Greedy Algorithms

Sam McCauley
February 19, 2024

Welcome Back!

Midterm discussion Thursday

Topics this week (greedy and MST) will be on the midterm

Will decide if Dijkstra’s is on midterm based on how far we get

Fully optional, 1-question assignment released Thursday for practice with
greedy algorithms

Any other questions before we start?

Topological Ordering

Topological Ordering

331
333

336T

Atledst ofle of
371 (287 334,256
-~ - Core course
Elective
No Prerequisites, | X
Preference given to non-majors | 432 \ Required
~a Recommended

1027 103 4341

e Goal: Order the vertices of a graph so that for any edge (u, v), u comes before
v in the final order
o Example: find a sequence of all courses satisfying prerequisites

Topological Ordering (a.k.a. Topological Sort)

Topological Sort

Source: https://medium.com/@konduruharish/topological-sort-in-typescript-and-c-6d5ecc4bad9s

https://medium.com/@konduruharish/topological-sort-in-typescript-and-c-6d5ecc4bad95

DAGs and Toplogical Ordering

Theorem
A graph G has a topological ordering if and only if G is acyclic.

Proof: (=) if G has a topological ordering, G cannot have a cycle.

We'll prove (<) (if G is acyclic, then G has a topological ordering) in the next few
slides.

DAGs and Toplogical Ordering

First, let's prove the following.

Lemma
Every DAG has a vertex with indegree O.

Proof: Assume the contrary: there exists a DAG G where all vertices have indegree
> 0.

Pick a vertex vg. Find some vq such that (v4,vg) € G. In general, for each v;, find a
vit1 where (vjiq,v;) € G.
After n steps, we have a sequence vg, V1, Vo, ..., V,. One vertex must repeat (why?)

(Answer: pidgeonhole principle).

Let v; = v; for somej > i. Then stepping back through the sequence,
Vj,Vj_1,Vj_2,...,V; is a cycle. Contradiction.

Topological Ordering: Simple Algorithm

L=90
while L has length less than n:

find a vertex v with indegree ©®

if no such vertex exists:

return that the graph has a cycle

add v to the end of L

remove v and its outgoing edges from G
return L

e Can we prove that this algorithm works?

Topological Ordering: Simple Algorithm

while L has length less than n:
find a vertex v with indegree O
if no such vertex exists:
return that the graph has a cycle
add v to the end of L
remove v and its outgoing edges from G

Running time?
e How can we store vertices with indegree 0?

e Use a stack of vertices with indegree O, and an array storing indegree of all
vertices
e Initialize array by examining edges one by one

Time to remove vertex and edges with adjacency list?

Overall: O(n + m) time

Finding Topological Ordering with DFS

DFS-Cycle(s):
mark s as active
for each neighbor v of s:
if v is not active or finished:
DFS-Cycle(v)
else:
report that there is a cycle
mark s as finished
add s to the front of L

Running time?
O(n + m)
Why does this work?
o Basic idea: similar to the cycle-finding proof. Every edge (u, v) has that v finishes
before u. We prepend a vertex when it finishes, so u is before v in L.

Example [On Board #1]

Greedy Algorithms

Algorithmic Design Paradigms

Greedy Algorithms < we are here!

Divide and Conquer

Dynamic Programming

Network Flow

Making Change Optimally

e What are the fewest number of coins and bills to make $x?
e Anyone have an algorithm?
e Does this work? Yes. But it's not obvious!

Change Cannot Always be Made Greedily

The old British system had (among others) the following coins:

Coin: ‘penny threepence sixpence shilling florin half-crown
Value: | 1 3 6 12 24 30

e Can you come up with an amount for which the greedy algorithm does not use
the correct number of coins?

e One example: 48. The greedy algorithm gives three coins: 30 + 12 + 6. But we
can do it with two florins (24 + 24)

Greedy Algorithms

e Greedy algorithms make simple local decisions to obtain an optimal solution

e Are almost always fast!

e Question: can you show that your greedy algorithm is always correct for the
given problem?

Filling Up on Gas Electricity

P —
o

o S Juhnsoon City. &
ville Cookeville) i

; : 5]
p & i Winstan:Saleme! SreERSBOre s o o =)
Aurlrggsboru . s A] oRalEigh
> e P NORTH./| o
Hickarya 1 | APy
ESSEE SO CAROLINAY =
& L Mooresville “+ % B
__Nantahala Chagotle
ch £ National Forest et U Fayelseuilre Lio]
-‘ ; partanburg oRoek Hill
ntsville ¥ K-
e 1
2 Wiln
. SOUTH e
= i CAROLINA Wiyrle Baachy
ham-— s lladega | ¥

National Forest \ 2 Co e Y

4 o sumnlcn-n’e

JAMA 'ﬁ Magnn £
" Aubum’ 4

Charleston’
A Cheljst
\ " Columbus GEORGIA
Montgomery. 13 Q

it

e You are driving an EV with a range of 200 miles
e Charging stations along route at distance ds,do, . .., d, from start

e Goal: find the minimum number of charging stops to complete the trip

Filling Up on Gas Electricity

Given sorted list of stops dg = 0,d4,da, ..., dn, dniq

Find the smallest set of stops, including dg and d, .1, that differ by at most
200 miles

Greedy algorithm: Start with dg. Repeatedly do the following: take the
farthest-away stop that is less than 200 miles away

Running time? O(n)

The hard part is showing that this algorithm is correct!

Proof of Correctness

o We'll prove the following invariant: let's say we get to stop d; after k stops.
Then if other route gets to d; in k stops, we have j <.

Proof of Correctness

e Maintain the following invariant: let's say we get to stop d; after k stops. Then
if any other route gets to d; in k stops, we have j <.
e If this invariant is satisfied, we are optimal. (Why?)
¢ No algorithm is “past” greedy after k — 1 stops, so no algorithm reaches the end
in k — 1 stops.

e Greedy stays ahead proof strategy

Proof of Correctness

Lemma

If greedy reaches stop d; after k stops, then if any other route gets to d; in k stops,
we have j <.

Proof: By induction. (I.H. is the lemma). Base case: greedy reaches dg after 1 stop;
all other algorithms must also be at dg after 1 stop.

Inductive step: assume the I.H. for some k. Assume the contrary for k + 1: greedy
reaches some stop dj, whereas some other algorithm A reaches stop d; with J > I.

Let d; be the previous stop reached by A, and d; be the previous stop reached by
greedy. (Diagram [On Board #2]) We have d; — d; < 200. And by the L.H,,j < 1.

But then d; — d; < 200, so greedy could also have reached d;! This contradicts the
definition of greedy: it would have chosen d, rather than dj.

Proof of Correctness

o Let’s say we get to stop d; after k stops. Then if other route gets to d; in k
stops, we have j < i.
e Questions about this problem, or the greedy stays ahead proof strategy?

Class Scheduling (Interval Scheduling)

Figure 4.1. A maximum conflict-free schedule for a set of classes.

From Erikson Algorithms textbook

o Set of classes with start times s1...s, and finish times f;...f,

e What is the maximum number of non-conflicting classes that can be
scheduled?

Class Scheduling (Interval Scheduling)

Figure 4.1. A maximum conflict-free schedule for a set of classes.

From Erikson Algorithms textbook

e Can be solved recursively (see Erikson textbook)—correct but slow

e Today: faster algorithm using greedy!

Class Scheduling (Interval Scheduling)

Figure 4.1. A maximum conflict-free schedule for a set of classes.

From Erikson Algorithms textbook

e [On Board #3] Ideas for greedy algorithms for this problem?

e Not all of these will work! But I want to brainstorm different ways to be greedy.
e Then we’'ll talk about counterexamples to some of these ideas

ldea 1: Greedily Choose by Start Time

e Repeatedly pick conflict-free job with earliest start time

e Counterexample: a very long job starts first

e [On Board #4]

Idea 2: Shortest Jobs First

e Repeatedly pick shortest remaining conflict-free job

e Counterexample: a very short job overlaps two jobs

e [On Board #5]

Idea 3: Fewest Conflicts First

e Repeatedly pick the conflict-free job that overlaps the fewest jobs

e Counterexample: [On Board #6]

Idea 4: Earliest Finish Time First

Repeatedly pick the conflict-free job that ends first

Counterexample?

Believe it or not, this actually works

Brief intuition: if we pick the course that ends earliest, that “frees us up” the
soonest
e Never make a bad decision: if another algorithm picked a later-ending job first,
we can still take the rest of its schedule! [On Board #7]

Earliest Finish Time First Proof Idea

Let’s say greedy gets some set of jobs G

The optimal algorithm has some set of jobs O

Proof idea: transform O into G one step at a time while keeping the same cost

More formally: let’s say O has C jobs, and O schedules k jobs that G does not
(so |0\ G| = k), then there exists a schedule O’ of C jobs that schedules k — 1
jobs that G does not

e Applying the above repeatedly means that G is optimal!

same cost ; same cost ;) same cost /7 same cost " same cost
(0] (0] (0] (0] o"...———a@G

Earliest Finish Time First Proof Idea

Let’s say greedy gets some set of jobs G

The optimal algorithm has some set of jobs O

Proof idea: transform O into G one step at a time while keeping the same cost

More formally: if O schedules k jobs that G does not, then there exists a
schedule O’ with the same cost as O that schedules k — 1 jobs that G does not

Applying the above repeatedly means that G is optimal!

same cost ; same cost ;7 same cost /) same cost " same cost
(0] > O (0] (0] o"...——=—aG

k iterations

Earliest Finish Time Proof

Lemma
If some schedule O schedules k > 1 jobs that G does not, then there exists a
schedule O' with the same cost as O that schedules k — 1 jobs that G does not

Proof: Let’s write each schedule out in order of finish time:
e O=01,09,...,0m
e G =01,92,...,9¢

Let j be the first index where O schedules a job that G does not. That means we
can rewrite O = g1,92,...,9j-1,0},0j41,...,0m.

Then we define O’ by replacing o; with g; (why must g; exist?), as follows:
O/ =01,92,... 7gj—1vgj70j+17 -5 0m.
Clearly, we have that O’ only schedules k — 1 jobs that G does not.

TODO: We need to show that O’ is a legal schedule.

Earliest Finish Time Proof

Lemma
If some schedule O schedules k > 1 jobs that G does not, then there exists a
schedule O' with the same cost as O that schedules k — 1 jobs that G does not

Proof: We define O’ by replacing o; with g;, as follows:
O =91,9,... ,9j-1,9j,0j, - - -, Om. We need to show that O’ is a legal schedule.

We only need to show that g; does not conflict with any other job in O’ (why?)
(Answer: because O had no conflicts)

By definition of greedy, g; cannot conflict with g4,...,gj_1.

Since O is a legal schedule, o; finishes before any job in 04, ...,0n starts. By
definition of greedy, g; finishes before o;. So g; does not conflict with 0;,1...,0m.

Earliest Finish Time Algorithm

greedySchedule(J):
sort J by finish time
create empty list G
for each job j in 3J:
if j starts after last entry in G ends:
add j to G
return G

e We showed that this gives an optimal schedule!
e Running time?

e O(nlogn) on n jobs

Earliest Finish Time Proof

e This is called an Exchange Argument: we repeatedly alter (exchange) an
optimal solution, without increasing cost, until we get the greedy solution

e Proves that greedy is one of the optimal solutions!

e Let’s do an example of how this proof works [On Board #8]

Greedy Proof Techniques

1. Greedy stays ahead

2. Exchange argument

Both are good ways to analyze a greedy algorithm! Oftentimes, both actually
work—but sometimes one is easier than the other.

e If one is proving very difficult, try the other

e Can look quite similar

What if jobs are weighted?

Challenge question

e Suppose each job has a positive weight

e Goal: schedule the jobs with maximum weight that have no conflict

e [On Board #9] Can you come up with a counterexample where earliest
deadline first does not work?

Greedy Algorithms Takeaway

e Greedy algorithms are a sometimes thing
e Usually fast; Correctness is the main question!
e Only use a greedy algorithm when you can show that it is correct
e Starting in March we’ll look at more sophisticated problem-solving techniques

Minimum Spanning Trees

Minimum Spanning Tree (MST)

e A “greedy” graph algorithm

e How many of you have seen a minimum spanning tree algorithm before?

e We'll see two, and talk about MST structure

MST Problem Definition

Given a connected undirected graph G with positive edge weights we, a spanning
tree is a set of edges T C E such that:

e T is aspanning tree: T is a tree that connects all vertices, and

e T has minimum weight: for any spanning tree T,

Zweg Zwe.

eeT eeT’

In this class we will assume that all edge weights are distinct. It just makes the
proofs simpler; Prim’s and Kruskal’s algorithm work without this assumption.

Building to an MST Algorithm

e Can we create an optimal MST on one vertex?

e How about on two vertices?

e Idea: add minimum weight edge to tree

e Intuition as to why this is optimal?

Prim’s Algorithm (Jarnik’s Algorithm)

First, choose a starting vertex u. Create a set of vertices, starting with S < {u} and
a tree starting with T « ().

While |T| < n — 1, find the min-cost edge e = (u, V) such that one end u € S and
veV\S. SetT+ TuU{e}and S+ SU{v}.

Let’'s do an example [On Board #10]

First, how can we prove correctness? (Then we’ll discuss how to find e efficiently,
and the running time.)

Cut Property of MST

A cut is a partition of the vertices V into two subsets: S, and V' \ S. A cut edge is an
edge with one endpoint in S and the other in V' \ S.

Lemma
For any cut S, let e = (u,v) be the minimum weight cut edge. Then e is in every

minimum spanning tree of G.

(Recall we are assuming that all weights are distinct)

Cut Property of MST: Proof

Lemma

For any cut S, let e = (u,v) be the minimum weight cut edge. Then e is in every
minimum spanning tree of G.
Proof: Assume the contrary: there is an MST T such thate ¢ T.

There must be some path p fromu tovin T. Let &’ = (U, V') be the first cut edge in
p. Let’s draw a diagram [On Board #11]

Consider the set T’ created by removing e’ from T and adding e. Therefore, T’ has
smaller weight than T. We claim that T’ is a spanning tree: for any two vertices x,y
there is a path from x to y in T".

If x,y € S, then the path from x to y in T is also a path in T’; same if x,y € V' \ S.

Say x € Sand y € V. Then let p; be the path from x to u, and p, be the path from v
to y. Then p4, e, p, is a path from x to y.]

Proving Prim’s Correct

e How can we use the cut property to prove Prim’s algorithm correct?

e Every edge we add is the smallest cut edge between S and V' \ S; by the cut
property we are done.

Implementing Prim’s Algorithm

What do we need to be able to do?

e Maintain all cut edges!
e Must be able to insert new edges when adding a vertex to T

e Must be able to find minimum-weight cut edge (i.e. minimum-weight edge in
the data structure) and remove it

e Note that: we will keep some edges from S to S in the data structure. If we
remove such an edge we'll just skip it.

e What data structure can insert, and remove minimum weight?

e Answer: priority queue

Priority Queue

Tree representation

(g
OO

e Insert a new item (Insert)
G e @ 0 e Remove minimum weight item
(ExtractMin)

e e e Done using a heap

Array representation

I T 1 I T 1
[100] 1936173251]2]7]
0 1 2 38 4 5 6 7 8

Heaps (Quick Review)

Heap property: each item in the tree is smaller than either of its children

Tree has minimum height; filled in left to right (“full” tree)

Maintain implicitly in an array (do not need pointers!)

Extract min, or insert a new item, in O(n logn) time

Can build a heap in O(n) time (!)

Prim’s Algorithm (Jarnik’s Algorithm)

First, choose a starting vertex u. Create a set of vertices, starting with S «— {u} and
a tree starting with T « ().

While |T| < n — 1, find the min-cost edge e = (u, V) such that one end u € S and
veV\S. SetT+ TuU{e}andS + SU{v}.

To implement: each time we add a vertex to S, add its incident edges to T. To find
the minimum cut edge, remove edges from T until we find a cut edge. Cost?

Need to do < 2m inserts, and < 2m extract mins (why?).

Running time: O(m log m).

	Topological Ordering
	Greedy Algorithms
	Minimum Spanning Trees

