
Greedy Graph Algorithms:
Minimum Spanning Trees



Minimum Spanning Trees
Problem. Given a connected, undirected graph  with 
edge costs , output a minimum spanning tree, i.e., set of 
edges   such that 

• (a spanning tree of ):  connects all vertices 

• (has minimum weight): for any other spanning tree  of , 
we have 

G = (V, E)
we

T ⊆ E

G T

T′ G

∑
e∈T

we ≤ ∑
e∈T′ 

we



Minimum Cost Spanning Trees



Cut Property:  MST
Recall.  A cut is a partition of the vertices into two nonempty 
subsets  and .  A cut edge of a cut  is an edge with one 
end point in  and another in . 

Lemma (Cut Property).  For any cut , let  be the 
minimum weight edge connecting any vertex in  to a vertex in 

, then every minimum spanning tree must include . 

Proof. (By contradiction)  

Suppose  is a spanning tree that does not contain .   

Main Idea: We will construct another spanning tree 
 with weight less than   

How to find such an edge 

S V − S S
S V − S

S ⊂ V e = (u, v)
S

V − S e

T e = (u, v)

T′ = T ∪ e − e′ T ( ⇒⇐ )
e′ ?



Jarník’s (“Prims Algorithm”)
• Initialize  for any vertex  and  

• While : 

• Find the min-cost edge  with one end  and 
 

• ,   

• Implementation crux. Find and add min-cost edge for the cut 
 and add it to the tree in each iteration, update cut edges  

• How to implement?  

• Priority queue 

• Extract minimum and insert each in  if priority queue 
has at most  elements

S = {u} u ∈ V T = ∅
|T | ≤ n − 1

e = (u, v) u ∈ S
v ∈ V − S
T ← T ∪ {e} S ← S ∪ {v}

(S, V − S)

O(log m)
m



• Implementation using Binary heaps 

• Total runtime:   (recall that ) 

• If a Fibonacci heap is used instead of binary heap: 

• Runs in  

• Support amortized -time inserts,  time extract min 
using “amortized time”

O(m log n) log m = O(log n)

O(m + n log n)
O(1) O(log n)

“Prims” Implementation

Definition.  If  operations take total time , then 
the amortized time per operation is .

k O(t ⋅ k)
O(t)



Cycle Property
Lemma (Cycle Property): For any cycle C in the 
graph, if the weight of an edge e of C is larger than 
any of the individual weights of all other edges of C, 
then this edge cannot belong to an MST. 

Proof on board



Kruskal’s Algorithm



Kruskal’s Algorithm
Idea: Add the cheapest remaining edge that does not create a cycle. 
• Initialize ,  

• While : 

• Remove cheapest edge  from  

• If adding  to  does not create a cycle  

•  

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}
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Idea: Add the cheapest remaining edge that 
does not create a cycle. 
• Initialize ,  

• While : 

• Remove cheapest edge  from  

• If adding  to  does not create a 
cycle  

•  

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

Total weight:  40 



Kruskal’s Analysis
• Correctness:  Does it give us the correct MST?   

• Why is each edge  that we are adding safe? 

• Consider the step just before  is added 

• Let  

• This is a valid cut in the graph (why? Can ?) 

• If there was a cheaper cut edge for cut  which did not 
form a cycle, the algorithm would have already added it; this 
must be the min-cost cut edge for this cut 

• Runtime.  

• How quickly can we find the minimum remaining edge? 

• How quickly can we determine if an edge creates a cycle?

(v, w)
(v, w)

S = {x ∈ V | v has a path from v to x}
w ∈ S

(S, V − S)



Kruskal’s Implementation
• Sort edges by weight:  

• Turns out this is the dominant cost 

• Determine whether  contains a cycle 

• Let’s talk more about how to do this efficiently 

• Add an edge to : update components

O(m log m)

T ∪ {e}

T



Does this edge create a 
cycle?

• An edge creates a cycle if it 
connects a subtree to another 
vertex in the same subtree 

• What if we could label the 
trees?  Then we could 
determine if an edge creates a 
cycle by comparing labels
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What do we want to be able 
to do?

• Start with each node as its own set 

• Given a node, determine which set it’s in (find the 
label) 

• Take two sets and combine them into a single set 

• Today we’ll create a data structure for this task



Union-Find Data Structure
Manages a dynamic partition of a set  

• Provides the following methods: 

• MakeUnionFind(): Initialize 

• Find(x): Return name of set containing  

• Union(X, Y): Replace sets X, Y with  

Kruskal’s Algorithm can then use 

• Find for cycle checking  

• Union to update after adding an edge to 

S

x

X ∪ Y

T



Union-Find: Any Ideas?

How can we get: 

•  Find 

•  Union 

(Hint: we’ll be maintaining labels)

O(1)

O(n)



Union-Find: First Attempt
Let  be the set.  

Idea: Each element stores the label of its set 

• Initialize(): Set  for each   :    

• Find(x): Return     :   

• Union(X,Y):  

• For each , update   to label of set   

•  in the worst case (happens when we union two large sets)

S = {1, 2, …, n}

L[x] = x x ∈ S O(n)

L[x] O(1)

x ∈ X L[x] Y

O(n)



Union-Find: Improving Union
• Let’s perturb that idea just a little bit and analyze it a bit 

more carefully 

• Think of a data structure with pointers instead of an array  

• Each vertex points to a “head” node instead of a label; 
head points to itself



Union-Find: Improving Union
• Let’s perturb that idea just a little bit and analyze it a bit 

more carefully 

• Think of a data structure with pointers instead of an array  

• Each vertex points to a “head” node instead of a label; 
head points to itself



Union-Find: Improving Union
• Let’s perturb that idea just a little bit and analyze it more 

tightly 

• Each vertex points to a “head” node instead of a label; 
head points to itself 

• Also store size of each set in the head 

• Now, to do a union, make every element in the smaller set 
point at the head of the larger set 

• Update the size



Union-Find: Improving Union
• Let’s say we have an edge between the blue tree and the 

green tree 

• Update the green tree! 

• Follow back pointers from the head of the tree so we get 
every node
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Union Find: Amortized Analysis

• Find  (how?) 

• Union? 

• Worst case is  but that’s not the whole story 

• Every time we change the label (“head” pointer) of a 
node, the size of its set at least doubles 

• Each node’s head pointer only changes  times

O(1)

O(n)

O(log n)



• Starting with sets of size 1, any  Union operations will 
take  time  

• We say  amortized time for a Union operation 

• (“Amortized time” will not be on the midterm-but we’ll see 
it again soon)

n
O(n log n)

O(log n)

Definition.  If  operations take total time , then 
the amortized time per operation is .

n O(t ⋅ n)
O(t)

Union Find: Amortized Analysis



Can We Make Union faster?
• What if, instead of  

•  Find and  Union, 

• We want  Find and  Union? 

• Any ideas? 

O(1) O(log n)

O(log n) O(1)



Fast Union with “Trees”
• Let’s keep a head node as before 

• Now, let’s have our pointers act like a tree, but pointing up 
(“up tree”)
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• Let’s keep a head node as before 

• Now, let’s have our pointers act like a tree, but pointing up 

• How can we Union? 

• Keep height of each up tree 

• Up tree with smaller height points to up tree of bigger 
height 

• At home: show that a set of size  is represented by an 
up tree of height at most 

k
O(log k)

Fast Union with “Trees”



How Fast Is This?
• “Up tree” method: 

•  Union,  Find 

• “Point to head” method: 

•  amortized Union,  Find

O(1) O(log n)

O(log n) O(1)



Class poll!
Do you think we can do better?  
Which of the following do you 
think is the case? 

A. Either Union or Find take 
 

B. If you multiply Union and 
Find, the product of their 
times must be  

C. Both can be  

D. Something in the middle

Ω(log n)

Ω(log n)

O(1)



Let’s make things work a 
little faster in practice

• Think about the “up trees” 

• When we’re doing a Find, is 
there work we can do to 
make future finds faster?
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Let’s make things work a 
little faster in practice

• When we’re doing a Find, is 
there work we can do to make 
future finds faster? 

• We really want all of these to 
point right to the head 

• So…let’s do that! 

• Wait, I’ve broken the data 
structure! 

• I can’t maintain “height”



Maintaining “Height”

• We can’t maintain the exact height.  What if we pretend 
we can?  Just do the same bookkeeping: 

• Keep a “rank” 

• Always point the head of smaller rank to the head of 
larger rank; keep rank the same 

• If both ranks are the same, point one to the other, and 
increment the rank



What do we get?
• Every time I have an expensive Find, I get a lot of great work 

done for the future by shrinking the tree 

• Called “path compression” 

• Now I have an inaccurate “rank” instead of an actual “height” 

• First: did this make things worse?  Union is still , is Find 
 ? 

• We did not make things worse, Find is  

• Can we show that we made things better?

O(1)
O(log n)

O(log n)



Surprising Result: Hopcroft Ulman’73
• Amortized complexity of union find with path compression improves 

significantly! 

• Time complexity for  union and find operations on  elements is 
 

•  is the number of times you need to apply the log function 
before you get to a number <= 1 

• Very small! Less than 5 for all reasonable values 

n n
O(n log* n)
log* n



Surprising Result: Tarjan ‘75
• Improved bound on amortized complexity of union-find with path 

compression  

• Time complexity for  union and find operations on  elements is 
,  where  

•  is extremely slow-growing, inverse-Ackermann function

• Essentially a constant

• Grows much muuchch morrree slowly than 

•  for all values in practice 

• Result. Union and Find become (essentially) amortized constant 
time in practice (just short of  in theory) !

n n
O(nα(n))

α(n)

log*

α(n) ≤ 4

O(1)



Inverse Ackermann 
• Inverse Ackerman: The function  grows much more slowly 

than  for any fixed c  

• With , you count how many times does applying  over and 
over gets the result to become small 

• With the inverse Ackermann, essentially you count how many times 
does applying  (not log!) over and over gets the result to 
become small 

•

•  for 

α(n)
log*c n

log* log

log*

α(n) = min{k | log
k

* * * * … * (n) ≤ 2}

α(n) = 4 n = 222216



Can we do better?

• OK, so that’s “basically constant”.  Can we get constant? 

• No.  Any data structure for union find requires  
amortized time (Fredman, Saks ’89) 

• So up trees with path compression are optimal(!)

Ω(α(n))



Union-Find:  Applications
• Good for applications in need of clustering 

• cities connected by roads 
• cities belonging to the same country 
• connected components of a graph 

• Maintaining equivalence classes 
• Maze creation!



Back to MST
• Prim’s algorithm:  using a Fibonnacci tree 

• Kruskal’s algorithm: 
 

• Which is better in practice? 

• Usually Kruskal’s: a single sort is much better than 
Prim’s repeated priority queue removals 

• Is sorting time  required?

O(m + n log n)

O(m log m + mα(m)) = O(m log m)

Ω(m log m)



Can we do better?
Best known algorithm by Chazelle (1999)



Can we do better?
Using randomness, can get  time!O(n + m)



Optimal MST Algorithm?
Has been discovered but don’t know its running time!



MST Algorithms History
• Borůvka’s Algorithm (1926) 

• The Borvka / Choquet / Florek-ukaziewicz-Perkal-Steinhaus-
Zubrzycki / Prim / Sollin / Brosh algorithm  

• Oldest, most-ignored MST algorithm, but actually very good 

• Jarník’s Algorithm (“Prim’s Algorithm”, 1929) 

• Published by Jarník, independently discovered by Kruskal in 
1956, by Prim in 1957 

• Kruskal’s Algorithm (1956) 

• Kruskal designed this because he found Borůvka’s algorithm 
“unnecessarily complicated”



Next class:  
Greedy Algorithms:

Shortest Path



Shortest Paths in Weighted Graph
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Shortest Paths in Weighted Graph
Problem. 

Given a directed graph  with positive edge 
weights: that is, each edge  has a positive weight 

 and vertices  and , find the shortest path from  to . 

Definition.  The shortest path from  to  in a weighted 
graph is a path  from  to  (or a -  path) with minimum 
weight .

G = (V, E)
e ∈ E

w(e) s t s t

s t
P s t s t

w(P) = ∑
e∈P

w(e)





Midterm Questions?
Assignment questions (from any assignment) 

Practice midterm questions
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