Greedy Graph Algorithms:
Minimum Spanning Trees

Kruskal’s Algorithm

Kruskal’'s Algorithm

Idea: Add the cheapest remaining edge that does not create a cycle.
e Initialize T =@, H <« E
e« While|T| <n—1
« Remove cheapest edge e from H
« If adding e to 1" does not create a cycle
e T« TuUle)
e« H— H-{e}

Union-Find Data Structure

Manages a dynamic partition of a set §
* Provides the following methods:

« MakeUnionFind(): Initialize
« Find(x): Return name of set containing x

 Union(X, Y): Replacesets X, YwithXUY

Kruskal’'s Algorithm can then use

* F1ind for cycle checking

* Un1ion to update after adding an edge to T°

Union-Find: Any Ideas?

How can we get:
. O(1) Find

« O(n) Union

(Hint: we'll be maintaining labels)

Union-Find: First Attempt

Let S = {1, 2, ..., n} be the set.
|dea: Each element stores the label of its set
¢ Initialize(): Setl|x] =xforeachx €S : O(n)
¢« Find(x): ReturnL[x] : O(1)
 Union(X,Y):
« Foreachx € X, update L|x] to label of set Y

« (O(n) in the worst case (happens when we union two large sets)

? Digging
* Deeper

Union-Find: Improving Union
e |Let’s perturb that idea just a little bit and analyze it a bit
more carefully

* Think of a data structure with pointers instead of an array

 Each vertex points to a "head” node instead of a label;
head points to itself

.o \

Union-Find: Improving Union

e |et’s perturb that idea just a little bit and analyze it a bit
more carefully

* Think of a data structure with pointers instead of an array

 Each vertex points to a "head” node instead of a label;

head points to itself

".

Union-Find: Improving Union

e [et's perturb that idea just a little bit and analyze it more
tightly

 Each vertex points to a "head” node instead of a label;
head points to itself

 Also store size of each set in the head

 Now, to do a union, make every element in the smaller set
point at the head of the larger set

 Update the size

Union-Find: Improving Union
 |Let's say we have an edge between the blue tree and the
green tree

 Update the green tree!

* Follow back pointers from the head of the tree so we get
every node

"

Union-Find: Improving Union
 |Let's say we have an edge between the blue tree and the
green tree

 Update the green tree!

* Follow back pointers from the head of the tree so we get
every node

"

AN

Union-Find: Improving Union
 |Let's say we have an edge between the blue tree and the
green tree

 Update the green tree!

* Follow back pointers from the head of the tree so we get
every node

Union-Find: Improving Union
 |Let's say we have an edge between the blue tree and the
green tree

 Update the green tree!

* Follow back pointers from the head of the tree so we get
every node

Union-Find: Improving Union
 |Let's say we have an edge between the blue tree and the
green tree

 Update the green tree!

* Follow back pointers from the head of the tree so we get
every node

Union-Find: Improving Union
 |Let's say we have an edge between the blue tree and the
green tree

 Update the green tree!

* Follow back pointers from the head of the tree so we get
every node

Union Find: Amortized Analysis

« Find O(1) (how?)
 Union?
« Worst case is O(n) but that’s not the whole story

* Every time we change the label (“head” pointer) of a
node, the size of its set at least doubles

« Each node’s head pointer only changes O(log n) times

Union Find: Amortized Analysis

o Starting with sets of size 1, any n Union operations will
take O(nlogn) time

« We say O(log n) amortized time for a Union operation

Definition. If n operations take total time O(t - n), then
the amortized time per operation is O(¢).

Can We Make Union faster?

 What if, instead of
« O(1) Find and O(log n) Union,
« We want O(log n) Find and O(1) Union?

 Any ideas”

Fast Union with “Trees”

* |et's keep a head node as before

 Now, let's have our pointers act like a tree, but pointing up

(“up tree”)

Fast Union with “Trees”

 |et's keep a head node as before
 Now, let's have our pointers act like a tree, but pointing up

e How can we Find?

Fast Union with “Trees”

 |et's keep a head node as before
 Now, let's have our pointers act like a tree, but pointing up

e How can we Union?

Fast Union with “Trees”

 |et's keep a head node as before
 Now, let's have our pointers act like a tree, but pointing up

e How can we Union?

Fast Union with “Trees”

 |et's keep a head node as before
 Now, let's have our pointers act like a tree, but pointing up

e How can we Union?

Fast Union with “Trees”

* |et's keep a head node as before
 Now, let's have our pointers act like a tree, but pointing up
 How can we Union”

» Keep height of each up tree

 Up tree with smaller height points to up tree of bigger
height

« At home: show that a set of size k is represented by an
up tree of height at most O(log k)

How Fast Is This?

« "Up tree” method:
« O(1) Union, O(log n) Find
 "Point to head” method:

« O(logn) amortized Union, O(1) Find

Class poll!

Do you think we can do better?
Which of the following do you
think is the case?

A. Either Union or Find take
Q(logn)

B. If you multiply Union and
Find, the product of their
times must be £2(log n)

C. Both can be O(1)

D. Something in the middle

« When we're doing a Find, Is

Let’s make things work a
little faster in practice

 Think about the “up trees” {

there work we can do to
make future finds faster? b y

 Think about the “up trees”

« When we're doing a Find, Is

Let’s make things work a
little faster in practice

there work we can do to make
future finds faster?

 When we're doing a Find, Is

 We really want all of these to

e S0...let’'s do that!

Let’s make things work a
little faster in practice

there work we can do to make
future finds faster?

point right to the head

Let’s make things work a
little faster in practice

When we're doing a Find, Is
there work we can do to make
future finds faster?

We really want all of these to
point right to the head

So...let’s do that!

Walit, I've broken the data
structure!

e | can’'t maintain “height”

Maintaining “Height”

We can't maintain the exact height. What it we pretend
we can”? Just do the same bookkeeping:

Keep a “rank”

Always point the head of smaller rank to the head of
larger rank; keep rank the same

It both ranks are the same, point one to the other, and
increment the rank

What do we get?

Every time | have an expensive Find, | get a lot of great work done for
the future by shrinking the tree

e (Called “path compression”

Now | have an inaccurate “rank” instead of an actual “height”

First: did this make things worse? Union is still O(1), is Find O(logn) ?
« We did not make things worse, Find is O(log n)

* Proof idea: our rank is never higher than the actual height

Can we show that we made things better?

Surprising Result: Hopcroft Uiman’73

 Amortized complexity of union find with path compression improves
significantly!

« Time complexity for n union and find operations on n elements is

O(nlog* n)

« log™ n is the number of times you need to apply the log function
before you get to a number <= 1

 Very smalll Less than 5 for all reasonable values

(

0 if n<1

log™(n) = <\ 1+ log*(logn) if n>1

4

2 | 3 | 4 5

" |1]2|4=2%2]16=2%|65536 =20 | 205336 U Digging
log™(n) [| 0 1]
Y

Deeper

Surprising Result: Tarjan ‘75

Improved bound on amortized complexity of union-find with path
compression

Time complexity for n union and find operations on n elements is
O(na(n)), where

« a(n) is extremely slow-growing, inverse-Ackermann function
 Essentially a constant

Grows much muuchch morrree slowly than log™

a(n) < 4 for all values in practice

Result. Union and Find become (essentially) amortized constant

time in practice (just short of O(1) in theory) !
? Digging
* Deeper

Inverse Ackermann

Inverse Ackerman: The function a(n) grows much more slowly
than log™ 7 for any fixed ¢

With log™, you count how many times does applying log over and
over gets the result to become small

With the inverse Ackermann, essentially you count how many times
does applying log* (not log!) over and over gets the result to
become small

k
k %k ok ok

a(n) = min{k | log) < 2)

6

1
a(n) =4 forn = 2222 Digging
e

Deeper

Can we do better?

 OK, so that’s “basically constant”. Can we get constant?

« No. Any data structure for union find requires Q(a(n))
amortized time (Fredman, Saks '89)

e SO up trees with path compression are optimal(!)

Union-Find: Applications

* (Good for applications in need of clustering
e cities connected by roads
e cities belonging to the same country
e connected components of a graph
 Maintaining equivalence classes

e Maze creation!

? Digging
* Deeper

Back to MST

Prim’s algorithm: O(m + nlog n) using a Fibonnacci tree

Kruskal's algorithm:

O(mlog m 4+ ma(m)) = O(mlog m)
Which Is better in practice?

 Usually Kruskal's: a single sort is much better than
Prim’s repeated priority queue removals

s sorting time €2(n log n) required?

? Digging
* Deeper

Can we do better?

Best known algorithm by Chazelle (1999)

A Minimum Spanning Tree Algorithm with Inverse-Ackermann
Type Complexity*
BERNARD CHAZELLE'

NECI Research Tech Report 99-099 (July 1999)
Journal of the ACM, 47(6), 2000, pp. 1028-1047.

Abstract

spanning tree of a connected

A deterministic algorithm for cqe
graph is presented. Its running timeli e« is the classical functional
inverse of Ackermann’s function and i ber of vertices (resp. edges).
The algorithm is comparison-based: it uses pointers, not arrays, and it makes no numeric

assumptions on the edge costs.

1 Introduction o T
H Digging

The history of the minimum spanning tree (MST) problem is long and rich, going a

as Boruvka's work in 1926 [1, 9, 13]. In fact, MST is perhaps the oldest open p * Deeper

computer science. According to NeSettil [13], “this is a cornerstone problem of com

At i tratiar arnd 3 e canen 1te rradla ? Mavibhianl alanrifbh e 1110 991) 1aar o) $39vma sirhara o

Can we do better?

Using randomness, can get O(m) time!

A Randomized Linear-Time Algorithm
to Find Minimum Spanning Trees

DAVID R. KARGER

Stanford University, Stanford, California

PHILLIP N. KLEIN

Brown University, Providence, Rhode Island
AND
ROBERT E. TARJAN

Princeton University and NEC Research Institute, Princeton, New Jersey

randomized linear-time algorithm fo find @ minimum spanning tree in a

Abstract, We present

connected graph with edBeWeTg 0 fSESTandom sampling in combinatic

recently discovered linear-time algorlthm for verifying a minimum spanning tree. Our ¢ Digging
tional model is a unit-cost random-access machine with the restriction that the only og

allowed on edge weights are binary comparisons. * Deeper

Categorics and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Con

Nonnumerical Algorithms and Problems—computations on discrete structures; G.2.2 [DISCrete

Optimal MST Algorithm?

Has been discovered but don't know its running time!

An Optimal Minimum Spanning Tree Algorithm

SETH PETTIE AND VIJAYA RAMACHANDRAN

The University of Texas at Austin, Austin, Texas

Abstract. We establish that the algorithmic complexity of the minimum spanning tree problem is equal
to its decision-tree complexity. Specifically, we present a deterministic algorithm to find a minimum
spanning tree of a graph with »n vertices and m edges that runs in time O(7 *(m, n)) where 7 * is the
minimum number of edge-weight comparisons needed to determine the solution. The algorithm is
quite simple and can be implemented on a pointer machine.
Although our time bound is optimal, the exact function describing it is not known at present. The
current best bounds known for 7* are 7*(m, n) = Q(m)and 7*(m,n) = O(m - a(n
a certain natural inverse of Ackermann’s function. &/ Digging
Even under the assumption that 7 * is superlinear, we show that if the input graph B
G n,m, our algorithm runs in linear time with high probability, regardless of n, m, or th *
edge weights. The analysis uses a new martingale for G, ,, similar to the edge-exp

Deeper

e

MST Algorithms History

* Boruvka’s Algorithm (1926)

 The Borvka / Choquet / Florek-ukaziewicz-Perkal-Steinhaus-

Zubrzycki / Prim / Sollin / Brosh a

e QOldest, most-ignored MST algorit
e Jarnik’s Algorithm (“Prim’s Algorithm”

gorithm

nm, but actually very good

, 1929)

* Published by Jarnik, independently discovered by Kruskal in

1956, by Prim in 1957
* Kruskal’s Algorithm (1956)

» Kruskal designed this because he found Boruvka'’s algorithm

‘unnecessarily complicated”

Next class:
Greedy Algorithms:
Shortest Path

Shortest Paths in Weighted Graph

@ s @)

/

lengthof path=9+4 + 1+ 11 = 25

Shortest Paths in Weighted Graph

Problem.

Given a directed graph G = (V, E) with positive edge
weights: that is, each edge e € E has a positive weight
w(e) and vertices s and t, find the shortest path from s to t.

Definition. The shortest path from s to 7 in a weighted
graph is a path P from s to t (or a s-f path) with minimum

weight w(P) = Z w(e).

ecP

e 12:15 PM

E McGraw St
toward 20th Ave E

Then *

‘ 2

| A RE-CENTER
- >

e v
13 mi - 12:46 PM

Midterm Questions?

Assignment questions (from any assignment)

Practice midterm questions

* | won't ask you to “analyze space” of an
algorithm on the midterm

Acknowledgments

* The pictures in these slides are taken from

» Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

» Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

