Greedy Algorithms

Sam McCauley

February 19, 2024

Welcome Back!

- Midterm discussion Thursday
- Topics this week (greedy and MST) will be on the midterm
- Will decide if Dijkstra's is on midterm based on how far we get
- Fully optional, 1-question assignment released Thursday for practice with greedy algorithms
- Any other questions before we start?

Topological Ordering

Topological Ordering

- Goal: Order the vertices of a graph so that for any edge $(u, v), u$ comes before v in the final order
- Example: find a sequence of all courses satisfying prerequisites

Topological Ordering (a.k.a. Topological Sort)

Topological Sort

DAGs and Toplogical Ordering

Theorem

A graph G has a topological ordering if and only if G is acyclic.

Proof: (\Rightarrow) if G has a topological ordering, G cannot have a cycle.
We'll prove (\Leftarrow) (if G is acyclic, then G has a topological ordering) in the next few slides.

DAGs and Toplogical Ordering

First, let's prove the following.

Lemma

Every DAG has a vertex with indegree θ.
Proof: Assume the contrary: there exists a DAG G where all vertices have indegree >0.

Pick a vertex v_{\otimes}. Find some v_{1} such that $\left(v_{1}, v_{\otimes}\right) \in G$. In general, for each v_{i}, find a v_{i+1} where $\left(v_{i+1}, v_{i}\right) \in G$.

After n steps, we have a sequence $v_{\otimes}, v_{1}, v_{2}, \ldots, v_{n}$. One vertex must repeat (why?) (Answer: pidgeonhole principle).

Let $v_{i}=v_{j}$ for some $j>i$. Then stepping back through the sequence, $v_{j}, v_{j-1}, v_{j-2}, \ldots, v_{i}$ is a cycle. Contradiction.

Topological Ordering: Simple Algorithm

```
1 L}=
while L has length less than n:
        find a vertex v with indegree }
        if no such vertex exists:
            return that the graph has a cycle
        add v to the end of }
        remove v and its outgoing edges from G
    return L
```

- Can we prove that this algorithm works?

Topological Ordering: Simple Algorithm

```
1 while L has length less than n:
2 find a vertex v with indegree 0
3 if no such vertex exists:
4 return that the graph has a cycle
5 add v to the end of L
6 remove v and its outgoing edges from G
```

- Running time?
- How can we store vertices with indegree θ ?
- Use a stack of vertices with indegree θ, and an array storing indegree of all vertices
- Initialize array by examining edges one by one
- Time to remove vertex and edges with adjacency list?
- Overall: $O(n+m)$ time

Finding Topological Ordering with DFS

```
1 DFS-Cycle(s):
    mark s as active
    for each neighbor v of s:
        if v is not active or finished:
            DFS-Cycle(v)
        else:
            report that there is a cycle
    mark s as finished
    add s to the front of L
```

- Running time?
- $O(n+m)$
- Why does this work?
- Basic idea: similar to the cycle-finding proof. Every edge (u, v) has that v finishes before u. We prepend a vertex when it finishes, so u is before v in L.
- Example [On Board \#1]

Greedy Algorithms

Algorithmic Design Paradigms

- Greedy Algorithms \Leftarrow we are here!
- Divide and Conquer
- Dynamic Programming
- Network Flow

Making Change Optimally

- What are the fewest number of coins and bills to make $\$ x$?
- Anyone have an algorithm?
- Does this always work? Yes. But it's not obvious!

Change Cannot Always be Made Greedily

The old British system had (among others) the following coins:

Coin:	penny	threepence	sixpence	shilling	florin	half-crown
Value:	1	3	6	12	24	30

- Can you come up with an amount for which the greedy algorithm does not use the correct number of coins?
- One example: 48 . The greedy algorithm gives three coins: $30+12+6$. But we can do it with two florins (24 + 24)

Greedy Algorithms

- Greedy algorithms make simple local decisions to obtain an optimal solution
- Are almost always fast!
- Question: can you show that your greedy algorithm is always correct for the given problem?

Filling Up on Gas Electricity

- You are driving an EV with a range of 200 miles
- Charging stations along route at distance $d_{1}, d_{2}, \ldots, d_{n}$ from start
- Goal: find the minimum number of charging stops to complete the trip

Filling Up on Gas Electricity

- Given sorted list of stops $d_{\theta}=\theta, d_{1}, d_{2}, \ldots, d_{n}, d_{n+1}$
- Find the smallest set of stops, including d_{\otimes} and d_{n+1}, that differ by at most 200 miles
- Greedy algorithm: Start with d_{\otimes}. Repeatedly do the following: take the farthest-away stop that is less than 200 miles away
- Running time? $O(n)$
- The hard part is showing that this algorithm is correct!

Proof of Correctness

- We'll prove the following invariant: let's say we get to stop d_{i} after k stops. Then if any other route gets to d_{j} in k stops, we have $j \leq i$.

Proof of Correctness

- Maintain the following invariant: let's say we get to stop d_{i} after k stops. Then if any other route gets to d_{j} in k stops, we have $j \leq i$.
- If this invariant is satisfied, we are optimal. (Why?)
- No algorithm is "past" greedy after $k-1$ stops, so no algorithm reaches the end in $k-1$ stops.
- Greedy stays ahead proof strategy

Proof of Correctness

Lemma

If greedy reaches stop d_{i} after k stops, then if any other route gets to d_{j} in k stops, we have $j \leq i$.

Proof: By induction. (I.H. is the lemma). Base case: greedy reaches d_{8} after 1 stop; all other algorithms must also be at d_{\otimes} after 1 stop.

Inductive step: assume the I.H. for some k. Assume the contrary for $k+1$: greedy reaches some stop d_{I}, whereas some other algorithm A reaches stop d_{J} with $J>I$.

Let d_{j} be the previous stop reached by A, and d_{i} be the previous stop reached by greedy. (Diagram [On Board \#2]) We have $d_{J}-d_{j}<200$. And by the I.H., $j \leq i$.

But then $d_{J}-d_{i}<20 \theta$, so greedy could also have reached d_{J} ! This contradicts the definition of greedy: it would have chosen d_{J} rather than d_{I}.

Proof of Correctness

- Let's say we get to stop d_{i} after k stops. Then if any other route gets to d_{j} in k stops, we have $j \leq i$.
- Questions about this problem, or the greedy stays ahead proof strategy?

Class Scheduling (Interval Scheduling)

Figure 4.1. A maximum conflict-free schedule for a set of classes.

From Erikson Algorithms textbook

- Set of classes with start times $s_{1} \ldots s_{n}$ and finish times $f_{1} \ldots f_{n}$
- What is the maximum number of non-conflicting classes that can be scheduled?

Class Scheduling (Interval Scheduling)

Figure 4.1. A maximum conflict-free schedule for a set of classes.

From Erikson Algorithms textbook

- Can be solved recursively (see Erikson textbook)-correct but slow
- Today: faster algorithm using greedy!

Class Scheduling (Interval Scheduling)

Figure 4.1. A maximum conflict-free schedule for a set of classes.

From Erikson Algorithms textbook

- [On Board \#3] Ideas for greedy algorithms for this problem?
- Not all of these will work! But I want to brainstorm different ways to be greedy.
- Then we'll talk about counterexamples to some of these ideas

Idea 1: Greedily Choose by Start Time

- Repeatedly pick conflict-free job with earliest start time
- Counterexample: a very long job starts first
- [On Board \#4]

Idea 2: Shortest Jobs First

- Repeatedly pick shortest remaining conflict-free job
- Counterexample: a very short job overlaps two jobs
- [On Board \#5]

Idea 3: Fewest Conflicts First

- Repeatedly pick the conflict-free job that overlaps the fewest jobs
- Counterexample: [On Board \#6]

Idea 4: Earliest Finish Time First

- Repeatedly pick the conflict-free job that ends first
- Counterexample?
- Believe it or not, this actually works
- Brief intuition: if we pick the course that ends earliest, that "frees us up" the soonest
- Never make a bad decision: if another algorithm picked a later-ending job first, we can still take the rest of its schedule! [On Board \#7]

Earliest Finish Time First Proof Idea

- Let's say greedy gets some set of jobs G
- The optimal algorithm has some set of jobs O
- Proof idea: transform O into G one step at a time while keeping the same cost
- More formally: let's say O has C jobs, and O schedules k jobs that G does not (so $|O \backslash G|=k$), then there exists a schedule O^{\prime} of C jobs that schedules $k-1$ jobs that G does not
- Applying the above repeatedly means that G is optimal!

$$
O \xrightarrow{\text { same cost }} O^{\prime} \xrightarrow{\text { same cost }} O^{\prime \prime} \xrightarrow{\text { same cost }} O^{\prime \prime} \xrightarrow{\text { same cost }} O^{\prime \prime \prime} \ldots \xrightarrow{\text { same cost }} G
$$

Earliest Finish Time First Proof Idea

- Let's say greedy gets some set of jobs G
- The optimal algorithm has some set of jobs O
- Proof idea: transform O into G one step at a time while keeping the same cost
- More formally: if O schedules k jobs that G does not, then there exists a schedule O^{\prime} with the same cost as O that schedules $k-1$ jobs that G does not
- Applying the above repeatedly means that G is optimal!

Earliest Finish Time Proof

Lemma

If some schedule O schedules $k \geq 1$ jobs that G does not, then there exists a schedule O^{\prime} with the same cost as O that schedules $k-1$ jobs that G does not

Proof: Let's write each schedule out in order of finish time:

- $O=o_{1}, o_{2}, \ldots, o_{m}$
- $G=g_{1}, g_{2}, \ldots, g_{\ell}$

Let j be the first index where O schedules a job that G does not. That means we can rewrite $O=g_{1}, g_{2}, \ldots, g_{j-1}, o_{j}, o_{j+1}, \ldots, o_{m}$.
Then we define O^{\prime} by replacing o_{j} with g_{j} (why must g_{j} exist?), as follows:
$O^{\prime}=g_{1}, g_{2}, \ldots, g_{j-1}, g_{j}, o_{j+1}, \ldots, o_{m}$.
Clearly, we have that O^{\prime} only schedules $k-1$ jobs that G does not.
TODO: We need to show that O^{\prime} is a legal schedule.

Earliest Finish Time Proof

Lemma

If some schedule O schedules $k \geq 1$ jobs that G does not, then there exists a schedule O^{\prime} with the same cost as O that schedules $k-1$ jobs that G does not

Proof: We define O^{\prime} by replacing o_{j} with g_{j}, as follows:
$O^{\prime}=g_{1}, g_{2}, \ldots, g_{j-1}, g_{j}, o_{j_{1}}, \ldots, o_{m}$. We need to show that O^{\prime} is a legal schedule.
We only need to show that g_{j} does not conflict with any other job in O^{\prime} (why?) (Answer: because O had no conflicts)

By definition of greedy, g_{j} cannot conflict with g_{1}, \ldots, g_{j-1}.
Since O is a legal schedule, o_{j} finishes before any job in o_{j+1}, \ldots, o_{m} starts. By definition of greedy, g_{j} finishes before o_{j}. So g_{j} does not conflict with $o_{j+1} \ldots, o_{m}$.

Earliest Finish Time Algorithm

```
greedySchedule(J):
    sort J by finish time
    create empty list G
    for each job j in J:
        if j starts after last entry in G ends:
        add j to G
    return G
```

- We showed that this gives an optimal schedule!
- Running time?
- $O(n \log n)$ on n jobs

Earliest Finish Time Proof

- This is called an Exchange Argument: we repeatedly alter (exchange) an optimal solution, without increasing cost, until we get the greedy solution
- Proves that greedy is one of the optimal solutions!
- Let's do an example of how this proof works [On Board \#8]

Greedy Proof Techniques

1. Greedy stays ahead
2. Exchange argument

Both are good ways to analyze a greedy algorithm! Oftentimes, both actually work-but sometimes one is easier than the other.

- If one is proving very difficult, try the other
- Can look quite similar

What if jobs are weighted?

Challenge question

- Suppose each job has a positive weight
- Goal: schedule the jobs with maximum weight that have no conflict
- [On Board \#9] Can you come up with a counterexample where earliest deadline first does not work?

Greedy Algorithms Takeaway

- Greedy algorithms are a sometimes thing
- Usually fast; Correctness is the main question!
- Only use a greedy algorithm when you can show that it is correct
- Starting in March we'll look at more sophisticated problem-solving techniques

Minimum Spanning Trees

Minimum Spanning Tree (MST)

- A "greedy" graph algorithm
- How many of you have seen a minimum spanning tree algorithm before?
- We'll see two, and talk about MST structure

MST Problem Definition

Given a connected undirected graph G with positive edge weights w_{e}, a spanning tree is a set of edges $T \subseteq E$ such that:

- T is a spanning tree: T is a tree that connects all vertices, and
- T has minimum weight: for any spanning tree T^{\prime},

$$
\sum_{e \in T} w_{e} \leq \sum_{e \in T^{\prime}} w_{e}
$$

In this class we will assume that all edge weights are distinct. It just makes the proofs simpler; Prim's and Kruskal's algorithm work without this assumption.

Building to an MST Algorithm

- Can we create an optimal MST on one vertex?
- How about on two vertices?
- Idea: add minimum weight edge to tree
- Intuition as to why this is optimal?

Prim's Algorithm (Jarník's Algorithm)

First, choose a starting vertex u. Create a set of vertices, starting with $S \leftarrow\{u\}$ and a tree starting with $T \leftarrow \emptyset$.

While $|T| \leq n-1$, find the min-cost edge $e=(u, v)$ such that one end $u \in S$ and $v \in V \backslash$ S. Set $T \leftarrow T \cup\{e\}$ and $S \leftarrow S \cup\{v\}$.

Let's do an example [On Board \#10]

First, how can we prove correctness? (Then we'll discuss how to find e efficiently, and the running time.)

Cut Property of MST

A cut is a partition of the vertices V into two subsets: S, and $V \backslash S$. A cut edge is an edge with one endpoint in S and the other in $V \backslash S$.

Lemma

For any cut S, let $\mathrm{e}=(u, v)$ be the minimum weight cut edge. Then e is in every minimum spanning tree of G.
(Recall we are assuming that all weights are distinct)

Cut Property of MST: Proof

Lemma

For any cut S , let $\mathrm{e}=(u, v)$ be the minimum weight cut edge. Then e is in every minimum spanning tree of G.

Proof: Assume the contrary: there is an MST T such that e $\notin T$.
There must be some path p from u to v in T. Let $e^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ be the first cut edge in p. Let's draw a diagram [On Board \#11]

Consider the set T^{\prime} created by removing e^{\prime} from T and adding e. Therefore, T^{\prime} has smaller weight than T. We claim that T^{\prime} is a spanning tree: for any two vertices x, y there is a path from x to y in T^{\prime}.

If $x, y \in \mathrm{~S}$, then the path from x to y in T is also a path in T^{\prime}; same if $x, y \in V \backslash \mathrm{~S}$.
Say $x \in S$ and $y \in V$. Then let p_{1} be the path from x to u, and p_{2} be the path from v to y. Then p_{1}, e, p_{2} is a path from x to y.

Proving Prim's Correct

- How can we use the cut property to prove Prim's algorithm correct?
- Every edge we add is the smallest cut edge between S and $V \backslash S$; by the cut property we are done.

Implementing Prim's Algorithm

What do we need to be able to do?

- Maintain all cut edges!
- Must be able to insert new edges when adding a vertex to T
- Must be able to find minimum-weight cut edge (i.e. minimum-weight edge in the data structure) and remove it
- Note that: we will keep some edges from S to S in the data structure. If we remove such an edge we'll just skip it.
- What data structure can insert, and remove minimum weight?
- Answer: priority queue

Priority Queue

Tree representation

- Insert a new item (Insert)
- Remove minimum weight item (ExtractMin)
- Done using a heap

Array representation

100	19	36	17	3	25	1	2	7
0	1	2	3	4	5	6	7	8
			1					

Heaps (Quick Review)

- Heap property: each item in the tree is smaller than either of its children
- Tree has minimum height; filled in left to right ("full" tree)
- Maintain implicitly in an array (do not need pointers!)
- Extract min, or insert a new item, in $O(n \log n)$ time
- Can build a heap in $O(n)$ time (!)

Prim's Algorithm (Jarník's Algorithm)

First, choose a starting vertex u. Create a set of vertices, starting with $S \leftarrow\{u\}$ and a tree starting with $T \leftarrow \emptyset$.

While $|T| \leq n-1$, find the min-cost edge $e=(u, v)$ such that one end $u \in S$ and $v \in V \backslash S$. Set $T \leftarrow T \cup\{e\}$ and $S \leftarrow S \cup\{v\}$.

To implement: each time we add a vertex to S , add its incident edges to T. To find the minimum cut edge, remove edges from T until we find a cut edge. Cost?

Need to do $\leq 2 m$ inserts, and $\leq 2 m$ extract mins (why?).
Running time: $O(m \log m)$.

