Dijkstra's Algorithm and Divide and Conquer

Sam McCauley
March 4, 2024

Welcome Back!

- Midterm back soon
- Assignment released Wednesday
- Current plan: Assignments 3 and 5 in groups; Assignment 4 solo
- Today we'll have a fun discussion of how to optimize Kruskal's, then Dijkstra's algorithm, and finally intro divide and conquer
- Hand-multiplying integers?

Dijkstra's Algorithm

Shortest Path in Weighted Graphs

- Given a directed graph G with positive edge weights
- Find the shortest path from s to t
- Path p from s to t minimizing $\sum_{e \in p} w_{e}$

length of path $=9+4+1+11=25$

Shortest Path Applications

- Map routing
- Robot navigation
- Texture mapping
- Latex typesetting
- Traffic Planning
- Scheduling
- Network routing protocols
- We'll revisit later in class as well (to allow for negative weights in the graph)

Shortest Path: Plan

- Greedy algorithm much like Prim's
- Find shortest path from s to all vertices of the graph
- Therefore, we get the shortest path to t
- Assume G is connected to keep things simple. (If there is no path from s to t we will detect that anyway)
- Each time we add a new vertex, guarantee that we've found the shortest distance to that vertex
- Greedily grow the vertices we've found the shortest path to
- Denote the actual shortest path $d(s, v)$. We will store the shortest path we find in an array $d[]$; so our goal is $d[v]=d(s, v)$.
- Let's start building the algorithm [On Board \#1]

Dijkstra’s Algorithm

- Maintain a set S of vertices we have found the shortest path to; array d of shortest paths
- Start with $S \leftarrow\{s\} ; d[s]=\theta ; d[v]=\infty$ for all $v \neq s$
- To add a new vertex to S :
- Among all cut edges C of S
- Find the edge $e=(u, v) \in C$ minimizing $d[u]+w_{e}$
- Set $d[v]=d[u]+w_{e}$; add v to S

How can we prove that this is correct? (Then: how can we implement this?)

Dijkstra's Proof Intuition

Dijkstra's Algorithm Proof Strategy

- By induction
- I.H.: for any k, if $|S|=k$, then for any $v \in S, d[v]$ stores the length of the shortest path from s to v.
- Base case?
- $k=1 ; d[s]=0$
- We are done because all edge lengths are positive so no path can have length less than θ.

Dijkstra’s Algorithm Inductive Step

- Assume that for some set S of size k, for all $w \in S, d[w]=d(s, w)$
- We find cut edge $e=(u, v)$ minimizing $d[u]+w_{e}$; add v to S; set $d[v]=d[u]+w_{\mathrm{e}}$. To show: $d[v]=d(s, v)$
- Claim: for any vertex $y \notin \mathrm{~S}, d(\mathrm{~s}, y) \geq d[u]+w_{e}$
- Idea: If there is a shorter path to y, there must be a smaller cut edge [On Board \#2]
- Now: there cannot be a path p^{\prime} to v with length less than $d[u]+w_{e}$
- Idea: assume contrary. Let y be the first vertex in p^{\prime} not in S . Then the length of p^{\prime} is at least $d(s, y)+d(y, v)$
- $d(s, y) \geq d[u]+w_{e}$ from claim above; $d(y, v) \geq \theta$

Implementing Dijkstra's Algorithm

- Dijkstra's is correct by induction (see above)
- How can we find the smallest cut edge?
- Same technique as Prim's algorithm!
- Keep a priority queue Q of cut edges; "priority" of an edge $e=(u, v)$ is $d[u]+w_{e}$
- Remove smallest-weight edge $e^{\prime}=(x, y)$ from Q. If $y \in S$, skip it. Otherwise, add y to S, and set $d[y]=d[x]+w_{e^{\prime}}$
- Running time?
- $O(m \log m)$ (each edge is added to the queue only once; $O(\log m)$ to add it or extract minimum)

Improving Dijkstra's Algorithm

- We are being wasteful with our edge storage!
- Only need to store one edge to each node in $V \backslash S$ [On Board \#3]
- Only need a priority queue of n items!
- But: what happens when we find a new edge to a vertex not in S?
- Need to update the vertex's weight
- Must modify the priority queue! How can we update the weight of a vertex in a heap?
- In practice: smaller queue means runs faster
- In theory: using a Fibonnacci heap can insert and decrease key in $O(1)$; extract minimum in $O(\log n)$
- Gives $O(m+n \log n)$ running time for Dijkstra's algorithm
- Can we do better? Open problem.
- If edge weights are integers can get $O(m)$ running time

Divide and Conquer Algorithms

Algorithmic Design Paradigms

- Greedy Algorithms
- Gas-filling; maximum interval scheduling
- Prim's, Kruskal's, Dijkstra's
- Idea: we choose an item to add permanently to the solution
- Proof that each item we have is correct
- Divide and Conquer \Leftarrow we are here!
- Divide problem into multiple parts
- Combine solutions into a new correct solution
- Dynamic Programming
- Network Flow

Sorting

- Selection sort: take largest item; place it in last slot; repeat
- Can be viewed as "greedy:" once we place an item, we have proven that it stays there irrevocably
- $\Theta\left(n^{2}\right)$ time (requires $\Omega(i)$ time to find largest of i items)
- Can we do better with divide and conquer?
- Let's revisit Merge Sort, and talk about how to analyze it

Merge Sort

Goal: sort an array A of size n (Assume $|A|$ is a power of 2 for simplicity)

- If $|A| \leq 1$ return A
- Otherwise, sort the left half of A and the right half of A using Merge Sort
- "Merge" the two halves together to create a sorted array

Let's look at how to merge efficiently [On Board \#4]

Running time? $O(n)$

Merge Sort

- Classic divide and conquer algorithm; need:
- A base case
- A way to divide into smaller instances
- A way to combine the solution for smaller instances into an overall solution
- What do we need for correctness?
- Combining smaller solutions must give correct solution for overall instance
- Base case must be correct
- Must reach the base case!

Divide and Conquer Running Time

- Analyzing D \& C algorithms can be initially confusing
- Challenge: the algorithm "jumps" all over the place due to the recursive structure
- Today: group/categorize costs to allow us to analyze divide and conquer more effectively

Merge Sort Running Time

What is the running time of Merge Sort on an array of size n ?

One answer:

- running time of Merge Sort on an array of size $n / 2$, plus
- running time of Merge Sort on a second array of size $n / 2$, plus
- $O(n)$ to merge.
- Or, if $n=1$, then the cost is 1 .

Let $T(n)$ be the exact cost of Merge Sort on an array of size n. Then:

$$
T(n)=2 \cdot T(n / 2)+O(n), \quad T(1)=1
$$

Recurrences

Recurrences

- To find the running time of a divide and conquer algorithm, we write a recurrence
- Let $T(n)$ be the cost of the algorithm on a problem of size n. Can write $T(n)$ as:
- A base case for small n (oftentimes $T(1)=1$)
- A sum of the "divide" recursive calls which can be written in terms of T (e.g. $T(n / 2)$), plus the cost to "conquer"
- A solution to this recurrence gives our total running time!

First example: merge sort

- $T(n)=2 T(n / 2)+O(n) ; T(1)=1$
- First: set constants
- For some $c, T(n) \leq 2 T(n / 2)+c n ; T(1) \leq c$
- How can we solve this?

Recurrence Tree Technique

- Let's draw the recurrence as a tree [On Board \#5]
- Idea: this drawing will help us group together the costs of the algorithm
- How does Merge Sort actually run?
- But: can we bound the cost of a given level of the tree?
- Yes: each level costs $c n$ in total
- Specifically: level i has 2^{i} subproblems, each with cost $\leq \mathrm{cn} / 2^{i}$
- How many levels are there?
- What is the total cost of Merge Sort?

Recurrence Tree Analysis: Merge Sort

- What is this level-by-level analysis saying about Merge Sort?
- Look at all work we do across all subproblems of size $n / 2^{i}$
- Answer: cn total work
- So we do $c n$ total work on the subproblem of size $n ; c n$ total work on the 2 subproblems of size $n / 2$; c n on the four subproblems of size $n / 4, \ldots, n$ on the n subproblems of size 1
- That's $\leq c n\left(\log _{2} n+1\right)$ total work!

Double-Checking our Work

- We wanted a solution to:

$$
T(n)=2 \cdot T(n / 2)+c n, \quad T(1)=c
$$

- Does $c n\left(\log _{2} n+1\right)$ satisfy this?
- Yes.

$$
\begin{aligned}
c n\left(\log _{2} n+1\right) & \leq 2\left(\frac{c n}{2}\left(\log _{2} \frac{n}{2}+1\right)\right)+c n \\
& =c n\left(\log _{2} \frac{n}{2}+1\right)+c n \\
& =c n\left(\log _{2} n-\log _{2} 2+1\right)+c n \\
& =c n\left(\log _{2} n\right)+c n
\end{aligned}
$$

Stepping Back

- Merge Sort divides the array into halves, sorts each half, and then recombines them in $O(n)$ time
- Running time is initially difficult to see
- We wrote the running time as a recurrence
- To solve the recurrence, we drew a tree, which helped us group the costs
- $\log _{2} n$ levels, each of cost $O(n)$, means $O(n \log n)$ total cost!

Divide and Conquer: Multiplication

- Let's say we want to multiply two n-digit numbers $a \times b$ (let's assı base 10 , but the same idea holds for binary numbers)
- Let's say n is much larger than 64 , so our CPU
- What is the running time of the algorithm you learned in school?
- For each digit of b, multiply with each digit of a; carry as necessary
- $O(n)$ time for each digit of b
- $O\left(n^{2}\right)$ time overall
- Addition is only $O(n)$ however
- Can we do multiplication more efficiently? In 1960 , Kolmogorov conjectured no; any algorithm takes $\Omega\left(n^{2}\right)$ worst-case time

Divide and Conquer: Multiplication

Assume n is a power of 2 for the moment for simplicity.

- Let's write a as the sum of two $n / 2$-bit numbers: $a=18^{n / 2} a_{\ell}+a_{r}$
- Let's write b as the sum of two $n / 2$-bit numbers: $b=18^{n / 2} b_{\ell}+b_{r}$
- Then $a \times b=\left(1 \otimes^{n / 2} a_{\ell}+a_{r}\right)\left(1 \otimes^{n / 2} b_{\ell}+b_{r}\right)$
- Using algebra, $a \times b=1 \otimes^{n}\left(a_{\ell}+b_{\ell}\right)+1 \otimes^{n / 2}\left(a_{\ell} b_{r}+b_{\ell} a_{r}\right)+a_{r} b_{r}$.

Divide and Conquer: Multiplication

$$
a \times b=1 \otimes^{n}\left(a_{\ell} b_{\ell}\right)+1 \otimes^{n / 2}\left(a_{\ell} b_{r}+b_{\ell} a_{r}\right)+a_{r} b_{r}
$$

- So we can use divide and conquer! To multiply two n-digit numbers, we first perform four recursive multiplications:
- $a_{\ell} \times b_{\ell}, a_{\ell} \times b_{r}, b_{\ell} \times a_{r}$, and $a_{r} \times b_{r}$
- And then we add them together in $O(n)$ time.
- Recurrence?
- $T(n)=4 T(n / 2)+O(n) ; T(1)=1$
- Let's solve this recurrence together on the board!
- Get $\Theta\left(n^{2}\right)$ time, same as before (for now...)

Divide and Conquer: A Very Clever Algorithm (Karatsuba's

 Algorithm)$$
a \times b=1 \otimes^{n}\left(a_{\ell} b_{\ell}\right)+1 \otimes^{n / 2}\left(a_{\ell} b_{r}+b_{\ell} a_{r}\right)+a_{r} b_{r}
$$

- Consider the following three recursive multiplications
- $a_{\ell} \times b_{\ell}, a_{r} \times b_{r}$, and $\left(a_{\ell}+a_{r}\right) \times\left(b_{\ell}+b_{r}\right)$
- I claim this is enough! Why?
- $a_{\ell} b_{r}+b_{\ell} a_{r}=\left(a_{\ell}+a_{r}\right) \times\left(b_{\ell}+b_{r}\right)-a_{\ell} \times b_{\ell}-a_{r} \times b_{r}$
- So after three recursive calls of size $n / 2$ I can calculate $a \times b$. I used $O(n)$ total time other than the recursive calls
- $T(n)=3 T(n / 2)+O(n) ; T(1)=1$

Solving the Multiplication Recurrence

$$
T(n)=3 T(n / 2)+O(n) \quad T(1)=1
$$

- Let's solve this recurrence [On Board \#6]
- We want to ask ourselves: What is the height of the tree? What is the cost of each level?
- Solution: $O\left(n^{\log _{2} 3}\right)=O\left(n^{1.58}\right)$ time
- Much better than n^{2} !
- Reflect: why did changing a constant from 3 to 4 have such an impact on the running time?

Multiplying Numbers Efficiently

- Kolmogorov conjectured that $\Omega\left(n^{2}\right)$ time is needed; stated this conjecture in a seminar at Moscow State University in 1960
- Karatsuba, a student figured out this $O\left(n^{\log _{2} 3}\right)$ time algorithm in the next week
- Kolmogorov cancelled the whole seminar and then published the result on Karatsuba's behalf without telling him
- Can we do better?
- Best known: $O(n \log n)$ [Harvey, van der Hoeven 2019]
- Are these speedups useful in practice?
- Sometimes! Karatsuba's is used in some libraries

