CS 256: Algorithm Design and Analysis

Problem Set 4 (due 3/19/2025)

Instructor: Sam McCauley

Problem 1. Use any of the methods discussed in class (unfolding recurrences, recursion
trees, master theorem, guess and check etc.) to solve each of the following recurrences. Give
as tight a Big Oh bound as possible: in other words, give a big © bound. In all cases, assume
that 7'(1) = 1. You must justify (at a high level) your answer in each case—e.g., if using
the recursion-tree method, draw the first few levels of the tree and describe which of the
three categories does the recurrence lie in, and why that leads to the time bound. You do
not need to verify by induction (unless you are using the guess and check method in which
case you do need a proof). You may use a latex to draw figures (as done below), or attach a
photo/scan of a neatly hand-drawn figure. The first part is solved to guide your approach.

(a) T'(n) =2T(n/2) + n?

Solution. The recursion tree for this recurrence is given in Figure 1. Notice that the

cost at each level is decreasing by at least a constant factor. The total cost at the root
2

is n?, one level down is n?/2, and two levels down is n/4. In particular we get the
following series: T'(n) = n?(1+1/2+1/4+...) = O(n?). Summing, we obtain a total
cost of 2n? = ©(n?). O
n2
/\
7L2 7’L2
4 4
N N
n2 TL2 n2 TL2

Figure 1: Recursion Tree for Problem 1 (a)

(b) T'(n) =2T(n/4) + /n
(c) T(n) =3T(n/3) + n?
(d) T'(n) =2T(n/2) + nlogn

Solution. O]



Problem Set 4 2

Problem 2. Suppose you are choosing between the following three algorithms:

1. Algorithm A solves problems by dividing them into five subproblems of half the size,
recursively solving each subproblem, and then combining the solutions in linear time.

2. Algorithm B solves problems of size n by recursively solving two subproblems of size
n — 1 and then combining the solutions in constant time.

3. Algorithm C solves problems of size n by dividing them into nine subproblems of size
n/3, recursively solving each subproblem, and then combining the solutions in O(n?)
time.

What are the running times of each of these algorithms (in asymptotic notation) and which
would you choose?

Solution.



Problem Set 4 3

Problem 3. You're running an internet poll on a popular website. Each user on the website
is only allowed to vote once in the poll. Of course, there’s an obvious problem: some people
have multiple user accounts on the website.

You want to rule out the worst-case scenario: is there a single person who controls the
majority of the user accounts on the site?

You receive an array of usernames U[l...n|. You want to determine if a single person
controls > n/2 of the usernames. You don’t know which person controls a given username;
however you have access to two subroutines:

e SAMEPERSON(4,7) takes two integers 7 and j and returns whether or not U[i] and U]
are controlled by the same person, in O(1) time.!

e COUNTOCCURRENCES(%,¢,r) returns the number of usernames in U[(, £+ 1,..., 7] con-
trolled by the same person that controls U[i], in O(r — £ + 1) time.?

Notice that we can run COUNTOCCURRENCES(i,1,n) for all i = 1,...n and learn exactly
how many accounts each person controls, in O(n?) time.

Instead, you are to design a divide and conquer algorithm that determines if a single
person controls > n/2 of the usernames, in O(nlogn) time.®> To avoid edge cases, assume
n has a nice form, e.g., a power of 2. You must prove that your algorithm is correct (under
the assumption that SAMEPERSON and COUNTOCCURRENCES are correct). State and solve
the recurrence for the running time of your algorithm.

Solution. O]

ILet’s say this runs some simple analytics on the metadata we’ve stored for the two users.

2This is easy to implement—just call SAMEPERSON(4,5) for j = £,...,r. Having this as a subroutine,
rather than a whole loop, may make your algorithm simpler.

3There are ways to solve this problem without using divide and conquer, but I am asking you for a divide
and conquer solution so that you can get practice.



Problem Set 4 4

Problem 4. Suppose we are given two sorted arrays A[l...n] and B[1l...n]. Assume that
the arrays do not contain duplicate elements. Describe a divide and conquer algorithm to
find the median of AU B in O(logn) time. The median of sorted array A of size n is
the middle element (at index (n + 1)/2) if n is odd; and is the average of the two middle
elements (at indices n/2 and (n + 1)/2) if n is even. Remember to justify the correctness of
your algorithm and state and solve its running time recurrence.

Hint. Be careful of corner cases. One useful exercise to check your work is: the median

consists of either one element, or the average of two elements. Can you be sure that
your algorithm will use these elements in its final solution?

Solution. O



Problem Set 4 5

Problem 5. Consider the following funky recursive sorting algorithm called FUNKY-SORT.
The algorithm is described using a 1-indexed array.

FUNKY-SORT(A[L, ..., n]):
if n =2 and A[l] > A[2]:
swap A[l] < A[2]

else if n > 2:
m = [2n/3]
FUNKY-SORT(A[L, ..., m])
FUNKY-SORT(A[n —m +1,...,n])
FUNKY-SORT(A[L,...,m])

(a) State and solve the recurrence for the running time of FUNKY-SORT.
Solution. O

(b) Does FUNKY-SORT actually sort the array? Let’s prove this in several cases:

(a) Consider an item z that is one of the n — m largest elements of the array. Show
that it is placed into the correct slot after the second call to FUNKY-SORT.

Hint. What can we say about where x is after the first call to FUNKY-SORT?

Solution. O

(b) Consider an item x that is not one of the n — m largest (it is one of the m
smallest items). Show that it is placed into the correct slot after the third call to
FUNKY-SORT.

Hint. Use your answer above. Since the n — m items are all sorted after the
second call to FUNKY-SORT, where must = be after the second call? Why
does that mean that it must then be sorted after the third call?

Solution. O



Problem Set 4 6

Problem 6. (Extra Credit (15 pts)) The company UPS has noticed that left turns are
extremely costly—trucks must idle for a long time looking for an opportunity to turn left. In
fact, when determining routes for drivers, they eliminate almost all left turns from the route.
This saves the company over 300 million dollars per year. See this url for one article on this
policy: https://www.cnn.com/2017/02/16 /world /ups-trucks-no-left-turns/index.html

Let’s apply the same logic to shortest path. Define two consecutive edges along a path
(v1,v2), (ve,v3) to be a left turn if:

e v3 is immediately before v; in the adjacency list of v, or

e 3 is the last vertex in the adjacency list of vy and vy is the first.

Given an undirected graph G where all edges have a positive weight, and two nodes s
and t, let the UPS shortest path be the shortest path from s to ¢ that does not take a left
turn.

Design an efficient algorithm to compute the UPS shortest path. Analyze its running
time and briefly explain its correctness. (Note that this is a Dijkstra’s question—divide and
conquer is unlikely to be helpful here.)

Solution. 0


https://www.cnn.com/2017/02/16/world/ups-trucks-no-left-turns/index.html

