
Greedy Algorithms

Sam McCauley

February 19, 2024

Welcome Back!

• Midterm discussion Thursday

• Topics this week (greedy and MST) will be on the midterm

• Will decide if Dijkstra’s is on midterm based on how far we get

• Fully optional, 1-question assignment released Thursday for practice with

greedy algorithms

• Any other questions before we start?

Topological Ordering

Topological Ordering

• Goal: Order the vertices of a graph so that for any edge (u, v), u comes before

v in the final order

• Example: find a sequence of all courses satisfying prerequisites

Topological Ordering (a.k.a. Topological Sort)

Source: https://medium.com/@konduruharish/topological-sort-in-typescript-and-c-6d5ecc4bad95

https://medium.com/@konduruharish/topological-sort-in-typescript-and-c-6d5ecc4bad95

DAGs and Toplogical Ordering

Theorem
A graph G has a topological ordering if and only if G is acyclic.

Proof: (⇒) if G has a topological ordering, G cannot have a cycle.

We’ll prove (⇐) (if G is acyclic, then G has a topological ordering) in the next few

slides.

DAGs and Toplogical Ordering

First, let’s prove the following.

Lemma
Every DAG has a vertex with indegree 0.

Proof: Assume the contrary: there exists a DAG G where all vertices have indegree

> 0.

Pick a vertex v0. Find some v1 such that (v1, v0) ∈ G. In general, for each vi , find a

vi+1 where (vi+1, vi) ∈ G.

After n steps, we have a sequence v0, v1, v2, . . . , vn. One vertex must repeat (why?)

(Answer: pidgeonhole principle).

Let vi = vj for some j > i. Then stepping back through the sequence,

vj, vj−1, vj−2, . . . , vi is a cycle. Contradiction.

Topological Ordering: Simple Algorithm

1 L = ∅
2 while L has length less than n:
3 find a vertex v with indegree 0
4 if no such vertex exists:
5 return that the graph has a cycle
6 add v to the end of L
7 remove v and its outgoing edges from G
8 return L

• Can we prove that this algorithm works?

Topological Ordering: Simple Algorithm

1 while L has length less than n:
2 find a vertex v with indegree 0
3 if no such vertex exists:
4 return that the graph has a cycle
5 add v to the end of L
6 remove v and its outgoing edges from G

• Running time?

• How can we store vertices with indegree 0?

• Use a stack of vertices with indegree 0, and an array storing indegree of all
vertices

• Initialize array by examining edges one by one

• Time to remove vertex and edges with adjacency list?

• Overall: O(n+m) time

Finding Topological Ordering with DFS

1 DFS-Cycle(s):
2 mark s as active
3 for each neighbor v of s:
4 if v is not active or finished:
5 DFS-Cycle(v)
6 else:
7 report that there is a cycle
8 mark s as finished
9 add s to the front of L

• Running time?

• O(n+m)

• Why does this work?
• Basic idea: similar to the cycle-finding proof. Every edge (u, v) has that v finishes

before u. We prepend a vertex when it finishes, so u is before v in L.

• Example [On Board #1]

Greedy Algorithms

Algorithmic Design Paradigms

• Greedy Algorithms ⇐ we are here!

• Divide and Conquer

• Dynamic Programming

• Network Flow

Making Change Optimally

• What are the fewest number of coins and bills to make $x?

• Anyone have an algorithm?

• Does this always work? Yes. But it’s not obvious!

Change Cannot Always be Made Greedily

The old British system had (among others) the following coins:

Coin: penny threepence sixpence shilling florin half-crown

Value: 1 3 6 12 24 30

• Can you come up with an amount for which the greedy algorithm does not use

the correct number of coins?

• One example: 48. The greedy algorithm gives three coins: 30 + 12 + 6. But we

can do it with two florins (24 + 24)

Greedy Algorithms

• Greedy algorithms make simple local decisions to obtain an optimal solution

• Are almost always fast!

• Question: can you show that your greedy algorithm is always correct for the

given problem?

Filling Up on Gas Electricity

• You are driving an EV with a range of 200 miles

• Charging stations along route at distance d1, d2, . . . ,dn from start

• Goal: find the minimum number of charging stops to complete the trip

Filling Up on Gas Electricity

• Given sorted list of stops d0 = 0, d1, d2, . . . ,dn, dn+1

• Find the smallest set of stops, including d0 and dn+1, that differ by at most

200 miles

• Greedy algorithm: Start with d0. Repeatedly do the following: take the

farthest-away stop that is less than 200 miles away

• Running time? O(n)

• The hard part is showing that this algorithm is correct!

Proof of Correctness

• We’ll prove the following invariant: let’s say we get to stop di after k stops.

Then if any other route gets to dj in k stops, we have j ≤ i.

Proof of Correctness

• Maintain the following invariant: let’s say we get to stop di after k stops. Then

if any other route gets to dj in k stops, we have j ≤ i.
• If this invariant is satisfied, we are optimal. (Why?)

• No algorithm is “past” greedy after k − 1 stops, so no algorithm reaches the end
in k − 1 stops.

• Greedy stays ahead proof strategy

Proof of Correctness

Lemma
If greedy reaches stop di after k stops, then if any other route gets to dj in k stops,

we have j ≤ i.

Proof: By induction. (I.H. is the lemma). Base case: greedy reaches d0 after 1 stop;

all other algorithms must also be at d0 after 1 stop.

Inductive step: assume the I.H. for some k. Assume the contrary for k + 1: greedy

reaches some stop dI, whereas some other algorithm A reaches stop dJ with J > I.

Let dj be the previous stop reached by A, and di be the previous stop reached by

greedy. (Diagram [On Board #2]) We have dJ − dj < 200. And by the I.H., j ≤ i.

But then dJ − di < 200, so greedy could also have reached dJ! This contradicts the

definition of greedy: it would have chosen dJ rather than dI.

Proof of Correctness

• Let’s say we get to stop di after k stops. Then if any other route gets to dj in k

stops, we have j ≤ i.

• Questions about this problem, or the greedy stays ahead proof strategy?

Class Scheduling (Interval Scheduling)

From Erikson Algorithms textbook

• Set of classes with start times s1 . . . sn and finish times f1 . . . fn

• What is the maximum number of non-conflicting classes that can be

scheduled?

Class Scheduling (Interval Scheduling)

From Erikson Algorithms textbook

• Can be solved recursively (see Erikson textbook)—correct but slow

• Today: faster algorithm using greedy!

Class Scheduling (Interval Scheduling)

From Erikson Algorithms textbook

• [On Board #3] Ideas for greedy algorithms for this problem?

• Not all of these will work! But I want to brainstorm different ways to be greedy.
• Then we’ll talk about counterexamples to some of these ideas

Idea 1: Greedily Choose by Start Time

• Repeatedly pick conflict-free job with earliest start time

• Counterexample: a very long job starts first

• [On Board #4]

Idea 2: Shortest Jobs First

• Repeatedly pick shortest remaining conflict-free job

• Counterexample: a very short job overlaps two jobs

• [On Board #5]

Idea 3: Fewest Conflicts First

• Repeatedly pick the conflict-free job that overlaps the fewest jobs

• Counterexample: [On Board #6]

Idea 4: Earliest Finish Time First

• Repeatedly pick the conflict-free job that ends first

• Counterexample?

• Believe it or not, this actually works

• Brief intuition: if we pick the course that ends earliest, that “frees us up” the
soonest

• Never make a bad decision: if another algorithm picked a later-ending job first,
we can still take the rest of its schedule! [On Board #7]

Earliest Finish Time First Proof Idea

• Let’s say greedy gets some set of jobs G

• The optimal algorithm has some set of jobs O

• Proof idea: transform O into G one step at a time while keeping the same cost

• More formally: let’s say O has C jobs, and O schedules k jobs that G does not

(so |O \ G| = k), then there exists a schedule O′ of C jobs that schedules k − 1

jobs that G does not

• Applying the above repeatedly means that G is optimal!

O same cost−−−−−−→ O′ same cost−−−−−−→ O′′ same cost−−−−−−→ O′′ same cost−−−−−−→ O′′′ . . . same cost−−−−−−→ G

Earliest Finish Time First Proof Idea

• Let’s say greedy gets some set of jobs G

• The optimal algorithm has some set of jobs O

• Proof idea: transform O into G one step at a time while keeping the same cost

• More formally: if O schedules k jobs that G does not, then there exists a

schedule O′ with the same cost as O that schedules k− 1 jobs that G does not

• Applying the above repeatedly means that G is optimal!

O same cost−−−−−−→ O′ same cost−−−−−−→ O′′ same cost−−−−−−→ O′′ same cost−−−−−−→ O′′′ . . . same cost−−−−−−→︸ ︷︷ ︸
k iterations

G

Earliest Finish Time Proof
Lemma
If some schedule O schedules k ≥ 1 jobs that G does not, then there exists a

schedule O′ with the same cost as O that schedules k − 1 jobs that G does not

Proof: Let’s write each schedule out in order of finish time:

• O = o1, o2, . . . , om
• G = g1, g2, . . . ,g`

Let j be the first index where O schedules a job that G does not. That means we

can rewrite O = g1, g2, . . . , gj−1, oj, oj+1, . . . , om.

Then we define O′ by replacing oj with gj (why must gj exist?), as follows:

O′ = g1, g2, . . . ,gj−1, gj, oj+1, . . . , om.

Clearly, we have that O′ only schedules k − 1 jobs that G does not.

TODO: We need to show that O′ is a legal schedule.

Earliest Finish Time Proof

Lemma
If some schedule O schedules k ≥ 1 jobs that G does not, then there exists a

schedule O′ with the same cost as O that schedules k − 1 jobs that G does not

Proof: We define O′ by replacing oj with gj, as follows:

O′ = g1, g2, . . . , gj−1, gj, oj1 , . . . , om. We need to show that O′ is a legal schedule.

We only need to show that gj does not conflict with any other job in O′ (why?)

(Answer: because O had no conflicts)

By definition of greedy, gj cannot conflict with g1, . . . ,gj−1.

Since O is a legal schedule, oj finishes before any job in oj+1, . . . , om starts. By

definition of greedy, gj finishes before oj. So gj does not conflict with oj+1 . . . , om.

Earliest Finish Time Algorithm

1 greedySchedule(J):
2 sort J by finish time
3 create empty list G
4 for each job j in J:
5 if j starts after last entry in G ends:
6 add j to G
7 return G

• We showed that this gives an optimal schedule!

• Running time?

• O(n log n) on n jobs

Earliest Finish Time Proof

• This is called an Exchange Argument: we repeatedly alter (exchange) an

optimal solution, without increasing cost, until we get the greedy solution

• Proves that greedy is one of the optimal solutions!

• Let’s do an example of how this proof works [On Board #8]

Greedy Proof Techniques

1. Greedy stays ahead

2. Exchange argument

Both are good ways to analyze a greedy algorithm! Oftentimes, both actually

work—but sometimes one is easier than the other.

• If one is proving very difficult, try the other

• Can look quite similar

What if jobs are weighted?

Challenge question

• Suppose each job has a positive weight

• Goal: schedule the jobs with maximum weight that have no conflict

• [On Board #9] Can you come up with a counterexample where earliest

deadline first does not work?

Greedy Algorithms Takeaway

• Greedy algorithms are a sometimes thing

• Usually fast; Correctness is the main question!
• Only use a greedy algorithm when you can show that it is correct

• Starting in March we’ll look at more sophisticated problem-solving techniques

Minimum Spanning Trees

Minimum Spanning Tree (MST)

• A “greedy” graph algorithm

• How many of you have seen a minimum spanning tree algorithm before?

• We’ll see two, and talk about MST structure

MST Problem Definition

Given a connected undirected graph G with positive edge weights we, a spanning

tree is a set of edges T ⊆ E such that:

• T is a spanning tree: T is a tree that connects all vertices, and

• T has minimum weight: for any spanning tree T ′,∑
e∈T

we ≤
∑
e∈T′

we.

In this class we will assume that all edge weights are distinct. It just makes the

proofs simpler; Prim’s and Kruskal’s algorithm work without this assumption.

Building to an MST Algorithm

• Can we create an optimal MST on one vertex?

• How about on two vertices?

• Idea: add minimum weight edge to tree

• Intuition as to why this is optimal?

Prim’s Algorithm (Jarník’s Algorithm)

First, choose a starting vertex u. Create a set of vertices, starting with S← {u} and

a tree starting with T ← ∅.

While |T| ≤ n− 1, find the min-cost edge e = (u, v) such that one end u ∈ S and

v ∈ V \ S. Set T ← T ∪ {e} and S← S ∪ {v}.

Let’s do an example [On Board #10]

First, how can we prove correctness? (Then we’ll discuss how to find e efficiently,

and the running time.)

Cut Property of MST

A cut is a partition of the vertices V into two subsets: S, and V \ S. A cut edge is an

edge with one endpoint in S and the other in V \ S.

Lemma

For any cut S, let e = (u, v) be the minimum weight cut edge. Then e is in every

minimum spanning tree of G.

(Recall we are assuming that all weights are distinct)

Cut Property of MST: Proof

Lemma

For any cut S, let e = (u, v) be the minimum weight cut edge. Then e is in every

minimum spanning tree of G.

Proof: Assume the contrary: there is an MST T such that e /∈ T .

There must be some path p from u to v in T . Let e′ = (u′, v′) be the first cut edge in

p. Let’s draw a diagram [On Board #11]

Consider the set T ′ created by removing e′ from T and adding e. Therefore, T ′ has

smaller weight than T . We claim that T ′ is a spanning tree: for any two vertices x, y

there is a path from x to y in T ′.

If x, y ∈ S, then the path from x to y in T is also a path in T ′; same if x, y ∈ V \ S.

Say x ∈ S and y ∈ V . Then let p1 be the path from x to u, and p2 be the path from v

to y. Then p1, e,p2 is a path from x to y.

Proving Prim’s Correct

• How can we use the cut property to prove Prim’s algorithm correct?

• Every edge we add is the smallest cut edge between S and V \ S; by the cut

property we are done.

Implementing Prim’s Algorithm

What do we need to be able to do?

• Maintain all cut edges!

• Must be able to insert new edges when adding a vertex to T

• Must be able to find minimum-weight cut edge (i.e. minimum-weight edge in

the data structure) and remove it

• Note that: we will keep some edges from S to S in the data structure. If we

remove such an edge we’ll just skip it.

• What data structure can insert, and remove minimum weight?

• Answer: priority queue

Priority Queue

• Insert a new item (Insert)

• Remove minimum weight item

(ExtractMin)

• Done using a heap

Heaps (Quick Review)

• Heap property: each item in the tree is smaller than either of its children

• Tree has minimum height; filled in left to right (“full” tree)

• Maintain implicitly in an array (do not need pointers!)

• Extract min, or insert a new item, in O(n log n) time

• Can build a heap in O(n) time (!)

Prim’s Algorithm (Jarník’s Algorithm)

First, choose a starting vertex u. Create a set of vertices, starting with S← {u} and

a tree starting with T ← ∅.

While |T| ≤ n− 1, find the min-cost edge e = (u, v) such that one end u ∈ S and

v ∈ V \ S. Set T ← T ∪ {e} and S← S ∪ {v}.

To implement: each time we add a vertex to S, add its incident edges to T . To find

the minimum cut edge, remove edges from T until we find a cut edge. Cost?

Need to do ≤ 2m inserts, and ≤ 2m extract mins (why?).

Running time: O(m logm).

	Topological Ordering
	Greedy Algorithms
	Minimum Spanning Trees

