

Logarithms and Big-O CS 256 Spring 2025

for all n > n0, c2n > 6n. Dividing both sides by 2n, we have that c > 6n/2n, which we can rewrite
as c > 3n. But this is not true for any n > log3 c, so it cannot be true for all n > n0.

Big Ω and Big Θ

Students are o�en surprised to hear that big-O is merely an upper bound since that’s not how they’ve
used it in the past (and in all fairness, o�en not how I use it either).

When someone says “insertion sort takes O(n2) time,” it’s reasonable to take it as “this algorithm
takes roughly n2 time” rather than “this algorithm takes at most roughly n2 time, but it could take
less. Maybe it even takes O(n) time. ” That said, the strict definition of big-O is this last
interpretation.

Big-Ω and big-Θ notation address this gap.

First, big-Ω notation (this is a capital Greek letter omega; in latex you can make this symbol with
\Omega) is essentially identical to big-O notation, but with ≥ rather than ≤. (The definitions are
identical but the inequality is swapped.)

Definition 2. f(n) is O(g(n)) if there exist constants c and n0 such that:

∀n > n0, f(n) ≥ c · g(n)

This is used for lower bounds: one could say “any comparison-based sorting algorithm takes at least
Ω(n log n) time”. It can also be used for things other than running time: one could say “any connected
graph with n vertices has2 Ω(n) edges”.

Big-Θ notation (this is a capital Greek letter theta; in latex you can use\Theta) means that two func-
tions are asymptotically the same. This is what people o�en mean when they say big-O.

Definition 3. f(n) is Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

One could say “the worst-case running time of insertion sort is Θ(n2)”, or “the number of possible
ways to make a group of three out of n students is Θ(n3)”.

2To be precise, it has≥ n− 1 edges; therefore one can say it has Ω(n) edges.

Page 4

	Logarithms
	Big O Notation
	Big and Big

