
Greedy Graph Algorithms:
Minimum Spanning Trees

Minimum Spanning Trees
Problem. Given a connected, undirected graph with
edge costs , output a minimum spanning tree, i.e., set of
edges such that

• (a spanning tree of): connects all vertices

• (has minimum weight): for any other spanning tree of ,
we have

G = (V, E)
we

T ⊆ E

G T

T′ G

∑
e∈T

we ≤ ∑
e∈T′

we

Minimum Cost Spanning Trees

Cut Property: MST
Recall. A cut is a partition of the vertices into two nonempty
subsets and . A cut edge of a cut is an edge with one
end point in and another in .

Lemma (Cut Property). For any cut , let be the
minimum weight edge connecting any vertex in to a vertex in

, then every minimum spanning tree must include .

Proof. (By contradiction)

Suppose is a spanning tree that does not contain .

Main Idea: We will construct another spanning tree
 with weight less than

How to find such an edge

S V − S S
S V − S

S ⊂ V e = (u, v)
S

V − S e

T e = (u, v)

T′ = T ∪ e − e′ T (⇒⇐)
e′ ?

Jarník’s (“Prims Algorithm”)
• Initialize for any vertex and

• While :

• Find the min-cost edge with one end and

• ,

• Implementation crux. Find and add min-cost edge for the cut
 and add it to the tree in each iteration, update cut edges

• How to implement?

• Priority queue

• Extract minimum and insert each in if priority queue
has at most elements

S = {u} u ∈ V T = ∅
|T | ≤ n − 1

e = (u, v) u ∈ S
v ∈ V − S
T ← T ∪ {e} S ← S ∪ {v}

(S, V − S)

O(log m)
m

• Implementation using Binary heaps

• Total runtime: (recall that)

• If a Fibonacci heap is used instead of binary heap:

• Runs in

• Support amortized -time inserts, time extract min
using “amortized time”

O(m log n) log m = O(log n)

O(m + n log n)
O(1) O(log n)

“Prims” Implementation

Definition. If operations take total time , then
the amortized time per operation is .

k O(t ⋅ k)
O(t)

Cycle Property
Lemma (Cycle Property): For any cycle C in the
graph, if the weight of an edge e of C is larger than
any of the individual weights of all other edges of C,
then this edge cannot belong to an MST.

Proof on board

Kruskal’s Algorithm

Kruskal’s Algorithm
Idea: Add the cheapest remaining edge that does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

4Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

4

E

C

5Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

F
6

4

E

C

5Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

F

B

7

6

4

E

C

5Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

F

B

7

6

4

E

C

5

G

8

Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

F

B

7

6

4

E

10

C

5

G

8

Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

Total weight: 40

Kruskal’s Analysis
• Correctness: Does it give us the correct MST?

• Why is each edge that we are adding safe?

• Consider the step just before is added

• Let

• This is a valid cut in the graph (why? Can ?)

• If there was a cheaper cut edge for cut which did not
form a cycle, the algorithm would have already added it; this
must be the min-cost cut edge for this cut

• Runtime.

• How quickly can we find the minimum remaining edge?

• How quickly can we determine if an edge creates a cycle?

(v, w)
(v, w)

S = {x ∈ V | v has a path from v to x}
w ∈ S

(S, V − S)

Kruskal’s Implementation
• Sort edges by weight:

• Turns out this is the dominant cost

• Determine whether contains a cycle

• Let’s talk more about how to do this efficiently

• Add an edge to : update components

O(m log m)

T ∪ {e}

T

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
trees? Then we could
determine if an edge creates a
cycle by comparing labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
trees? Then we could
determine if an edge creates a
cycle by comparing labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
trees? Then we could
determine if an edge creates a
cycle by comparing labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
trees? Then we could
determine if an edge creates a
cycle by comparing labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
trees? Then we could
determine if an edge creates a
cycle by comparing labels

• How can we update when
adding an edge?

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
trees? Then we could
determine if an edge creates a
cycle by comparing labels

• How can we update when
adding an edge?

What do we want to be able
to do?

• Start with each node as its own set

• Given a node, determine which set it’s in (find the
label)

• Take two sets and combine them into a single set

• Today we’ll create a data structure for this task

Union-Find Data Structure
Manages a dynamic partition of a set

• Provides the following methods:

• MakeUnionFind(): Initialize

• Find(x): Return name of set containing

• Union(X, Y): Replace sets X, Y with

Kruskal’s Algorithm can then use

• Find for cycle checking

• Union to update after adding an edge to

S

x

X ∪ Y

T

Union-Find: Any Ideas?

How can we get:

• Find

• Union

(Hint: we’ll be maintaining labels)

O(1)

O(n)

Union-Find: First Attempt
Let be the set.

Idea: Each element stores the label of its set

• Initialize(): Set for each :

• Find(x): Return :

• Union(X,Y):

• For each , update to label of set

• in the worst case (happens when we union two large sets)

S = {1, 2, …, n}

L[x] = x x ∈ S O(n)

L[x] O(1)

x ∈ X L[x] Y

O(n)

Union-Find: Improving Union
• Let’s perturb that idea just a little bit and analyze it a bit

more carefully

• Think of a data structure with pointers instead of an array

• Each vertex points to a “head” node instead of a label;
head points to itself

Union-Find: Improving Union
• Let’s perturb that idea just a little bit and analyze it a bit

more carefully

• Think of a data structure with pointers instead of an array

• Each vertex points to a “head” node instead of a label;
head points to itself

Union-Find: Improving Union
• Let’s perturb that idea just a little bit and analyze it more

tightly

• Each vertex points to a “head” node instead of a label;
head points to itself

• Also store size of each set in the head

• Now, to do a union, make every element in the smaller set
point at the head of the larger set

• Update the size

Union-Find: Improving Union
• Let’s say we have an edge between the blue tree and the

green tree

• Update the green tree!

• Follow back pointers from the head of the tree so we get
every node

Union-Find: Improving Union
• Let’s say we have an edge between the blue tree and the

green tree

• Update the green tree!

• Follow back pointers from the head of the tree so we get
every node

Union-Find: Improving Union
• Let’s say we have an edge between the blue tree and the

green tree

• Update the green tree!

• Follow back pointers from the head of the tree so we get
every node

Union-Find: Improving Union
• Let’s say we have an edge between the blue tree and the

green tree

• Update the green tree!

• Follow back pointers from the head of the tree so we get
every node

Union-Find: Improving Union
• Let’s say we have an edge between the blue tree and the

green tree

• Update the green tree!

• Follow back pointers from the head of the tree so we get
every node

Union-Find: Improving Union
• Let’s say we have an edge between the blue tree and the

green tree

• Update the green tree!

• Follow back pointers from the head of the tree so we get
every node

Union Find: Amortized Analysis

• Find (how?)

• Union?

• Worst case is but that’s not the whole story

• Every time we change the label (“head” pointer) of a
node, the size of its set at least doubles

• Each node’s head pointer only changes times

O(1)

O(n)

O(log n)

• Starting with sets of size 1, any Union operations will
take time

• We say amortized time for a Union operation

• (“Amortized time” will not be on the midterm-but we’ll see
it again soon)

n
O(n log n)

O(log n)

Definition. If operations take total time , then
the amortized time per operation is .

n O(t ⋅ n)
O(t)

Union Find: Amortized Analysis

Can We Make Union faster?
• What if, instead of

• Find and Union,

• We want Find and Union?

• Any ideas?

O(1) O(log n)

O(log n) O(1)

Fast Union with “Trees”
• Let’s keep a head node as before

• Now, let’s have our pointers act like a tree, but pointing up
(“up tree”)

Fast Union with “Trees”
• Let’s keep a head node as before

• Now, let’s have our pointers act like a tree, but pointing up

• How can we Find?

Fast Union with “Trees”
• Let’s keep a head node as before

• Now, let’s have our pointers act like a tree, but pointing up

• How can we Union?

Fast Union with “Trees”
• Let’s keep a head node as before

• Now, let’s have our pointers act like a tree, but pointing up

• How can we Union?

Fast Union with “Trees”
• Let’s keep a head node as before

• Now, let’s have our pointers act like a tree, but pointing up

• How can we Union?

• Let’s keep a head node as before

• Now, let’s have our pointers act like a tree, but pointing up

• How can we Union?

• Keep height of each up tree

• Up tree with smaller height points to up tree of bigger
height

• At home: show that a set of size is represented by an
up tree of height at most

k
O(log k)

Fast Union with “Trees”

How Fast Is This?
• “Up tree” method:

• Union, Find

• “Point to head” method:

• amortized Union, Find

O(1) O(log n)

O(log n) O(1)

Class poll!
Do you think we can do better?
Which of the following do you
think is the case?

A. Either Union or Find take

B. If you multiply Union and
Find, the product of their
times must be

C. Both can be

D. Something in the middle

Ω(log n)

Ω(log n)

O(1)

Let’s make things work a
little faster in practice

• Think about the “up trees”

• When we’re doing a Find, is
there work we can do to
make future finds faster?

Let’s make things work a
little faster in practice

• Think about the “up trees”

• When we’re doing a Find, is
there work we can do to make
future finds faster?

Let’s make things work a
little faster in practice

• When we’re doing a Find, is
there work we can do to make
future finds faster?

• We really want all of these to
point right to the head

• So…let’s do that!

Let’s make things work a
little faster in practice

• When we’re doing a Find, is
there work we can do to make
future finds faster?

• We really want all of these to
point right to the head

• So…let’s do that!

• Wait, I’ve broken the data
structure!

• I can’t maintain “height”

Maintaining “Height”

• We can’t maintain the exact height. What if we pretend
we can? Just do the same bookkeeping:

• Keep a “rank”

• Always point the head of smaller rank to the head of
larger rank; keep rank the same

• If both ranks are the same, point one to the other, and
increment the rank

What do we get?
• Every time I have an expensive Find, I get a lot of great work

done for the future by shrinking the tree

• Called “path compression”

• Now I have an inaccurate “rank” instead of an actual “height”

• First: did this make things worse? Union is still , is Find
 ?

• We did not make things worse, Find is

• Can we show that we made things better?

O(1)
O(log n)

O(log n)

Surprising Result: Hopcroft Ulman’73
• Amortized complexity of union find with path compression improves

significantly!

• Time complexity for union and find operations on elements is

• is the number of times you need to apply the log function
before you get to a number <= 1

• Very small! Less than 5 for all reasonable values

n n
O(n log* n)
log* n

Surprising Result: Tarjan ‘75
• Improved bound on amortized complexity of union-find with path

compression

• Time complexity for union and find operations on elements is
, where

• is extremely slow-growing, inverse-Ackermann function

• Essentially a constant

• Grows much muuchch morrree slowly than

• for all values in practice

• Result. Union and Find become (essentially) amortized constant
time in practice (just short of in theory) !

n n
O(nα(n))

α(n)

log*

α(n) ≤ 4

O(1)

Inverse Ackermann
• Inverse Ackerman: The function grows much more slowly

than for any fixed c  

• With , you count how many times does applying over and
over gets the result to become small

• With the inverse Ackermann, essentially you count how many times
does applying (not log!) over and over gets the result to
become small 

•

• for

α(n)
log*c n

log* log

log*

α(n) = min{k | log
k

* * * * … * (n) ≤ 2}

α(n) = 4 n = 222216

Can we do better?

• OK, so that’s “basically constant”. Can we get constant?

• No. Any data structure for union find requires
amortized time (Fredman, Saks ’89)

• So up trees with path compression are optimal(!)

Ω(α(n))

Union-Find: Applications
• Good for applications in need of clustering

• cities connected by roads
• cities belonging to the same country
• connected components of a graph

• Maintaining equivalence classes
• Maze creation!

Back to MST
• Prim’s algorithm: using a Fibonnacci tree

• Kruskal’s algorithm:

• Which is better in practice?

• Usually Kruskal’s: a single sort is much better than
Prim’s repeated priority queue removals

• Is sorting time required?

O(m + n log n)

O(m log m + mα(m)) = O(m log m)

Ω(m log m)

Can we do better?
Best known algorithm by Chazelle (1999)

Can we do better?
Using randomness, can get time!O(n + m)

Optimal MST Algorithm?
Has been discovered but don’t know its running time!

MST Algorithms History
• Borůvka’s Algorithm (1926)

• The Borvka / Choquet / Florek-ukaziewicz-Perkal-Steinhaus-
Zubrzycki / Prim / Sollin / Brosh algorithm

• Oldest, most-ignored MST algorithm, but actually very good

• Jarník’s Algorithm (“Prim’s Algorithm”, 1929)

• Published by Jarník, independently discovered by Kruskal in
1956, by Prim in 1957

• Kruskal’s Algorithm (1956)

• Kruskal designed this because he found Borůvka’s algorithm
“unnecessarily complicated”

Next class:
Greedy Algorithms:

Shortest Path

Shortest Paths in Weighted Graph

7

1 3

source s

6

8

5

7

5 4

15

312

20

13

9

destination t

length of path = 9 + 4 + 1 + 11 = 25

0

4

5

2

6

9

4

1 11

Shortest Paths in Weighted Graph
Problem.

Given a directed graph with positive edge
weights: that is, each edge has a positive weight

 and vertices and , find the shortest path from to .

Definition. The shortest path from to in a weighted
graph is a path from to (or a - path) with minimum
weight .

G = (V, E)
e ∈ E

w(e) s t s t

s t
P s t s t

w(P) = ∑
e∈P

w(e)

Midterm Questions?
Assignment questions (from any assignment)

Practice midterm questions

Acknowledgments

• The pictures in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

