
CS 256: Algorithm Design and Analysis

Problem Set 6 (due 04/16/26)

Instructor: Sam McCauley

Note on Dynamic Programs. For full credit on a dynamic program, you must clearly
state the following parts.

(a) Subproblem definition: your subproblem must have an optimal substructure.
(b) Recurrence: how should the next subproblem be computed using the previous ones?

This is the core of your algorithm and its correctness. A less ideal alternative to a
recurrence is clear pseudocode for the final iterative dynamic-programming algorithm.

(c) Base case(s): you need to start somewhere!
(d) Final output: in terms of your subproblem.
(e) Memoization data structure: this is often obvious but should not be skipped.
(f) Evaluation order: describes the dependencies between the subproblems.
(g) Time and space analysis.

For this assignment, these are sufficient to argue correctness (that is to say, if you explain
why the above parts are correct, that’s sufficient to show that your algorithm works properly).

1



Problem Set 6 2

Problem 1. (Erickson 3.6)

A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of Xand Y in the same order.For example, the string BA-
NANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both
shuffles of DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

Given three strings A[1..m], B[1..n], and C[1..m + n], describe and analyze a dynamic
programming algorithm to determine whether C is a shuffle of A and B. Remember to
fill in all parts of the recipe for a dynamic program (you can find a reminder of them
above).

Solution.



Problem Set 6 3

Problem 2. (From Steve Skiena’s Algorithm Design Manual) Consider the problem of stor-
ing n books on shelves in a library. The order of the books is fixed by the cataloging system
and so cannot be rearraged. Let book bi have thickness ti and height hi, for 1 ≤ i ≤ n. Let
the length of each bookshelf at this library be L. Suppose we have the freedom to adjust
the height of each shelf to fit the tallest book on it. The cost of a particular layout is the
sum, over each shelf, of the height of the largest book on that shelf. (So if shelf 1 has books
with heights (1, 5, 3) and shelf 2 has books with heights (2, 4), the total cost is 5 + 4 = 9.)

(a) Give an example to show that the greedy algorithm of stuffing each shelf as full as
possible (that is, fill the first shelf with as many books as possible until book bi does
not fit, and then repeat the same process on subsequent shelves) does not always give
the minimum overall height.

(b) Give a dynamic programming algorithm that computes the height of the optimal ar-
rangement, and analyze its time and space complexity.

Hint. We have done a similar example in class with a different cost function and
constraints.

Solution.



Problem Set 6 4

Problem 3. Two friends Rosa and Beth are planning a hike to the top of a mountain. There
are n lookout points situated at varying points on the mountain (including one at the top),
and an extensive network of trails connecting these lookout points.1

Rosa and Beth want to find the shortest path from the base of the mountain to the top
of the mountain under two constraints. First, Rosa and Beth want to (between the two of
them) visit all n lookout points: any lookout point i should either be on Rosa’s route or
Beth’s route. Second, neither wants to backtrack: if Rosa visits lookout point i, Rosa’s next
lookout point should be at a higher elevation. Similarly, when Beth visits some lookout point
j, Beth’s next lookout point should be at a higher elevation.

Assume that the n lookout points are given in sorted order of elevation and that there
are no ties (so lookout point i is higher than lookout point k when i > k).

You are given the following input: for each pair of lookout points x, y, you are given the
distance d(x, y) to hike from lookout point x to lookout point y. Give an algorithm to find
the shortest total path length (i.e. the sum of Rosa’s path length and Beth’s path length)
through the mountain such that (1) Rosa or Beth visit all lookout points, and (2) the path
Rosa takes, and the path Beth takes, each visit lookout points in increasing order. Both
paths start at lookout point 1, and end at lookout point n (lookout point n is at the top of
the mountain).2

Give an O(n2) dynamic programming algorithm to find the optimal pair of paths, mini-
mizing the total distance hiked in sum by Rosa and Beth (In the “time and space” section
please explain why your algorithm is O(n2).)

Solution.

(a) Subproblem definition:

Hint. Use the following subproblem definition. You do not need to create your own
subproblem for this problem. (If you want to change this that’s OK—but there is
a correct answer that uses this subproblem definition.)

Entry (i, j) in the dynamic programming table represents two paths such that Rosa’s
path is from 1 to i; Beth’s path is from 1 to j, and every vertex from 1 to max{i, j} is
visited by one of the two paths.

Let S(i, j) be the smallest total length (sum of the two paths) of Rosa and Beth’s path
satisfying these constraints.

(We do not use S(i, i).)

(b) Recurrence:

1Note that we don’t use the specific trail layout in this problem: we just use the distance between any
two lookout points. Basically: assume there is some path from any lookout point to any other.

2This means that both Rosa and Beth visit lookout points 1 and n. Any other lookout point will only be
visited by one of them.



Problem Set 6 5

Hint. First, let’s say that either i > j + 1, or j > i+ 1. What is the recurrence for
S(i, j)? (This recurrence is unusually short.)

Then, let’s say that i = j + 1 or j = i+ 1. What is the recurrence for S(i, j)?

(c) Base case(s):

(d) Final output:

(e) Memoization data structure:

(f) Evaluation order:

(g) Time and space analysis

Hint. For the time analysis, treat the total time of the two cases in your recurrence
separately.



Problem Set 6 6

Problem 4 (From “Algorithms Illuminated” by Roughgarden).

(a) In the Bellman-Ford algorithm, we update the shortest-path estimate to each vertex
in each iteration. Let M [v, i] represent the shortest known distance to vertex v after
the i-th iteration.

Suppose that, at some iteration k, no vertex’s distance changes in the next iteration.
That is, M [v, k + 1] = M [v, k] for all vertices v.

Explain why this means that the algorithm has “stabilized” and why we can safely stop
early. In other words, why will the distances remain unchanged in all future iterations
(i.e., M [v, i] = M [v, k] for all i > k)? You do not need to give a formal proof, but you
should explain explicitly why no iterations are required—your answer should reference
how the Bellman-Ford algorithm works.

Solution.

(b) Now consider stabilization on a per-vertex basis.

Suppose that for some vertex v and some iteration k, the distance to v does not change
in the next iteration; that is, M [v, k + 1] = M [v, k].

Does this imply that the distance to v will remain unchanged in all subsequent itera-
tions (i.e., M [v, i] = M [v, k] for all i ≥ k)?

Prove this statement, or provide a counterexample.

Solution.


