
CS 256: Algorithm Design and Analysis

Problem Set 3 (due 03/05/2025 at 9:59pm)

Instructor: Sam McCauley

Problem 1. Recall the “gas station” problem from class: we have n gas stations d1, . . . , dn
along with a start location d0 = 0 and a destination dn+1. Our tank only fills up to 200
gallons of gas.

Let’s say instead it is the 19th century, and rather than a sequence of gas stations you
travel using a sequence of horses. There is a sequence of stables at locations d0 = 0, . . . , dn.
The horse at stable i can travel mi miles before getting exhausted; you need to ensure you
can make it to a new stable before then.

As before, you know this information ahead of time: you know d0 = 0, . . . , dn+1 (you
start at d0 and want to reach destination dn+1) and m0, . . . ,mn. The goal remains the same:
we want to stop at the fewest number of stables possible.

Give a greedy algorithm to solve this problem and prove that it is correct using
either a greedy-stays-ahead or exchange argument. You do not need to analyze the running
time.

Hint. What should we be greedy about here? Recall the gas station problem we saw in
class: why was waiting until the last possible gas station a good idea? How should we
generalize for the horses?

Example. Here’s an example instance with n = 5:

0 1 2 3 4 5

di: 0 100 150 200 250 340
mi: 160 160 60 60 100

The optimal solution stops at d0, d1, d4, d5. (Notice that being greedy using di as we
did in class doesn’t work: we’d wind up stopping at d0, d2, d3, d4, d5.)

Solution.

1



Problem Set 3 2

Problem 2. Let X be a set of n intervals on the real line. We say that a set P of points stabs
X (or is the stabbing set) if every interval in X contains at least one point in P . See Figure 2.
In this question, we will design and analyze an efficient algorithm to compute minimum set
of points that stabs X. Assume that your input consists of pairs (ℓi, ri), representing the
left and right endpoints of ith interval in X, for 1 ≤ i ≤ n.

Figure 1: A set of intervals stabbed by four points. From Jeff Erickson’s Algorithms book.

(a) Structure of optimal. If we were to choose stabbing points anywhere on the intervals,
the possibilities would be endless. So first, we prove a structural property about any
optimal solution to the problem, as this will guide our algorithm design. Show that for
any set of intervals, there exists an optimal solution (a stabbing set of minimum size)
where every stabbing point is the right endpoint ri of some interval. This means that
without loss of generality, we can restrict ourselves to stabbing sets that satisfy this
property.

Solution.

Consider the following greedy strategy: sort the intervals in increasing order of their right
endpoints. Take the first interval from this list, and add its right endpoint to the stabbing
set. Remove all intervals that contain this point. Repeat until no intervals remain. Clearly,
this produces a valid stabbing set, but is it optimal?

(b) Greedy is optimal. Prove that the above greedy strategy is optimal, i.e., it produces a
stabbing set of minimum size. (Hint. Use (a) and compare to an optimal solution where
every stabbing point is a right endpoint of some interval.)

Solution.

(c) Running time of greedy. Analyze the running time of the greedy strategy and show that
it can be implemented in O(n log n) time.

Solution.

www.algorithms.wtf


Problem Set 3 3

Problem 3. We saw in class that Dijkstra’s algorithm may not give a correct answer if the
graph has edges with negative weights.

Consider some directed graph G where every edge with a negative weight is an outgoing
edge from some vertex s. We will show that running Dijkstra’s algorithm starting at s gives
the correct answer on this graph. You can assume that d(s, s) = 0 (there is no negative-
weight cycle).

(a) If you ask ChatGPT about this problem, it makes the following claim: Dijkstra’s al-
gorithm will explore (in other words: finish and fill in the entry in d[]) all neighbors
of s before exploring any other nodes. Give a counterexample to this claim. (There
are optional suggestions to help draw a graph, if it’s helpful, commented in the Latex
source code below.)

Solution.

(b) Prove that Dijkstra’s algorithm gives the correct answer on G when starting with source
vertex s.

Hint. The proof of correctness in this case looks a lot like the proof of correctness
we saw in class (with no negative edges). I would recommend first writing out that
proof as-is, and then modifying it where necessary to handle the negative edges
adjacent to s.

Solution.


